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ABSTRACT

This paper investigates the stabilizing influence of axial

momentum spread on the linear growth properties of the cyclotron

autoresonance maser (CARM) instability. The stability analysis

is based on the linearized Vlasov-Maxwell equations for a

relativistic electron beam and right-circularly-polarized

electromagnetic waves propagating parallel to a uniform magnetic

field B0az. Detailed stability properties are investigated for a

choice of beam equilibrium f0(p 2 P) that incorporates both an

inverted population in perpendicular momentum p_ and a spread A

in axial momentum pz. For simplicity, the analysis neglects the

influence of finite radial geometry (k_ + 0 and no radial wave-

guide structure). The resulting dispersion relation is analyzed

numerically in parameter regimes of interest for CARM applica-

tions, and approximate analytical estimates of the (reduced)

growth rate are presented.
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I. INTRODUCTION

Numerical simulation studies and simple analytical estimates

indicate that modest values of axial momentum spread1-7 can have

a large effect in reducing the growth rate and saturation effi-

ciency of the cyclotron autoresonance maser (CARM) instability.8 ,9

It is therefore essential that CARM experiments operating in wave-

guide cavities utilize high-quality electron beams, or that alter-

nate configurations be employed, which are less sensitive to

momentum spread, such as in the induced resonance electron cyclo-

tron (IREC) quasi-optical maser.1, 2 The purpose of this note is

to quantify the stabilizing influence of axial momentum spread on

the linear growth properties of the cyclotron autoresonance maser

instability. The stability analysis is based on the linearized

Vlasov-Maxwell equations for a relativistic electron beam and

right-circularly-polarized electromagnetic waves propagating par-

allel to a uniform magnetic field B0& . Detailed stability prop-

0 2
erties are investigated for a choice of beam equilibrium f (PZ~pz

(Eq.(3)] that incorporates both an inverted population in perpen-

dicular momentum p_ and a spread in axial momentum pz. For

simplicity, the analysis neglects the influence of finite radial

geometry (kg + 0 and no radial waveguide structure). The re-

sulting dispersion relation [Eq.(7)] is analyzed numerically, and

approximate analytical estimates of the (reduced) growth rate are

presented.

II. DISPERSION RELATION

For perturbations about a spatially uniform beam equilibrium

f0 (p2p ), the dispersion relation for right-circularly polarized
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electromagnetic waves propagating parallel to B0 iz can be

expressed as1 0

0 - DT(k,w) - w2 - c2k2

(1)

2 dp (yw-kpz/m) p2 (2 -c2k) 2

2b 2 2L 1 0b(E '~pb JY (yw-kpZ/m-Wc 2m2 c2 (yw-.kpz/m-WC) 2 b bLz

where k is the axial wavenumber, and w is the complex oscillation

frequency, with Imw > 0 corresponding to instability. Here, wpb

- (4nbe2/m) 1/2 and wc - eB 0/mc are the nonrelativistic electron

plasma and cyclotron frequencies, respectively, y - (1 +

p2 /M 2 c2 1/2 is the relativistic mass factor, pz is the axial

momentum, and p_ - (p2 +p 2)1/2 is the momentum perpendicular tox y

B0 Z. Moreover, -e is the electron charge, m is the electron

rest mass, c is the speed of light in vacuo, and the normaliza-

tion of f(p2 ) is fd3pfbO - 2njdp p - 1. The
0 -W

dispersion relation (1) neglects the influence of finite radial

geometry and equilibrium self-field effects (tenuous-beam

approximation). In the operating regimes of current practical

interest for CARMs, the dimensionless quantity

2

- (2)

Wc

is typically a small parameter (eb <<

For purposes of illustration, we consider the model

distribution function (Fig. 1)

p- - )9 (3)fb ~4npa P [(Pzpzb)
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where , and pzb are constants, p - (p2+p )1/2 is the total

momentum, and 0(x) is the Heaviside step function defined by 0(x)

- +1 for x < 0, and O(x) - 0 for x > 0. Note from Fig. 1 that

Eq.(3) incorporates an average axial drift (pzb), a spread (2A)

in axial momentum pz, and an inverted population in perpendicular

momentum pl, which drives the CARM instability associated with

the fast-wave solution to Eq.(1). Denoting <Y> -

(jd3pYf )/(jd3pf ), it readily follows from Eq.(3) that

<pz> - pzb

'Pz zb

Ym *m b

(4)

(pz - 2 2 2
222 -2 2
Y Mc 3y mc 3

S2 +2/3) 2
Kim.2L - (Pzb+ /3) 2
w 2 2 2 2 * 2 2

where 9 (l+p2/m2c2)1/2 and 2 . ( 2b_2~ '2m2c2. In Eq.(4),

Vb E Pzb/+m is the average axial velocity of the electron beam,

and (AOz) a A/ mc is a measure of the normalized axial velocity

spread associated with the distribution function in Eq.(3).

Moreover, for sufficiently small momentum spread [(AZ) 2

3i2)], the quantity 0_c can be identified with the average speed

of the electrons perpendicular to the magnetic field B Sz'

Substituting Eq.(3) into Eq.(1) and carrying out the required

integration over momentum, we obtain the dispersion relation for

right-circularly-polarized electromagnetic waves, i.e.,
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2 2 - k 2 2 2M2

0 - DT (k,w) - ( 2 -C 2 k2 ) - b 2 2 2 2 2

(5)

2 (w-wc)S 2 1M (/)Sk
+ 1 - )-a k - + c k

(+-kVb-c/) J ^[) (w-kVb-c/A)

Here, (AO) z A/ mc, and Sk is the logarithmic function defined

by

. (w-kVb-c/ ) w-kV b-z Wc /(-ck6( )Z
2ck(- in . (6

z2ck(Z) w-kVb~(c/i+ck(60 Z)

The dispersion relation for left-circularly-polarized electro-

magnetic waves propagating parallel to B 0z is identical to

Eq.(5), making the replacement -wc + + wc in Eqs.(5) and (6). In

the limit of zero momentum spread with 0z -+ 0 [specifically,

c2 k2( Gz y 2 << Iw-kV b~ Wc 2], we note from Eq.(6) that Sk 1 +

(1/3)c 2 k2 (Z) 2 /(-kVb~ 2 + -- -> 1. Making use of the

definitions b - 2 2/W and 2 (p2~E 2m2c2 , and rearranging
b pb'Wc -i zr / mca rarn

terms in Eq.(5), it is straightforward to show that the

dispersion relation can be expressed in the equivalent form

(W2( 2
(w2 -c2 k2) 1 b _____________

2 1 + b c 2 -2 2 2
c 2 -c k V

x [ - (A0z 2 1 + 2 kVb )]} _ _b { wkVb (7)

W--kv b~WC/A y -kV b- WCA

(ok 2 -c2 k2 ) (CA)-*Cc/

+ Ck )(Sk-l) 1 - c2 k2 ) WCA)

The form of the dispersion relation (7), which is exactly

equivalent to Eq.(5), clearly delineates the effects of momentum
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spread through the factors proportional to (a0 Z2 2 2m2c2 and

(Sk- 1 ). Indeed, for . 4 0, Eq.(7) reduces to the familiar Chu-

Hirshfield dispersion relation 10,11 for the cyclotron maser

instability, extended to the case of an electron beam drifting

with axial velocity Vb'

III. ANALYSIS OF STABILITY PROPERTIES

Equation (7), which we refer to as the full dispersion

relation (FDR), can be solved numerically (see below) and used to

evaluate detailed properties of the cyclotron maser instability

2 2
over a wide range of system parameters cb' 01' (6oz) , etc. For

Cb of order unity, all of the terms in Eq.(7) usually compete in

determining the real oscillation frequency Rew and growth rate

ImW. For «b << 1, however, which is the regime of practical

interest 6 for CARM devices (where Lb is typically in the range of

10-2), the full dispersion relation (7) can be simplified to give

an approximate dispersion relation that is analytically tractable.

Specifically, for eb << 1 and sufficiently small A0z, the frequency

and wavenumber of the cyclotron maser branch in Eq.(7) satisfy

/2 <1C b-2 2|w - kVb ~ c - 2 c

1 1/2 (8)

|kVbl(Z)2 << 2 iw -kV b /I - 3 0lwc (8)

Making use of Eqs.(6) and (8), a careful examination of Eq.(7)

shows that the dispersion relation for the cyclotron maser

instability can be approximated to leading order by

(w2-c 2k2 ) {[(w-kv )2 - c2 k2 ( z2] + 1 C bWP 0 (9)
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where the right-hand side of Eq.(9) includes contributions of

order 2 c /2O_ and W cC/2(kVb P1*c z. While the full

dispersion relation (7) can be solved numerically in the region

of interest for CARM applications, Eq.(9) constitutes a simple

reference dispersion relation (RDR) with which to compare the

more precise numerical results.

Equation (9) clearly illustrates the stabilizing influence of

increasing the axial velocity spread AOZ - A/ymc. For -z M 0,

Eq.(9) gives

Rew - kVb + wc/'
(10)

1/2

Imw - Oiwc * b
2 y 

for the unstable branch with Imw > 0. On the other hand, for

finite (6 2 < (Cb/2y)(wc/c2 k2 )03 , the approximate dispersion

relation (9) gives

Rew - kVb + Wc '

[ c2k2  63 2 11/2 
(11)

Imw - rb ~2
rb

Therefore, for specified wavenumber k, Eqs.(9) and (11) predict

that the maser instability is completely stabilized (Imw - 0)

whenever

c 2 k 2 (AOz )2 r 1 b -2 2 (12)
2 y

Typically, the CARM excitation wavenumber is somewhat less than

the wavenumber i - (w c/c)/(1 - Vb/c) determined from the

intersection of the light line (a - ci) with the beam-cyclotron

resonance condition (w - kVb + Wc/). If we estimate k2 2 in

Eq.(12), then stabilization occurs whenever
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2 1 ^2. 2
( MY2 - ~ y(l Ob , (13)

2

where 0b y b/c, y (1 + p2 221/ - 2_ 2, and 0
+ * p/m c2 )1/2 . (1 j2 _0)21/2

- A/Ymc. For eb << 1 and k2 < k2, it is evident from Eq.(13)

that only a modest spread is required for stabilization.

As an illustrative example, we consider the choice of system

parameters 6

b pb /W - 0.52 x 10 2 , Y - 2.26

(14)

- 0.405 , - 0.8

which corresponds to a maximum growth rate rb (Cb/2Y)1/ 2 0_yu -

0.014 wc, and c/0c N - Ob) - 2.21. According to

Eq.(13), significant growth-rate reduction already occurs when

60 Z> 0.62 x 10-2. The full dispersion relation (7) and the

(approximate) reference dispersion relation (9) have been solved

numerically over a wide range of system parameters. Typical

results are summarized in Figs. 2 and 3 for the choice of param-

eters in Eq.(14). Shown in Fig. 2 are plots versus ck/wc of the

normalized growth rate Imw/r b [Fig. 2(a)] and the real oscilla-

tion frequency (Rew - kVb - W cM/Wc [Fig. 2(b)] obtained numer-

ically from the full dispersion relation (7) for values of axial

velocity spread corresponding to AOz - 0.001, 0.005, 0.0075,

0.010 and 0.014. Figure 3 presents plots versus ck/wc of Imw/r b

[Fig. 3(a)] and (Rew - kVb - W /)/wc [Fig. 3(b)] obtained

numerically from the reference dispersion relation (9) for the

same choice of parameters as in Fig. 2. Comparing Fig. 2(a) and

Fig. 3(a), we note that Imo - rb gives a good analytical estimate

of the maximum growth rate (Eq.(10)].
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As a general remark, it is evident from both Fig. 2 and

Fig. 3 that only modest values of axial velocity spread AO, are

required to cause a substantial reduction in the growth rate ImW

of the cyclotron maser instability. Moreover, as expected, the

larger values of wavenumber k (shorter wavelengths) are most

easily stabilized as AOZ is increased. For example, if we take

the excitation wavenumber to be ck/wc - 2, then the full disper-

sion relation (7) [Fig. 2(a)] predicts that the growth rate Imw

decreases from 0.92 rb, to 0.65 rb, to 0.14 rb, as 60z is

increased from 0.001, to 0.005, to 0.01, respectively. Simi-

larly, for ck/wc - 2, the reference dispersion relation (9)

(Fig. 3(a)] predicts that Imo decreases from 0.99 rb, to 0.69 rb'

to 0, as AO is increased from 0.001, to 0.005, to 0.01,

respectively.

Comparing Figs. 2 and 3, it is evident that the reference

dispersion relation (9) does not accurately predict the detailed

structure and (small) magnitude of the growth rate Imw in the

region near k - k - 2.12 wc/c. Specifically, the logarithmic

terms proportional to Sk - 1 in Eq.(7) result in the secondary

growth-rate peaks in Fig. 2(a) for A - 0.01 and A - 0.014. A

corresponding discrepancy is also apparent in the values obtained

for Rew - kVb - W c/y (compare Fig. 2(b) and Fig. 3(b)].

Nonetheless, the reference dispersion relation (9) and Fig. 3

do give a good qualitative description of the growth-rate

reduction produced by increasing the axial velocity spread AOz'

Indeed, comparing Fig. 2(a) and Fig. 3(a), the reference

dispersion relation (9) provides a good quantitative estimate of

Imw whenever k is somewhat below k - 2.21 wc/c (k < 0.9 k, say)
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and the growth rate is sufficiently robust (Imw > 0.15 rb, say).

This is further illustrated in Fig. 4, where Imw/rb and (Rew -

kVb - c c, calculated from Eqs.(7) and (9), are plotted

versus Anz for the choice of parameters in Eq.(14) and fixed

value of ck/wc - 2. Note from Fig. 4(a) that the full dispersion

relation (7) predicts substantial growth rate reduction to Imw <

0.02 rb for z > 0.02.
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FIGURE CAPTIONS

Fig. 1. Schematic of the distribution function f0 in Eq.(3).b

Electrons move on surface with (p 2+ p 2)1/2

const. Average axial momentum is pzb' and the axial

momentum spread is 26.

Fig. 2. Plots versus ck/wc of (a) Imw/rb and (b)

(Rew - kVb - ( c)/Wc obtained numerically from the

full dispersion relation (7) for system parameters

specified in Eq.(14), and z M 0.001, 0.005,

0.0075, 0.010 and 0.014.

Fig. 3. Plots versus ck/wc of (a) Imw/r b and (b)

(Rew - kVb - W /)/Wc obtained numerically from the

reference dispersion relation (9) for system param-

eters specified in Eq.(14), and 4 - 0.001, 0.005,

0.0075, 0.0010 and 0.014.

Fig. 4. Plots versus 60z of (a) Im0/yb and (b) (Rew - kVb -

SC/Y)/Wc obtained numerically from Eq.(7) (solid

curves) and Eq.(9) (dashed curves) for fixed ck/wc

- 2 and system parameters specified in Eq.(14).
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