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Abstract

The warm electron driven (2 keV) whistler electron microinstability [1] of
the Constance B electron cyclotron resonance heated (ECRH), quadrupole mir-
ror confined plasma experiment has been studied. Experiments show 1) the
instability comes in fairly regular bursts on axis and continuously in time off
axis due to the minimum B geometry, 2) a frequency spectrum which is insen-
sitive to changes in the plasma parameters, and 3) instability induced power
losses which are not greater than 10% of the ECRH power input for the regimes
studied. A linear perturbation analysis of the relativistic Vlasov equation to-
gether with Maxwell's equations has been made. Using the ECRH distribution
function, a new distribution function [1] well suited for describing ECRH, mir-

ror confined plasmas, the analysis shows the instability frequency spectrum to
be insensitive to changes in cyclotron frequency, temperature, and density, in
agreement with experimental results, and only sensitive to changes in ECRH

frequency.
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1 Introduction

The whistler instability is an electron microinstability which is driven by tempera-

ture anisotropy of the electron velocity space distribution. It is well known that a

mirror-confined plasma, which is inherently anisotropic if the electrons are heated

to energies greater than the plasma potential, may be whistler unstable. Unstable

microwave emission in a regime near the electron cyclotron frequency has been ob-

served and characterized in a wide variety of mirror experiments.[2,3,4,5,6} Theoreti-

cal investigations using linear perturbation theory and models for the electron veloc-

ity distribution have been made and used to identify the whistler instability.[7,8,9]

We have investigated the whistler instability which exists in the Constance B

electron cyclotron resonance heated (ECRH), mirror-confined plasma. In a previ-

ous paper we showed that the whistler instability in this plasma is driven by the

warm electron component (2 keV), while the hot electron component (450 keV)

is microstable. [1] We also showed that this agrees well with a linear perturbation

analysis using the ECRH distribution, a new distribution function that is well suited

to describing ECRH, mirror- confined plasmas.

In this paper we show the effects that the whistler instability has on the Con-

stance B plasma. Section 2 presents experimental observations. The radial behavior

of the instability in the inhomogeneous magnetic field is described. The frequency

spectrum is shown to be insensitive to changes in the parameters which are variable

in the experiment. Power losses due to unstable rf emission and instability induced

electron endloss are shown to be less than 10% of the ECRH power input for the

conditions investigated. Section 3 presents conclusions from the linear perturba-

tion analysis using the ECRH distribution. We show that the predicted whistler

frequency spectrum is only dependent on the ECRH frequency and insensitive to

changes in cyclotron frequency, plasma density, and plasma temperature. We de-

duce an explanation for the radial behavior of the whistler instability observed in

experiments.
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2 The Constance B Experiment

Constance B is a single-cell, minimum B magnetic mirror in which the plasma is

created and the electrons are resonantly heated by microwaves. A baseball seam

shaped coil produces a quadrupole magnetic field with constant IBI surfaces which

are egg-shaped. A klystron supplies up to 5 kW of microwave power at 10.5 GHz. A

typical value of IBI at the midplane on the axis is 3 kG, which makes a nonrelativistic

resonance zone of length 30 cm and radius 10 cm.

The principal diagnostics used for this work consist of 1) a linear array of five

gridded, electrostatic endloss analyzers for endloss energies less than 5 keV, 2) an rf

receiving system for measuring the total power and the frequency spectrum between

5.5 GHz and 18 GHz, 3) a diamagnetic loop at the midplane to measure plasma

stored energy, 4) hard and soft x ray detectors to measure electron temperature, 5)

a scintillator probe to measure high energy (> 100 keV) electron endloss, and 6) an

interferometer to measure the line integrated density.

A typical plasma shot for whistler instability studies is depicted in Fig. 1. The

ECRH power, the neutral gas pressure and the magnitude of the magnetic field are

directly controllable. The ECRH power and the magnetic field may be on for as

long as 10 sec.

2.1 Description of Plasma

The Constance B plasma parameters are characterized by slowly varying equilibrium

values superimposed by faster fluctuations which are identified as whistler instability

(see Fig. 2). The whistler fluctuations, which are discussed in the next section in

detail, consist of bursts of rf emission which correlate with bursts of electron and

ion endloss, and diamagnetism and potential fluctuations.

The equilibrium plasma parameters are summarized in Table I. The plasma is

characterized by a three component electron energy distribution function. The cold

and warm component temperatures are measured with the gridded, electrostatic

endloss analyzers. The hot component temperature is measured with the x ray

detectors. The diamagnetism and x ray detectors are used to determine the hot

electron density. Since the hot electron collisional confinement time is greater than
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1000 times that of the cold electrons, the cold electron density is determined by

considering the difference between interferometer measurements while ECRH is

applied and after ECRH is turned off. A relativistic approximation is used in

determining hot electron density with interferometer measurements [6]. The soft x

ray detectors do not detect the whistler unstable warm component, which provides

the upper limit on warm electron density.

2.2 Description of Whistler Instability

2.2.1 General Behavior

The bursts of rf emission and associated fluctuations are identified as electron mi-

croinstability because the rf emission frequencies are near the electron cyclotron

frequencies and the rf bursts correlate with bursts of electron endloss.

There are two types of unstable rf emission. We refer to the regular bursting

type of emission shown in Fig. 2 as whistler B emission. Figure 3 shows an example

of a shot in which the rf burst rate is highly irregular or continous. We refer to this

type of emission as whistler C emission. Whistler C emission is generally observed

for intermediate ranges of neutral gas pressure and/or high ECRH powers. For

example, for an ECRH power of 1 kW and a midplane magnetic field of 3 kG,

whistler C emission is present when the neutral gas pressure is in the range 7 x 10-

Torr to 2 x 106 Torr. Whistler B emission is present in this regime as well, but

at lower frequencies. Above this pressure regime the whistler C emission power is

much lower than the whistler C emission power. For high enough ECRH power (>

2 kW) and high enough magnetic field (> 2.5 kG) whistler C emission is always

more prevalent than whistler B emission, independent of pressure. However, at low

magnetic fields there is no whistler C emission.

A study of this rather complicated qualitative behavior of the rf emission in

conjunction with electron endloss measurements at different radii shows that the

whistler C emission, when present, is associated with plasma off axis while the

whistler B emission is associated with the on axis plasma. These studies also indicate

that both types of emission are due to the same microinstability. The behavior of

the plasma at different radii from the axis is observed with the five endloss analyzers
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which are located symmetrically about the axis at 6 cm intervals along the thin part

of the plasma fan on one end of the vacuum chamber. Figure 4 shows data from the

five endloss analyzers for a shot in which both whistler B and whistler C emission

is observed. The analyzers were set to measure total current due to electrons with

energies greater than 30 eV (30 volts is the bias needed to suppress secondary

electrons from being emitted from the analyzer collector). The ECRH power was

1 kW and the magnetic field was 2.8 kG. Analyzers at 0 and +6 cm clearly show

a regular bursting behavior just like the whistler B emission. The outer analyzers

at +12, -6, and -12 cm show an irregular bursting current just like the whistler

C emission. Figure 5 shows the type of emission observed as the magnetic field is

changed, with pressure and ECRH power remaining constant. As the magnetic field

is increased, plasma originally on outer field lines for lower fields is brought inward

toward the axis. The opposite effect occurs as the magnetic field is decreased. Thus,

for a shot in which the magnetic field is 2.4 kG and with the same ECRH power

and neutral gas pressure, regular bursting occurs on all the endloss analyzers. For

a shot in which the magnetic field is 3.6 kG and with the same ECRH power and

neutral gas pressure, analyzers +12, -6, and -12 show no endloss while analyzers 0

and +6 show irregular whistler C type bursting. In addition, when the magnetic

field is 3 kG, the ECRH power is 1 kW, and the neutral pressure is below 7 x 10-7

Torr analyzers +12, -6, and -12 show no endloss while analyzers 0 and +6 show

regular whistler B type bursting. It was stated previously that there is no whistler

C emission for such a shot.

Higher density at the outer radii may be the reason why whistler C is emitted

there. Smatlak, et al., [12] have shown that the equilibrium density contours of

a baseball mirror are shaped like the baseball seam, with the maximum density

occuring on the curve defined by fECRH ~ f,,. The linear perturbation theory

with the ECRH distribution described in the next section predicts higher unstable

wave growth rates for higher total density (Fig. 18). A quasilinear calculation [13]

describing the time evolution of the equilibrium electron distribution function in

a magnetic mirror has shown that the whistler instability emission changes from

bursting to continous as the growth rate is increased.
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2.2.2 Frequency Spectrum

Figure 6 shows the frequency regime of the total unstable rf emission for three

different magnetic fields. These data were taken for a shot in which the ECRH

power was 3 kW and the neutral gas pressure was 1 x 10-6 Torr, conditions for

which whistler C and whistler B emission are present. Figure 7 shows the frequency

regime for different magnetic fields when only whistler B emission is present. Three

observations to note from these data are 1) the frequency spectrum is not a strong

function of magnetic field, 2) the spectrum extends to higher frequencies when the

whistler C emission is present, and 3) the frequencies are below the ECRH frequency

of 10.5 GHz (unstable frequencies greater than 10.5 GHz have never been observed

for any of the parameter regimes studied). These observations are predicted by

dispersion relation calculations which will be presented in Section 3.

2.2.3 Whistler Instability Effects on Power Balance

Power loss due to whistler instability is primarily by rf emission and electron endloss.

Instability induced ion endloss accounts for less than 10% of the instability induced

power loss because of the lower ion energies and will therefore not be discussed.

2.2.3a rf Emission

Figure 8a shows the measured unstable rf power as a function of neutral gas

pressure for an ECRH power of 1 kW and a midplane magnetic field of 3 kG.

The behavior is qualitatively the same for other ECRH powers, with the maximum

unstable rf emission always occuring at the same pressure of 1 x 10-' Torr. The

instability induced electron endloss also peaks at this pressure, as is shown below in

Fig. 10. Figure 8b shows a plot of the maximum value of unstable rf power and the

maximum value of unstable rf power divided by the plasma diamagnetism, both as

a function of ECRH power. For ECRH powers below 1 kW both graphs are linear,

as is a plot of the diamagnetism versus ECRH power. Between 1 kW and 3 kW (3

kW is the highest ECRH power used for this investigation) the unstable rf power

normalized to the diamagnetism is linear.

The measured rf emission can be related to the actual power emitted by the

plasma because of the rf cavity effects of the vacuum chamber. Experimental jus-
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tification of the cavity-like nature of the vacuum chamber has been made and was

presented in [6]. The actual power emitted by the plasma is linearly related to the

power measured at some location at the vacuum chamber wall. The constant of

proportionality is determined by measuring the response of the rf detection system

to a test wave of known power put into the chamber. Table II shows the peak

power loss due to whistler rf emission for an ECRH power of 1 kW and a midplane

magnetic field of 3 kG.

2.2.3b Electron Endloss

In our previous paper we established the fact that the warm electrons drive

the whistler instability but that both warm and hot electrons are lost when the

instability is present. Therefore, determining the power loss due to electron endloss

requires a measure of the energy distribution of both types of endloss. Figure 9

shows the total axial electron endloss energy distribution up to 5 keV (measured

with the gridded electrostatic endloss analyzers). The curve is approximately the

sum of two Maxwellian distributions with two different temperatures. The lower

temperature (250 eV) corresponds primarily to collisional endloss. The higher tem-

perature (2 keV) corresponds to instability induced endloss plus endloss induced by

the interaction of the electrons with the ECRH waves. ECRH induced endloss can

be subtracted out using the 2 keV endloss component which exists between bursts

(assuming that the endloss between bursts is primarily due to interactions with the

ECRH waves and is the same as during the bursts). Hokin [14] has done this and

has shown that the ECRH induced endloss is approximately equal to the instability

induced endloss for the 2 keV electron component. The high instantaneous insta-

bility induced endloss is concentrated in the relatively short time duration bursts

whereas the ECRH induced endloss persists at a lower level during the entire shot.

Plots similar to the one in Fig 9 for other ECRH powers, pressures, and magnetic

fields always show an energy distribution for the instability induced electron endloss

with an average energy in the range of 1.5 to 2.5 keV. Thus, the warm electron

temperature is not sensitive to changes in the experimental conditions. However,

the absolute number of electrons lost is affected. Figure 10 shows the electron

endloss current for electrons with energies greater than 500 eV as a function of

pressure for an ECRH power of 1 kW and a magnetic field of 3 kG. These data
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were taken for the same shots used for Fig. 8. Note that the endloss current peaks

at the same pressure as the unstable rf emission.

The endloss analyzers off axis were used to determine the radial behavior of the

instability induced electron endloss. The information is used to determine the total

power loss in the form of warm electron instability induced endloss. This is given

in Table II.

The hot electron endloss is observed with a scintillator probe located on axis.

The electron endloss due to microinstability is distinguished from the equilibrium

endloss (mainly due to the interaction with ECRH waves for these high energies)

by doing shots like the one depicted in Fig 11. This shot is composed of three

parts. The first part is like any typical plasma shot, with constant gas pressure and

constant ECRH power. The hot electron endloss is caused by the microinstability,

collisions, and electron interactions with the ECRH waves. For the second part the

ECRH and gas are turned off. This causes only a hot component to be left after the

few milliseconds that it takes for the cold and warm components to decay. During

this phase of the shot the measured hot electron endloss is due to collisions only

because the microinstability stops after warm electrons have decayed by a suitable

amount (approximately 5 msec). The third part of the shot has a second ECRH

pulse but still no gas. With no buildup of a warm plasma possible, there is no

microinstability. Here the measured hot electron endloss is due to collisions and

interaction with ECRH waves.

From these shots it is possible to determine the relative importance of the three

processes which cause hot electron endloss. This is shown in Table 1I. The radial

behavior of the hot electron endloss was assumed to be the same as the radial

behavior of the warm electron endloss.

Table II is a summary of the microinstability induced power losses from the

Constance B plasma. The are several uncertainties in this table. There is a 25%

uncertainty in the calibration factor for the rf emission power. The instability

induced hot electron endloss radial profile was assumed to be the same as the

instability induced warm electron endloss. The ECRH induced hot electron endloss

radial profile was taken to be constant over the 20 cm diameter cross section of the

plasma.
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3 Theoretical Analysis of Microinstability

3.1 Model

Dispersion relation calculations are based on the linear perturbation analysis of

the relativistic Vlasov equation (for electrons) together with Maxwell's equations

for an infinite, homogeneous medium (the results of the calculations show these

assumptions to be valid for the Constance B experiment, as is shown below). The

ions are taken to be stationary and only contribute in neutralizing the plasma. The

electric field is assumed to have the form E(k, w) exp[i(k -r - wt)], where k is real,

W = W, + iwi, and we < w,. The quantity of interest is the temporal growth rate wi

which is calculated in the following manner[1O]:

E* -Da E
E= -E D' E (1)aw,

where E* is the Hermitian conjugate of the electric field amplitude E, and Da

and Dh are respectively the anti-Hermitian part and the Hermitian part of the

relativistic Vlasov dispersion tensor.

The Hermitian part of the dispersion tensor is approximately equal to the cold,

fluid dispersion tensor if the cold electron component density is much greater than

the warm and hot electron component densities. We have made this assumption in

our analysis to simplify the calculations. Therefore, our analysis considers only the

contribution that resonant particles have on stability. It does not consider the effects

of negative energy waves which either enhance instability that would otherwise exist

due to resonant particles or cause instability in regimes which would otherwise be

stable. With this assumption the denominator of Eq. 1, which is recognized as the

wave energy density, is always positive. Instability occurs if the numerator is less

than zero.

Our analysis has consisted of choosing a value for w, and Ok, the angle between

the wave vector and the magnetic field, solving for k using the cold plasma dispersion

relation, and determining wi using Eq. 1. D' has been reduced to the following form:

2 L 2 k1  (2k)D' = -27r2 1 dull a +t fo x T. (2)
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where ull = v1 /c, U1 = V±'/c, 'y = (1 + uz)1/2, W = f/fee, Wp = fp/feefe

is the electron cyclotron frequency, the wave vector k is normalized to Wee/c, fo is

the equilibrium electron distribution function, and T, is a tensor which is given in

reference [8]. The limits of integration, L, and L 2, are the positive solutions to

(2 ) 2 + 2:kIju n+ 2 =0 (3)

arranged such that L, < L 2 . The meaning of these limits as well as a pictorial

representation of the integral in Eq. 2 is shown in Fig. 12.

Equation 2 is the result of writing D' in the variables ul and -y and then per-

forming the resulting integral over y. This can be done without an explicit form for

fo, the distribution function, since the integrand has a simple pole in the variable y.

This is reflected by the fact that the remaining integral is performed with Y replaced

by (kjull + n)/w, which is the resonance condition. The remaining integral is per-

formed numerically once a distribution function is chosen. Only the fundamental

harmonic resonance between the particles and waves (n = 1) is considered.

3.2 ECRH Distribution Function

In our previous paper we introduced the ECRH distribution which we use to model

the warm electron component of the plasma. The ECRH distribution function is

chosen to reflect the expected stochasticity of the the warm electrons in Constance

B with respect to the ECRH waves. Thus, it was chosen so that it would have a

similar qualitative appearance to distribution functions which result from Fokker-

Planck calculations of mirror-confined, ECRH plasmas.

The ECRH distribution is given by

fo (E, /-) = e xp - (77) 17+ (-77) 17(4)
[_ _TX T7+ n

where x = j(E + IBh), 7 = j(E - ABh), E = mc 2(y - 1) is the particle kinetic

energy, /t = mu 2/B is the magnetic moment, 0(q) is the unit step function, Bh =

Whmoc/e, and Wh is the applied ECRH frequency. Tx, T+, and T_ are constants

which we refer to as the temperatures. Useful descriptive quantities are the ratios

T/T,7+ and Tx/T 17 . As these ratios approach infinity the contours of the ECRH
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distribution function approach the family of curves which represent the quasilinear

diffusion paths corresponding a wave of frequency Wh.

The inhomogeneity of the magnetic field along the axis is included in the above

calculation by way of the normalization of the distribution function. The distribu-

tion function is normalized to unity at the midplane. Normalization at other axial

locations along a given field line is then made by mapping the distribution function

from the midplane using the unperturbed single particle orbits as a transformation.

This has the effect of causing the electron density to vary along a field line. In

addition, the density is multiplied by the local mirror ratio to reflect the increase

in density due to the compression of the magnetic flux.

3.3 Results

The maximum unstable frequencies occur for Ok = 0 on the R-X branch of the

dispersion relation (the terminology used to describe the cold plasma waves fol-

lows that given in reference [11]). These are pure whistler waves. Therefore, in

what follows only 0 k = 0 is considered. Figure 13 shows a plot of the contours

of fi = w2/27r as a function of wave frequency f,. and local cyclotron frequency f,
for particular choices of temperature parameters. These temperatures were cho-

sen because they give an average energy (jm f v2fdv) of 2.5 keV. It is seen that

the maximum unstable frequencies agree well with those observed in the experiment

(see Figs. 6 and 7). Other distribution functions, such as the bi-Maxwellian and loss

cone distributions predict unstable frequencies which are approximately 2-3 GHz

lower than those predicted with the ECRH distribution and thus do not agree well

with experiment.[6] Using the bi-Maxwellian distribution the well known sufficient

condition for whistler instability is

f,. < 1 - TIfe (5)

Using the ECRH distribution a necessary condition for whistler instability is found

,.< TX ' f+ A (6)
(TX +Ta

Equation 6 is derived by using the ECRH distribution in the nonrelativistic version

of Eq. 2 and with Ok = 0. Equation 6 indicates that whistler instability can only
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occur for frequencies below the ECRH frequency. This fact agrees with experiment.

The result of Fig 13 is not sensitive to choice of the temperature parameters

Tx, T?+, and T,- for average energies in the warm electron energy regime. Figures 14

and 15 show plots of the maximum unstable frequency regime (the regime bounded

by the two half maxima on either side of the maximum) as a function of Tx, holding

TX/T7+ and Tx/T, constant (Fig 14), and as a function of Tx/T7+, holding T+/T,_

constant (Fig 15). These figures show that the maximum unstable frequencies do

not change much below a certain average energy. Of course, the value of f, does

change, first increasing with average energy, and then decreasing. Above some

average energy the plasma is stable, a result of the relativistic model. The average

energy as a function of the temperature parameters is shown in the final plot in

each figure. This lack of sensitivity to changes in the temperature parameters is

reflected in the experiment by the fact that the unstable frequency regime does

not change during the shot, even during plasma buildup and plasma decay (as

long as instability is present). Also, for dispersion relation calculations this result is

fortunate since it suggests that, in describing the warm electrons, it is not necessary

to know precisely the values of the temperature parameters. For the hot electrons

stability is predicted by the calculations and is observed experimentally.

Figure 16 shows that the maximum unstable frequency regime is not sensitive to

changes in the midplane cyclotron frequency. This also agrees well with experiment

(see Figs. 6 and 7). This is not a property of a plasma which has a bi-Maxwellian or

loss cone distribution in which the unstable frequencies are related to the cyclotron

frequency as indicated by the inequality in Eq. 5.

The maximum unstable frequency regime is only sensitive to changes in the

ECRH frequency when the ECRH distribution is used, as shown in Fig. 17 and as

indicated by the inequality in Eq. 6. This has not been measured in Constance B

due to the unavailablity of different ECRH sources.

Figure 18 shows a plot of the maximum unstable frequency regime as a function

of total midplane electron density, with the ratio of warm electron density to total

electron density held constant. It is seen that the growth rates increase with total

density and the unstable frequency regime is wider. It was mentioned earlier that

this may explain the difference between the whistler B and whistler C emission.
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3.4 Justification of Model

The results shown in Figs. 14 through 18 justify the simplifying assumptions made

in the model we have used (infinite, homogeneous plasma and w, << w,). In each

of these figures plots of k, and ki = w/v, are included. It is seen that the calculated

wavelengths of the maximally unstable waves are typically less than 1 cm. This is

to be compared to the 30 cm length (on axis) of the ellipsoidal resonance zone in

Constance B. The magnetic field changes by a factor of 1.25 over 15 cm of length

at the magnetic well, which gives an average B/ of 60 cm. In addition, the

density along the magnetic field line for an ECRH distribution function changes by

less than 10% within the resonance zone, which is where the theoretically predicted

instabilities always occur.

For the infinite and homogeneous medium assumptions to be valid the growth

rates must be much greater than the bounce frequency so that an electron does not

sample a large portion of space during a growth time. The bounce frequency in a

magnetic field approximated by a parabolic well is fb = v±0/27rL, where v10 is the

midplane perpendicular velocity and L is the mirror length, chosen here to be 30 cm

so that the resonance zone is in the correct location corresponding to Constance B.

For a 2 keV particle fb=14 MHz, which is much less than a typical calculated growth

rate. For a 400 keV particle fb=130 MHz, assuming the perpendicular energy is the

total energy.

4 Conclusions

The warm electron driven whistler electron microinstability of the Constance B

ECRH, quadrupole mirror confined plasma has been studied. Experiments show 1)

there is a change from bursting to continous unstable whistler emission for increasing

distance from the axis, 2) the unstable frequency spectrum is insensitive to changes

in the plasma parameters, and 3) instability induced power loss is less than 10% of

the ECRH power input for the regimes studied. A linear perturbation analysis of

the relativistic Vlasov equation together with Maxwell's equations has been made.

Using the ECRH distribution function the analysis shows the instability frequency

spectrum is insensitive to changes in cyclotron frequency, temperature, and density
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and only sensitive to changes in ECRH frequency. The analysis also suggests that

the radial behavior of the whistler instability is due to the increase in density which

is caused by the minimum B geometry.

This work was supported by the U.S. Department of Energy, under Contract

No. DE-AC02-78ET51013.
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Te,coad:

Te,warm:

Te,hot:

(ne,coldl):

(ne,hotl):

ne,warm:

T:
O,:

plasma length:

plasma diameter:

150 eV
1.5-2.5 keV
450 keV
2.0 x 1012 CM-2

1.0 X 1012 cm-2

<0.1 xfle,hot

20-30 eV
150 volts
30 cm
20 cm

Table I: Equilibrium plasma parameters

ECRH input power: 1 kW

estimated ECRH power absorbed (14] 600 W

cold electron endloss: 24 W

warm electron endloss (microinstability): 80 W

hot electron endloss (microinstability): 90 W
hot electron endloss (ECRH) 280 W

unstable rf emission: 40 W

Table II: Summary of power losses due to microinstability.
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Figure Captions

Fig. 1. A typical plasma shot with 1 kW of ECRH power, 3 kG midplane magnetic

field, and 1 x 10' torr neutral gas pressure. The ECRH is turned on at 0.25

sec and turned off at 2.0 sec. a) Microwave power using an open ended X

band waveguide at the midplane. Most of the signal is due to the 10.5 GHz

ECRH power. b) Line density using the interferometer. c) Diamagnetism. d)

Electron endloss current density on axis. e) Total unstable rf emission using

the same waveguide as above but with a 10.5 Ghz notch filter with 60 db

rejection and 15 MHz spread.

Fig. 2. a) Total unstable rf emission (whistler B emission) for 1 kW ECRH power,

3 kG magnetic field, and 7 x 10' Torr neutral gas pressure. b) Unstable

rf emission and c) electron endloss on an expanded time scale showing the

correlation of fluctuations.

Fig. 3. a) Total unstable rf emission (primarily whistler C emission) for 3 kW

ECRH power, 3 kG magnetic field, and 1 x 106 Torr neutal gas pressure.

b) Unstable rf emission and c) electron endloss on an expanded time scale.

The rf emission is continuous whereas the (on axis) endloss contains discrete

bursts, a phenomenon described later in the text.

Fig. 4. Electron endloss current density from the five endloss analyzers on one end

of the machine. The analyzers are in a line along the thin dimension of the

plasma fan at positions a) -12 cm, b) -6 cm, c) 0 cm, d) +6 cm and e) +12

cm. A given radial dimension at the wall maps approximately to the same

radial dimension at the midplane. ECRH power is 1 kW. Neutral gas pressure

is 1 x 10~' torr. Midplane magnetic field is 2.8 kG.

Fig. 5. Emission type vs magnetic field as observed with the five endloss analyzers.

ECRH power is 1 kW. Neutral gas pressure is 1 x 10-6 torr.

Fig. 6. Upper and lower cutoff frequencies for conditions when both the whistler

B emission and whistler C emission are present. The points indicate the fields

for which data were taken.
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Fig. 7. Upper and lower cutoff frequencies for conditions when only whistler B

emission is present. The points indicate the fields for which data were taken.

Fig. 8. a) Power of total unstable rf emission vs a) pressure with 1 kW ECRH

power b) ECRH power with 1 x 10-6 Torr neutral gas density. In both cases

the midplane magnetic field is 3 kG. Each point is the average over a 40 msec

time window during different shots with identical machine parameters.

Fig. 9. Energy distribution of the electron endloss observed with the electrostatic

gridded endloss analyzers. Two different average energies are observed. Each

point corresponds to the average current (mapped to the midplane) over a

40 msec time window at identical times during different shots. The warm

component endloss current consists of bursts due to microinstability and an

average level which exists both during and between bursts.

Fig. 10. Electron endloss with energies greater than 500 eV vs neutral gas pressure

observed with analyzers at a) -6 cm, b) 0 cm and c) +6 cm.

Fig. 11. a) Line density, b) diamagnetic flux, c) unstable rf emsission power and

d) electron endloss power for a two pulse ECRH shot. The ECRH is turned

on the first time at 0.25 sec. and turned off at 1.2 sec. The neutral gas is

turned off at 1.4 sec also. The ECRH turned on again 1.7 sec and turned off

at 1.9 sec after which it is left off. Note the lack of unstable rf emission during

the second pulse where there is only a hot electron population.

Fig. 12. Diffusion paths in the y-ul plane for a) w/we, < 1 and b) w/we, > 1. The

limits of the integral in Eq. 2 are the intersections of the resonant particle line

with the boundary of the physically meaningful portion of this space. The

lack of an intersection gives a limit of infinity. The lack of any intersection

means no resonant particles and therefore no instability.

Fig. 13. Contours of fi. The vertical axis is the local cyclotron frequency and

corresponds to the position along a field line. The horizontal axis is the real

frequency of a wave that satisfies the cold plasma dispersion relation with

k =0. The twelve contour levels shown are, relative to the maximum, -0.9
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to 0.9 in steps of 0.2 and the contour levels 0.01 and 0.001. The frequency

corresponding to the maximum growth rate is only sensitive to changes in the

ECRH frequency. This is consistent with experimental observations.

Fig. 14. Characteristics of the instability as a function of Tx, with Tx/T,+ = 20

and Tx/TI_ = 10. a) f:,ma, b) fr,maz, c) kt,max/27r, d) kr,maz/27r, e) fe,max and

f) average particle kinetic energy i f v2fdv. In this and succeeding figures

parameters subscripted with "max" is the value of that parameter for the

maximum fi (i.e. the highest contour in plots of the type shown in Fig 13).

Fig. 15. Characteristics of the instability as a function of Tx/T +, with T+/T,_ =

2 constant. a) fimax, b) frmaz, c) ki,maz/27r, d) krmaz/21r, e) fc,max and f)

average particle kinetic energy.

Fig. 16. Characteristics of the instability as a function of midplane cyclotron fre-

quency with an ECRH frequency of 10.5 GHz. a) fi,max, b) fr,maz, c) ki,max/27r,

d) kr,maz/27r, e) fc,maz and f) average particle kinetic energy.

Fig. 17. Characteristics of the instability as a function of ECRH frequency with a

midplane cylotron frequency of 8.4 GHz. a) fi,max, b) fr,maz, c) ki,max/27r, d)

kr,maz/27r, e) fc,maz.

Fig. 18. Characteristics of the instability as a function of total midplane density,

holding the ratio of the warm electron density to the total electron density at

0.1. a) fi,maz, b) f,,max, c) ki,max/27r, d) kr,ma,/27r, e) fc,maz.
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