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PERIODIC INTERACTIONS OF CHARGED PARTICLES WITH

LOCALIZED FIELDS-THE SPATIAL STANDARD MAP
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Plasma Fusion Center and Research Laboratory of Electrmnica

Massachusetts Institute of Technology

Cambridge, MA 02139 USA

ABSTRACT

We derive and analyze a generic mapping for the spatially periodic interaction of

charged particles with localized, coherent electric fields. For such interactions stochastic

motion exists in a bounded region of phase-space. Conditions are determined for which

diffusion can describe the dynamics in such a bounded, stochastic phase-space.
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INTRODUCTION

The spatially periodic interaction of charged particles with a coherent electric field

wavepacket of finite spatial extent is of considerable practical interest for plasma heating

and current drive. Several models representing this wave-particle interaction have been

analyzed [1, 2]. However, because of the finite spatial extent of the fields, many details of

the particle dynamics could not be treated analytically. In particular, the definition and

evaluation of phase-space diffusion have varied and remained unresolved. In this paper we

develop a model consisting of a charged particle interacting periodically with a spatially

impulsive (i.e. a delta-function in space), sinusoidally time-varying field. The periodicity

length is the spatial separation between two such localized fields and is a constant. This

system lends itself to an extensive analytical and numerical treatment primarily because

the mapping equations (representing the change in the dynamical variables after each

interaction of the particle with the impulsive force) can be explicitly derived. In the

following sections we derive the mapping equations and the conditions that would lead

to stochastic motion of the particles. The stability conditions for the existence of the

primary islands are also derived, and we determine the diffusion coefficient for particles

in the stochastic region of phase-space. We find that the concept of diffusion can only

exist for amplitudes of the field that are smaller than a critical amplitude. For amplitudes

larger than the critical amplitude, the description of the dynamics in terms of an effective

diffusion coefficient breaks down. This is primarily due to the fact that the entire phase-

space of particle motion cannot become stochastic for a finite amplitude of the field (this is

similar to the behavior observed in the Fermi map [3]). The existence of these phase-space

boundaries which limit the region of stochasticity result in a breakdown of the diffusion

model for large amplitudes.

The map we describe is very different from the standard Chirikov-Taylor map [4] which

corresponds to the temporally periodic and impulsive interaction of a charged particle with

a field that varies sinusoidally in space. Furthermore, in the Chirikov-Taylor map the entire

phase-space becomes stochastic above a certain amplitude and diffusion coefficients can be

explicitly evaluated for all amplitudes above the critical amplitude for global stochasticity

[5].
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THE DYNAMICAL MODEL AND THE MAPPING EQUATIONS

The model that we consider describes the one-dimensional motion of a charged particle

that is acted upon by a spatially-localized, impulsive, time dependent electric field that is

periodic in space. The equation of motion is:

dv eEL *

dt - m cos (wt) 1 6(z - nL) (1)
n=-oo

where dz/dt = v, e and m are the charge and mass, respectively, of the particle, E is the

strength of the electric field with frequency w, and L is the spatial periodicity length that

separates the impulsive kicks. By normalizing z to the length L, the time t to 27r/w, and

the velocity v to wL/27r, (1) can be written in the dimensionless form:

dv _.

= e co(2rt) E (z - n) (2)
n=-oo

where e = (eE/mL)(27r/w)2 , and v, z, t are now dimensionless variables. The spatial

periodicity can be used to express the right-hand side of (2) as a Fourier series, so that the

equation of motion becomes:

dv 00

d= E cos2(nz - t) (3)
n=-oo

Thus, (2) is equivalent to describing the motion of a charged particle (charge, + e) that

is acted upon by an infinite number of plane electrostatic waves of equal amplitudes but

whose (normalized) phase-velocities are: (V)n = 1/n (n = 0, ±1, ±2,...).

In order to integrate (2) and derive the corresponding mapping equations, it is easier

to rewrite the equations of motion such that the kinetic energy, v 2 , and the time, t, are

dependent variables and the spatial coordinate, z, is the independent variable. Letting

V2 = u, the equations of motion are then:

du _0

= 2C cos(26t) E (z - n) (4)

dt 1(5)
dz /i()
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The above equations can be solved easily to give the mapping equations:

u,+1 = un + 2oe cos2irtn (6)

tn+1 = tn + mod 1 (7)

where u,+, is the energy of the particle after it has received its n-th impulse and t,+ 1 is

the time (or the phase of the wave) at which it arrives at the position where it receives its

(n + 1)-th impulse. o is either 1, or 0, or -1 and is related to the direction of the velocity

of the particle. For particles with positive velocity a = 1 and for particles with negative

velocity a = -1. When a particle suffers a reflection, i.e. there is a reversal in the direction

of the velocity of the particle at the position of an impulse, a = 0. We shall refer to the

mapping equations (6) and (7) as the "spatial standard map." It is worth noting that the

mapping equations given above are area-preserving.

OVERLAP CRITERION AND STABILITY ANALYSIS

Equation (3) can be rewritten as:

du **
- = 2e E coa27r(nz - t) (8)

For small e (e < 1), particles interact with each plane wave, i.e. with each Fourier compo-

nent of (8), in an essentially independent way. The Hamiltonian for a particle interacting

with the n-th wave is:

1HE,(u, t; z) = 27m(Vu- - -)1 2e ainC (9)n

where C = 27r(nz - t). Clearly, the condition for a particle to interact resonantly with the

n-th wave is: u,, = 1/n 2 . The range of energies over which a particle will be trapped in

the n-th wave is given by the trapping width:

2 2e
(Au) ~' _ (10)

nj In 7r
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As e is increased the effect of the neighboring waves comes into play as their trapping widths

begin to overlap and the above approximations start to break down. The conditions for

this to occur is the Chirikov resonance overlap criterion [4] and is given by:

(Aut'.). + (AUt,.).+1 > lUn - Un+1| (I

Using equation (10), this gives the approximate threshold condition for e such that an

independent interaction of a particle with a given wave is no longer valid.

7 (21n|+1) 2  1
(8TH) InI(In + 1) [(InI + 1)3/2 + Inj3/2]2

For amplitudes around (eTH)n stochastic motion will encompass the n-th resonance. For

In > 1, the above condition reduces to: CTH > w/(8n 3). Thus, for any arbitrary small,

nonzero, amplitude there will always be a region in energy that is stochastic. However,

for any finite amplitude, there will always be a region in energy that does not become

stochastic as it would require an infinitely large amplitude to get the n = 0 and the

n = 1 resonances to overlap. 'A phase-space plot for the spatial standard map is shown in

Figure 1 for e = 10-3 and a number of initial conditions distributed in u and t. For this

amplitude, the overlap criterion (12) shows that stochasticity exists for u < 0.02. This is

approximately the value observed in the graph. The first-order islands corresponding to

n = 2,3,4,5 and 6 are clearly discernable.

In trying to determine the fixed points of the mapping, T, defined by equations (6, 7)

we can, without any loss of generality, choose 0 = 1. Then the fixed points of T are given

by

1 (2m+ 1) (13)i4=- and ti = 4(3

where I = 0, t1, t2, ... and m = 0 or 1. ui is the same as the wave-particle resonance

condition discussed earlier. The stability of these fixed points is determined by the usual

methods [3]. Defining:

Ls9U+ 1 /&Un aun+/8tin
M(U'It')=5 (14)
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the stability of u; and t* is given by the criterion:

ITrM(t4, t* ){ < 2 -+ stable (15>2 -+ unstable

where Tr is the trace of the matrix M. All m = 0 fixed points are unstable and correspond

to hyperbolic points. For m = 1, the fixed points are stable (i.e. they are elliptic points)
if:

6< 2 =6 (16)

Otherwise, they are unstable. Comparing this with the Chirikov overlap criterion for large

I, we find that an elliptic point becomes hyperbolic for an amplitude that is four times

larger than is required for the overlap of the island corresponding to that elliptic point

with the island of the neighboring elliptic point.

For e slightly greater than el, there appear two elliptic points in the phase-space

neighborhood of the elliptic point which existed for e < et. These are fixed points of T 2

(besides many other fixed points of T 2 ) which come into existence only after the fixed

points of T have become unstable. This illustrates the period doubling sequence of the

mapping equations. In Figure 2a we show the surface-of-section plot near the I = 1 fixed

point (ut = 1,t* = 0.75) for E = 0.63 < el = 2/7r. In Figure 2b e = 0.64 > el, and the

period doubling bifurcation has clearly taken place. An analytical determination of the

fixed points of T 2 is difficult to carry out as the equations describing the fixed points are

transcendental.

DIFFUSION IN ENERGY OF PARTICLE DISTRIBUTIONS

For amplitudes larger than those required for the onset of stochastic motion, it is not

possible to give a detailed analytical description of the chaotic particle orbits. However,

for practical purposes, this is not necessary. Rather, it is important to have a statistical

or a "global" description for the macroscopic evolution of a distribution of particles after

a number of interactions with the imposed fields. (For instance, in the case of rf waves

interacting with a plasma, one is more concerned with the heating of the plasma, which

is a macrosopic effect, than with the intricate microscopic details of the orbits of the
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particles.) In this section we will describe the statistical properties of the spatial standard

map. We will assume that in the stochastic region of phase-space, the wave-phase (t) is

randomized much faster than the energy. By averaging over this fast time scale we will be

studying the evolution in energy of a distribution of particles after multiple interactions

with the external force. In the Fokker-Planck description of the evolution of the distribution

function of energy for the Hamiltonian system under consideration, we need to know the

diffusion coefficient [3].

We define

D = ((u' - UO) 2 ) (17)
2n

which is related to the diffusion coefficient, and study its behavior. Here Un is the energy

of a particle after n interactions whose initial energy, uO, is in the stochastic phase-space.

The (...) denotes an ensemble average over the wave-phase for a set of particles started at

the same energy so, but distributed randomly in t. Since the width of the stochastic layer

is always finite, un is bounded. Thus, in the limit n -+ oo, D -* 0. (In an unbounded, or

periodic, phase space which is stochastic, e.g. in the Chirikov-Taylor map, the limit of (17)

for n -+ oo would give the conventional diffusion coefficient [5].) The quasilinear diffusion

coefficient, which corresponds to n = 1, is given by:

DQL = e2 for uo > 2c (18a)

and

D = _cos1 (4Eo) for so < 2e (18b)
7r 2e 47re V 2

where the expression in (18b) takes into account the reflection of some of the particles

as was discussed earlier. This definition of the quasilinear diffusion coefficient assumes

that the wave-phase just before the particles interact with the force for the second time

is completely uncorrelated with the wave-phase prior to the first interaction i.e. complete

phase randomization on each mapping iteration. If this were indeed the case then DQL

could be used in the Fokker-Planck equation for the evolution of the distribution function.
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In order to decide whether there is phase randomization in one iteration or not, we need

to consider the wave-phase correlation function:

C, = ((uP - U - uP)), (19)

where (...), is an ensemble average over the wave-phase for a set of particles randomly

distributed in the stochastic phase-space with uP being the initial energy of the p-th par-

ticle. A numerical analysis of Cn shows that there exists an n. such that for n > nc, C,
is essentially zero for all e > 0. This n. gives a measure of the number of interactions

required with the impulsive force before particles lose memory of their initial conditions.

Numerical evaluations of Cn show that ne > 1 for all e > 0 so that the basic requirement

for the validity of quasilinear theory, namely that ne = 1, is not borne out for the spatial

standard map. In fact, for 0 < c <0.1, 10 $nc <40 and for e > 1.0 we find that ne > 70.

A detailed numerical analysis of Dn as a function of n yields two regimes in amplitude

where the behavior of D, is distinctly different. The two regimes are separated by a critical

amplitude, ee, that is determined to be ec ; 10-'. In the first regime, corresponding to

c < c, there exists a range of n over which Dn remains essentially independent of n. A

typical plot from this regime is shown in Figure 3a where, for e = 10~5, we follow the

evolution of a beam of 106 particles with uo = 2.56 x 10-6. For these parameters n. ; 30.

The approach to this regime of flatness can be either from below (as shown in Figure 3a)

or from above depending on the value chosen for uO in the stochastic region. In the second

regime, where 6 > cc, D. decreases monotonically with increasing n for n > nc. This is

shown in Figure 3b where, for e = 10-2, we followed the evolution of 106 particles with

uO = 10-6. For this case n. ~ 30.

An explanation of the behavior of D. in these two regimes and the value of e that

separates these regimes is best obtained by comparing the spread in energy of an initial

beam of particles with the width of the stochastic region. F&om the resonance overlap

criterion (12), we can estimate that for a fixed e, the stochastic region is given by:

0 ; U <Ub 1 - 2 (20)
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(This assumes that In > 1 in (12) which is a reasonable approximation for the range of e's

we will be discussing in this section.) Furthermore, from (6) the magnitude of the change

in energy per interaction with the force is of order e. The average spread in energy of the

initial beam during one correlation "time" (i.e. after n. number of interactions) is nee; the

width in energy of the stochastic region of phase-space is ub.

In the case where nce < U, the beam particles with low initial energies will take, on the

average, more than n. interactions to reach the upper energy boundary of the stochastic

region. Here the initial delta-function distribution, 6(u - uo), with uo < ub, first evolves as

if the stochastic region were infinite. For n > n. particles sample different local diffusivities

in phase-space (introduced by the non-uniformity in the distribution of phase-space islands

discussed earlier), and Dn changes with n. If we define D.(uo) as the value of Dn at n = n.

for a fixed so, we find that D. oscillates about DQL as a function of uo in the stochastic

region. Such a behavior of Dc has been observed before for the Fermi map [6, 7]. We shall

not go into further details about De(uo) since the basic ideas explaining its behavior, as

discussed in [6, 7], essentially apply to the spatial standard map. As n is increased further,

the particle distribution smoothes over these oscillations in D0 (uo) and Dn remains almost

constant as a function of n. The value attained by D, in this regime is what we shall term

as the "global diffusion coefficient." The approach to this global diffusion coefficient with

increasing n is from above if the uo of the beam is such that D(e(uo) > DQL and from below

for uo's such that D,(uo) < DQL. For further increases in n, beyond this region where D,

is flat, Dn decreases monotonically with increasing n (see Figure 3a). This signifies that

a majority of the particles have reached the boundaries of the stochastic region and their

average energy, and energy spread are no longer increasing. The monotonic decrease of D,

is not proportional to 1/n as one would expect if ((u" -o) 2) were not increasing at all. The

observed slower rate of decrease of D is due to the fact that there are still a lot of particles

in the beam that have not reached the higher energy boundary of the stochastic region.

The amplitude where ne $ Us with n. ; 30, is approximately e t 10-= e= . Thus, this

explains the behavior of D,, versus n in Figure 3a. The global diffusion coefficient can be

easily read off from the graph to be DG e 0.95 x 10-10 = 0.95C2. The reason that this

value is slightly less than the quasilinear value from (18a) is that, at any interaction with
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the external force, there are always some particles that are getting reflected. From our

numerical computations we find that DG z 0.95e2 for c < c provided uo +ne < ub i.e. the

initial beam energies are such that in one correlation time the particles in the beam have

not reached the upper boundary in energy. For uO such that uO + nee > ub (and uo < ub),

DG is still proportional to e2 but the constant of proportionality is less than 0.95. In this

case many particles in the beam reach the upper energy boundary within one correlation

time and cannot gain any further energy due to their stochastic motion. As e approaches

e from below, there is a decrease in the number of interactions over which Dn remains a

constant and DG becomes less than 0.95e2 independent of uO < ub. This is not surprising

since as e is increased it takes fewer number of mapping iterations beyond ne before most

of the beam particles have reached their maximum energies.

In the opposite limit of large amplitudes where, nce > u,, i.e. e > e,, the boundary

of the stochastic region plays an important role in the determination of the behavior of

Dn. Here, within a correlation time, a majority of the particles will have reached the

boundaries. Consequently, as argued above, a significant population of the distribution of

particles will not be gaining energy or spreading in energy after the first nc interactions.

Indeed, this shows up dramatically in the numerical behavior of Dn as shown in Figure

3b. For n > nc, there is no longer a range of n's over which D, either increases or remains

a constant. In fact, D,,, decreases monotonically with n (but slower than 1/n for the same

reasons discussed above). Furthermore, the increase in nc for e > 0.1, as mentioned earlier,

is due to the boundaries of the stochastic layer. These boundaries reduce the "degrees of

freedom" for the particles. For instance, particles at ub can either remain at u, or lose

energy while those at any other energy in the stochastic layer can either gain or lose

energy or remain at the same energy. Since, as e is increased, it takes a fewer number of

interactions with the impulsive force to reach energies near ub the boundary effects begin

to dominate and introduce correlations that persist for large values of n.

From this analysis of Dn it is clear that for e < e. the concept of diffusion can be

used to describe the dynamics in the stochastic region. For n > n,, D,, changes with n

as the diffusion coefficent is a function of the local energies over which the initial beam

distribution function is diffusing [6, 7]. For larger values of n, D,, flattens out and remains

10



a constant for a range of n's leading to a global diffusion coefficient which is essentially

that given by the quasilinear value (18a).

For amplitudes e > ec the dynamics do not seem to be described by the usual concept

of diffusion. In this case, as in the previous case, (U2 ) and (un) eventually do not change as

a function of n indicating that the distribution function of the particles may have evolved

to a steady-state where it is no longer changing, on the average, due to further interactions

with the impulsive force. However, here the evolution to the steady-state may not be

described by the Fokker-Planck equation.

The conclusions arrived at by this model should be valid even when the wavepacket

has some finite spatial extent provided it is still small compared to the periodicity length.

The effect of finite sized wavepackets remains a subject for future study.

This work was supported in part by the National Science Foundation Grant ECS-

8515032 and in part by the Department of Energy Contract No. DE-AC02-78ET-51013.
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Figure Captions

Figure 1. Surface of section plot for the spatial standard map with r = 10-3.

Figure 2. Surface of section plots near the I = 1 fixed point.

(a) e = 0.63.

(b) e = 0.64 showing the period doubling bifurcation.

Figure 3. D, versus n for 106 particles that are initially distributed uniformly in t. n.

indicates the value of n beyond which the correlation function, C,,, has decayed to zero.

(a) e = 10- with the initial energy of the particles in the beam uo = 2.56 x 10-6.

(b) e = 102, uo = 10-.
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