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ABSTRACT

This paper makes use of Fowler's method (T.K. Fowler, J.

Math. Phys. 4, 559 (1963)] to determine the nonlinear thermo-

dynamic bound on field energy in unstable plasmas or electron

beams in which the electrons are relativistic. Treating the

electrons as the only active plasma component, the nonlinear

Vlasov-Maxwell equations and the associated global conservation

constraints are used to calculate the lowest upper bound on the

field energy [46F MAX that can evolve for general initial elec-

tron distribution function fb0 a b(x,p,0). The results are

applied to three choices of initial distribution function fbO'

Two of the distribution functions have an inverted population in

momentum p_ perpendicular to the magnetic field Botz, and the

third distribution function reduces to a bi-Maxwellian in the

nonrelativistic limit. The lowest upper bound on the efficiency

of radiation generation, nMAX [FMAX- 1 3xfd3p(y - 1)mc2fb0 '

is calculated numerically over a wide range of system parameters

for varying degrees of initial anisotropy.
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I. INTRODUCTION

More than two decades ago, Fowler 1,2 developed an elegant

theoretical formalism for calculating nonlinear thermodynamic

bounds on the field energy in unstable plasmas. In essence, the

approach makes use of global conservation constraints satisfied

by the nonlinear Vlasov-Maxwell equations to determine the lowest

upper bound on the field energy EaeFJMAX that can evolve for

given initial distribution function f(x,p,0). Over the years,

this method,1,2 or variations thereof, has been used to estimate

nonlinear bounds on field energy for applications ranging from

electromagnetic instabilities driven by energy anisotropy,3 to

shear-driven instabilities in nonneutral plasmas, to anomalous

electron energy transport in tokamaks,5 to nonlinear bound

estimates using both kinetic 6 and macroscopic6,7 models of

plasmas and classical fluids.

The present analysis extends Fowler's method1 ,2 to the case

of relativistic electrons, and the nonlinear bound on field

energy [AfF MAX is calculated for several initial electron dis-

tribution functions fbO0 b (,p,0) that incorporate an energy

anisotropy or an inverted population in momentum p1 perpendicular

to an applied magnetic field B0 e. There are several motivations

for this work. First, various microwave generation devices8

(such as gyrotrons, magnetrons, cyclotron autoresonance masers,

etc.) make use of relativistic electrons interacting with a

magnetic field to generate coherent radiation. The present

analysis provides a framework to estimate the lowest upper bound

on the efficiency nMAX of radiation generation for particular

choices of input beam distribution function fbO* Second,
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instabilities driven by relativistic electrons can play an

important role in various spaceg' 0 and astrophysical 11-1 3.plasma

applications. For example, one active area of study relates to

coherent radiation emission from compact, accreting objects such

as pulsars and active galactic nuclei in which the magnetic field

is strong, and the electrons are anisotropic and relativistic (Te

< 3000 keV). Finally, calculations that model the detailed

nonlinear dynamics of a particular instability usually make

several restrictive assumptions, such as a fixed propagation

direction, or that a single wave or type of instability dominates

the nonlinear evolution. The present analysis, which is based on

global conservation constraints satisfied by the nonlinear

Vlasov-Maxwell equations, permits a lowest upper bound [6eF]MAX

to be placed on the field energy that evolves for general initial

distribution function fb(x,p,0). The approach is insensitive to

the particular instability (indeed, there may be several insta-

bilities operating simultaneously) and the detailed nonlinear

dynamics of the system.

As further background, there are numerous instabilities

driven by electron energy anisotropy, or an inverted population

in momentum pa perpendicular to the magnetic field B For

example, depending on the degree and direction of energy anisot-

ropy, there are various classical Weibel-type instabilities 4

ranging from the electron whistler instability15,16 for wave

propagation parallel to B0ez, to the ordinary-mode electromag-

netic instability17 for propagation perpendicular to B e . On0-_z

the other hand, for an inverted population in perpendicular

momentum pa, instabilities range from the electrostatic loss-cone
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instability 18 to the cyclotron maser instability, 19-21 which is

the basic instability mechanism for the cyclotron autoresonance

maser (CARM) and the gyrotron.8 A detailed review of the linear

growth properties of many of these instabilities has been given

by Davidson.2 2

The organization of this paper is the following. The theo-

retical model, which is based on the nonlinear Vlasov-Maxwell

equations,.is described in Sec. II. Treating the electrons as

the only active plasma component, we make use of the global

conservation constraints corresponding to the conservation of

total energy, average number density, entropy, and total axial

momentum, to obtain the formal expression in Eq.(16) for the

upper bound on field energy (AF]IMAX for general initial distri-

bution function fbO n fb (,p, 0 ). From Eqs.(15) and (16) it is

evident that 6eF(t) is bounded from above by the value [66F MAX

that would be achieved if fb(x,p,t) were to relax to the iso-

tropic, drifting, relativistic thermal equilibrium distribution

g - 0 expf-(ymc2 VbP )/T b). In Sec. III, the values of the

constants 0, Vb and Tb are chosen so as to minimize [66F MAX'

This leads to the expression for [66F]MAX in Eq.(27), where 0, Vb

and Tb are determined in terms of the initial conditions from

Eqs.(24)-(26). Finally, in Sec. IV, we apply the results in

Sec. III to three choices of initial distribution function fbO'

Two of the distribution functions [Eqs.(35) and (38)] have an

inverted population in perpendicular momentum p_, and the third

distribution function [Eq.(41)J reduces to a bi-Maxwellian in the

nonrelativistic limit. The lowest upper bound on the efficiency

of radiation generation, n MAX ( MAX/V-1 fd3xfd 3p(y - 1)mc 2fbO],
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is calculated numerically over a wide range of system parameters

for varying degrees of initial anisotropy.

Finally, we clarify the range of applicability of the analy-

sis in Secs. II-IV, which treats the electrons as the only active

plasma component. For applications to one-component electron

plasmas, such as relativistic nonneutral electron beams used in

microwave generation, the neglect of equilibrium electric and

magnetic self fields necessarily requires that the beam density

and current be low (tenuous-beam approximation). On the other

hand, for applications to multi-component, charge-neutral plasmas,

the neglect of positive ion dynamics (mi 4 W) necessarily implies

that the analysis is restricted to high-frequency electron-driven

instabilities.
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II. ASSUMPTIONS AND THEORETICAL MODEL

The present analysis neglects positive ion dynamics (mi +

but allows the electron motion to be relativistic. It is further

assumed that perturbations are about a spatially uniform equi-

librium with average density nb - const. and uniform magnetic

field B0 eZ, and that the electron current and density are

sufficiently low that equilibrium self fields can be neglected in

describing the nonlinear evolution of the system. The electric

and magnetic fields, E(x,t) and B(x,t), are expressed as

E(x,t) - 8E(x,t)

(1)

B(x,t) - B + 8B(x,t)

and the electron distribution function fb(x,p,t) evolves

according to the nonlinear Vlasov equation

a a y x(B0AZ + &B)

- fb + -- (Yfb) - e - - E + S OZc b - 0 . (2)
at ax p c

Here, p is the mechanical momentum, v - p/ym is the velocity, y -

(1 + p2/m2c2 )1/2 is the relativistic mass factor, -e is the

electron charge, m is the electron rest mass, and c is the speed

of light in vacuo. In Eq.(2), the field perturbations SE(x,t) -

(8E,,6Ey,&Ez) and 6Btx,t) - (8Bx,6By,8 Bz), which are allowed to

have arbitrary polarization, are determined self-consistently in

terms of fb(x,p,t) from Maxwell's equations.

To determine a nonlinear bound on the unstable field energy

that can develop for given initial distribution function

fb0 * b( ,, ) ,(3)
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Fowler's method 1-3 makes use of global conservation constraints

that are satisfied by the nonlinear Vlasov-Maxwell equations.

For the configuration considered here, the obvious conserved

quantities are: the total (particle plus field) energy (U), the

average number density (N), the entropy (S), and the total

(particle plus field) axial momentum (Cz These constraint

conditions can be expressed as

U d3x 3 2 (&E)2 + (6B)2
U- J-- d pymc2 b + 8n - const., (4)

N - -- d3pfb - const., (5)

S- - -3 d 3Pfbin(fb/0) - const., (6)

d3 x 3 1
C z - --- dEz fb + --- (&E 8By - &E 6B - const., (7)

where V - L L L , and the spatial integrations in Eqs.(4)-(7) are

over the fundamental periodicity lengths of the perturbations.

In Eq.(6), 0 is a (yet unspecified) positive constant. For

smooth, differentiable G(fb), we also note that the generalized

entropy V Id 3xd 3pG(fb) is exactly conserved (- const.) by the

nonlinear Vlasov-Maxwell equation. The choice of entropy S in

Eq.(6) is particularly convenient because it leads to a reference

state corresponding to thermal equilibrium. Finally, in Eq.(5),

it should be noted that the constant N can be identified with the

average electron density (N a nb )
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We now make use of the global conservation constraints in

Eqs.(4)-(7) to construct an effective Helmholtz free energy F

defined by

F - U - VbCz - TbS - TbN , (8)

where Vb and Tb are (yet unspecified) constants. Because F is a

combination of conserved quantities, it follows that

F(t) - F(O) - const. (9)

during the nonlinear evolution of the system. A convenient,

positive-definite, quadratic measure of the field perturbations

is

6F(t) - f (6Ex - 1b8 By)2 + (8Ey + Ob
8 Bx)2

(10)

+(8E 2 + (1 - )[(8x)2 + (B )]+ (8Bz)2

where Ob 0 yb/c, and 2b < 1 is assumed. Substituting Eqs.(4)-(7)

into Eq.(8), and making use of Eq.(9), we solve for A'F(t) -

6F(t) - eF(0). This gives

A6F(t) - d3 p -(ymc - Vb z b b

(11)

-Tbf b n(fb/0) -fbO n(fbO/O) - ( - fbo)]}

Equation (11) is an exact expression for AEF(t), valid as

fb(x,p,t) evolves according to the nonlinear Vlasov-Maxwell

equations from general initial condition fbO m b(xp,).
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It is straightforward to show from Eq.(11) that 6 is aF
maximum whenever fb corresponds to a relativistic thermal

equilibrium distribution with temperature Tb and average axial

velocity Vb e. Taking the variation of 6F in Eq.(11) with

respect to fb and setting 6[66.] - 0 gives

(6e) - d3p -(ymc 2  bPz) - T b n(fb/0)}(f b) 0

(12)

Equation (12) is satisfied provided

fb- g a 0 exp(-(ymc2  V bPz )/Tb . (13)

For positive 0 and Tb, which we assume to be the case, Eq.(13)

corresponds to a relativistic thermal equilibrium distribution

drifting with axial velocity Vb along the applied magnetic field

B0e2. Taking the second variation of Eq.(12) with respect to fb'
and evaluating at fb - g, we obtain

5(6Ae)] rd3,' dp ,26[6(AeF)] --Tb _ _ x g 3 0 . (14)
V 1g

It is therefore concluded that AeF is a maximum whenever fb - g

in Eq.(11). That is, at any instant of time,

AF (t) [6'6]MAX , (15)

where

-Ae]lMAX d xId3p (ymc2 _ bPz)(fbo - 9)

(16)

+ T b[fbOin(fbo/0) - gin(g/0) + (g - fbo)]
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Stated another way, A4F(t) is bounded from above by the value

(6FJK that would be achieved if fb were to relax to the

isotropic, drifting, thermal equilibrium distribution g -

0 exp(-(ymc2 _ VbPz )/Tb}. Substituting the expression for g into

Eq.(16), the upper bound [AeF MAX can also be expressed as

[4 aF MAX d J I J 3 p (Ymc2 _ VbPz )fbo

+ T b[fbO xn(fbO/O) + (0 exp(-(ymc2 ~ bPz )/Tb) - fbOII
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III. LOWEST UPPER BOUND ON (AF]MAX

Thus far, the parameters 0, Vb and Tb in Eq.(17) [or Eq.(16)]

have been arbitrary. To determine the lowest upper bound on

a6F(t) consistent with the four conservation constraints 
in

Eqs.(4)-(7), we now choose 0, Vb and T so that [AF MAX is a

minimum. 1-3 The conditions (a/a0)[A6 ]MAX - 0 and (a/avb)L[ AFIMAX

- 0 readily give

-- d3p (g - fbO) - 0 , (18)

and

- d3 ppz (9 - fbO) - 0 , (19)

respectively. Here, the reference distribution function g is

defined in Eq.(13). Furthermore, the condition (8/8Tb ) F40 X

-0 can be expressed as

- f d3p(gn(g/0) - fbO n(fbO/0)) - 0 , (20)

where use has been made of Eq.(18) and -(ymc - VbPz )(13/Tb X

exp{-(ymc2 _ VbPz )/Tb - gin(g/0).

For specified initial distribution function fb0' Eqs.(18)-

(20) are used to determine those values of (0,Vb'Tb) that

minimize the upper bound [6 FIMAX' i.e., that give the lowest

estimate of [(4FIMX consistent with the four global conservation

constraints in Eqs.(4)-(7). It should be noted that the

conditions in Eqs.(18)-(20) are equivalent to the conditions for
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conservation of particle number, axial momentum, and entropy, if

fb(x,p,t) were to relax from the initial state fbO to the

reference state g. Substituting Eqs.(18)-(20) into Eq.(17), the

estimate of [(AFIMAX can be expressed in the equivalent form

d3x
(4AeFMAX - --- d3p(Y-1)mc2 (fb0 -g) . (21)

Keep in mind from the definition in Eq.(10) that 6F (t) is a

quadratic measure of the change in field energy associated with

the amplifying field perturbations (assuming that the initial

state fbO is unstable). Therefore, the condition AeF(t)

[46FMAX, where [e,]MAX is defined in Eq.(21), is simply a state-

ment that A6(t) is bounded from above by the change in kinetic

energy that would result if fb(,pt) were to relax from the

initial state fbO to the thermal equilibrium reference state g.

We return to the conditions in Eqs.(18)-(20), which determine

the values of (0 ,Vb'Tb) that minimize [OF(MAX for specified

initial state fbO " b~x?,0) It is convenient to introduce the

abbreviated notation

d3
n b - d3,gb'

(22)

A A ~d3x pz

nbPzb - -V dPPb '

where nb - const. is the average electron density, and pzb is theb z

average particle momentum in the z-direction associated with the

initial state fbO* We further define
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2 )-1/2
y- (i - V$/c 2 ),(3

Yb Vb / C(23 )

mc2

b b Tb

where 0b is a dimensionless parameter that measures the thermal

spread in the reference state g - 0 exp(-(ymc2 bPz )/Tb}. (For

example, ab < 1 corresponds to an ultrarelativistic reference

state with Yb Tb > mc 2). Making use of standard integral

identities related to the drifting thermal equilibrium distribu-

tion function g, it can be shown that Eqs.(18) and (19) give

A

b b, (24 )
4n(mc) 3 Yb K 2 (cb)

and

Yb mVb [ 3 (~b) ~ zb , (25)
L K2 (mb) bI

respectively. Here, Kn (x) is the modified Bessel function of the

second kind of order n. Note that Eq.(24) relates the normaliza-

tion constant 0 that occurs in the definition of the reference

state g to the constant ab - mc2 /b Tb and the average density nb-

On the other hand, Eq.(25) relates the axial momentum YbmVb Of

the reference state g to the constant 0b and the axial momentum

pzb of the initial state fbO* Finally, the entropy constraint in

Eq.(20) can be expressed as

K K3(ab) 111 j' d 3x r d n(6
__b _ - -- - 2.nO - - - J-- d pfb0infbO , (26)
K2 (mb) 0b n b V J

which relates mb and 0 to the entropy of the initial state fbO'
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To summarize, for specified initial distribution function fbO

- b1x'"'0 )' the ancillary constraints in Eqs.(24)-(26) are used

to calculate (numerically) the values of 0, Vb and mb - mc2 /YbTb

that minimize the upper bound (AeF]MAX associated with the energy

of the field perturbations. After some algebraic manipulation

that makes use of Eqs.(13), (21), (24) and (25), we find that the

[66F) MAX can be expressed in the equivalent form

('6FIMAX - x I d3p (y - 1)mc2 fbO

(27)

2ybm K3 (-b) - fbK2 (mb) 01b b

1r 3 d3 f A 1 3 3
where V J Id xjd p3bO nb - V' Id xfd pg. As a general remark,

if (e$]MAX defined in Eq.(27) is non-positive for a particular

choice of fb(x,p,O), then we conclude that Ae.(t) cannot increase

from its initial value and the system is stable.

A simple check on Eqs.(24)-(27) can be obtained in the

nonrelativistic limit where Yb -> 1 and ab - mc2 /YbTb " 1. For

example, let us assume that pzb - 0, and make use of K2 (mb)

(n/2*b)1/2 exp(-Qb) and K3 (mb )/K2(b) a 1 + 5 /(2 b) for ab .

We then obtain for Dzb - 0 and ab 1

nb mc2
0 - exp -

(2 nmTb) Tb

Vb - 0 , (28)

T 2/f 2 d3x I

Tb - b exp 1 - -- -- d3 Pfbo2nfbO]J2nm 3nb V
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In the nonrelativistic limit where (y - 1)mc2 a p2/2m, the

reference state is g - ib(2nmTb -3/2 exp(.p 2/2mTb) and the

nonlinear bound in Eq.(27) reduces to

d3  [ p2  3
[ - JMX - dp 2m -2 T bbo (29)

Equations (28) and (29) are the expected results in the

nonrelativistic regime, 1-3 and can be used to estimate [66 FMAX

for various choices of initial state fbO, such as bi-Maxwellian

and loss-cone distribution functions.
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IV. CALCULATION OF NONLINEAR BOUNDS

Equation (27) can be used to calculate [66 FIMAX for a wide

range of initial distribution functions fbO b (x,p,0). For

specified fbO, the ancillary constraints in Eqs.(24)-(26) deter-

mine the values of 0, Vb and ab - mc2 b Tb that minimize [6 eF]MAX

consistent with the global conservation constraints in Eqs.(4)-

(7). In this section, we consider three choices of initial

distribution function fb0 for which a numerical evaluation of

[AeF]MX is tractable. Two of the distribution functions

(Eqs.(35) and (38)] have an inverted population in perpendicular

momentum p_, and the third distribution function (Eq.(41)J

reduces to a bi-Maxwellian in the nonrelativistic limit.

For simplicity, we specialize to the case where pzb -

nbl -1 Id 3xId 3pp fb - 0, corresponding to zero average axial

momentum at t - 0. For a one-component electron plasma, this is

equivalent to evaluating [66,eMX in a frame of reference moving

with the axial velocity of the initial distribution function.

Setting bzb - 0 in Eq.(25) gives

Vb - 0

(30)

Yb- 1

and Eqs.(24) and (26) can be expressed as

3 - b% (1
O(mc) 3 (31)

4nK 2 (mb

and
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E ) 1 d3x
-- - J - J dpfbokn(fbo/0) , (32)

K2(Mb) Oab n b

where ab - mc2/Tb and yb - 1. It is also convenient to measure

[A 'JLAX in units of the initial kinetic energy density

V~ld3xd3p(y - 1)mc2 bo. We therefore introduce the quantity

1MAX defined by

(A 6FIMAX (33)
~MAX -vS

3xfd.v-1m~vld x dp(y - 1)mc2 b0 (3

Equations (27) and (33) then give

A- 2[ K3 (ab) 1
rIA - 1 - n bmC --- 1

K2 (b) b
(34)

d d3p(y - 1)mc 2 fbo ]_

where use has been made of yb - 1 and the normalization condition

A .1 3 3
nb - V Id xld pfb. Note that 1MX defined in Eqs.(33) and (34)

represents a lowest upper bound on the efficiency of radiation

generation for specified initial distribution function fbo'

A. Distribution Functions with Inverted

Population in Perpendicular Momentum

As a first example, we consider perturbations about the

distribution function

f - - AZ)[O(P. - ,) - e(p, - + (35)
bO 2n(mc) (AZ/mc)(As/mc)(2p/mc - _L/mc)
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which has an inverted population in perpendicular momentum p_

(Fig. 1). Here, ^, Az, and _L( 0) are positive constants, and

e(x) is the Heaviside step function defined by 0(x) - +1 f6r

x < 0, and 0(x) - 0 for x > 0. The normalization of fbO in

Eq.(35) is V~ d3xld3pfb b. It is evident from Eq.(35) and

Fig. 1 that fbO corresponds to a rectangular 'water-bag'

distribution in momentum space, revolved about the pz-axis, with

fbo - const. for -6 < p and p - A < pi < p, and b -O0
outside of this region. That is, Eq.(35) incorporates a spread

(26.) in axial momentum pz, and a spread (AL) in perpendicular

momentum p_.

Depending on the values of Az and A_, it is well known that

the distribution function fbO in Eq.(35) has sufficient free

energy to drive a variety of collective instabilities,22 thereby

resulting in an increase in AeF(t). These instabilities range

from the electron whister1 5 ,16 and cyclotron maser1 9-21 insta-

bilities for wave propagation along B0, to electrostatic loss-

cone 18 and ordinary-mode17 Weibel instabilities for propagation

perpendicular to BO0z* To evaluate A for the choice of fb0 in

Eq.(35), we first determine the entropy associated with the

initial state. This gives

- -- d3P fbOn(fb01/A

(36)
A 3

nb/(mc)30

b 2n(AL/mc)(2/mc- A/mc)

Using Eq.(31) to eliminate 0 in Eq.(36), and substituting Eq.(36)

into Eq.(32), we obtain
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2K2 (cab) b 3(Ob)_ 1]

b K2 b
(37)

mc mc mc mc

For specified values of a /mc, A and associated with the

initial state fb0, Eq.(37) constitutes a closed, transcendental

equation that determines the corresponding value of ab - mc2 b

associated with the reference state g. Once ab is determined

(numerically) from Eq.(37), then Eq.(34) is used to calculate

nMAX for the choice of fb0 in Eq.(35).

Following this procedure, we have made use of Eqs.(34), (35)

and (37) to evaluate nMAX over a wide range of system parameters.

Typical numerical results are summarized in Figs. 2-4. Shown in

Fig. 2 are plots of rMAX versus As/p obtained from Eq.(34) for

fixed /mc - 1.732, and values of A /A. ranging from 0.05 to 1.

As expected, n decreases as A/^ is increased, which corre-

sponds to filling in the 'hole' in pi-space. What is most

striking in Fig. 2 is the significant decrease in nX as the

anisotropy factor Az /6 is increased from small values. For

example, for A-/^ - 0.5, n decreases from I - 0.92 for Az -

0.05, to 11 - 0.53 for Az/A-i - 1. Evidently, an increase in

axial momentum spread A can greatly reduce the maximum effi-

ciency VMAX. This is also consistent with the fact that estimates

of linear growth rates (e.g., for the electron whistler and

cyclotron maser instabilities) tend to decrease as the axial

momentum spread increases. On the other hand, if the anisotropy

is increased further to the region A/z A > 1, there is additional
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free energy again available to drive instability (such as the

ordinary-mode Weibel instability 17 for wave propagation perpen-

dicular to 8OZi). This is illustrated in Fig. 4, where tMAX

obtained from Eq.(34) is plotted versus 4,/&L for fixed ratios

p/mc - 1.732 and A_/' - 1. Evidently, the estimate of n MAX in

Fig. 4 increases from anX - 0.27 for AZ/aL - 1, to n - 0.64

for A./A_ - 5. Finally, shown in Fig. 4 are plots of n versus

A_/j obtained from Eq.(34) for fixed ratio a /4_ - 1, and values

of /mc ranging from 1.732 to 50. It is evident from Fig. 4 that

VIMAX decreases slowly as i/mc is increased. That is, even though

[AeF]MAX increases in absolute magnitude, the fraction of initial

kinetic energy available for conversion to unstable field energy

decreases slowly as 4/mc is increased (see the definition of n

in Eq.(33)].

As a second example of a distribution function with inverted

population in perpendicular momentum p_, we briefly consider the

case where fbO is specified by

3bO( 2 )1/2 _
f MO (PL + Z) le(P- AL - -L)(38)

bO - 4n(mc) 3 (As/mc)3/2 (24/mc - A /m-)3/2

where i and A (4 $) are positive constants. As illustrated in

Fig. 5, the choice of distribution function in Eq.(35)

corresponds to a uniform-density sphere in momentum space,

subtracting out a cylinder of radius p_ - - A_ revolved about

the ps-axis. Unlike Eq.(35), we note from Eq.(38) and Fig. 5

that the axial momentum spread and the perpendicular momentum

spread cannot be varied independently. Evaluating the entropy

associated with fbO in Eq.(38), we obtain
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- - d3 Pfbon(fbO/0)

(39)

3n b/(mc) 3
- -nbzn 8/ / -nb~n I4 n( A./mc ) / ( 2^/mc - AL/mc )3

Using Eq.(31) to eliminate 0 in Eq.(39), and substituting Eq.(39)

into Eq.(32), we obtain

3K2 (ab) e *b K3(b) _

ab K2 ( (b
(40)

,_ ) 3/2 2 o 3/2

mc mc MC

For specified values of A1 /mc and p/mc, Eq.(40) can be used to

determine the corresponding value of ab - mc2 /Tb. As before,

once 1b is determined, Eq.(34) is used to evaluate IMX for the

choice of fb0 in Eq.(38).

Typical numerical results obtained from Eqs.(34), (38) and

(40) are summarized in Fig. 6, where 1 is plotted versus A

for values of /mc ranging from 1.732 to 50. The qualitative

behavior in Fig. 6 is similar to that in Figs. 2 and 4, i.e.,

nMAX decreases with increasing values of / and b/mc.

B. Bi-Maxwellian Distribution Function

As a final example, we consider the case where fbO is

specified by

fb0 b $ exp(-oy - (a- z
4n(mc) 3 K2 (az)

(41)

x 1 + 1 ()

I (IML a 2 (aZ)
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where a - mc2/T, ai mmc/T2 , y - (1 + p /m2c2+ p2  2 c2 1/ 2

and Yz - (1 + p /m2 c2 1/2. The normalization of fbO in Eq.(41)

is V 1d 3xld3pfbO - nb, and in the nonrelativistic regime (az >> 1

and aL >> 1) Eq.(41) reduces to the familiar bi-Maxwellian dis-

tribution fbO n nb(2 nmT)- (2nmT )1/2 exp(-p2/2mTi - p2/2mTz).

Moreover, for isotropic plasma with aL - at, Eq.(41) reduces to

the thermal equilibrium distribution fbO - const. exp(-ay),

which we expect to be stable, with no free energy available to

drive instability. Note that Eq.(41) does not have an inverted

population in perpendicular momentum pL. However, depending on

the degree of anisotropy T /T, Eq.(41) is susceptible to various

Weibel-type instabilities,14,22 such as the electron whistler1 5 ,16

and ordinary-mode17 electromagnetic instabilities.

The procedure for calculating for the choice of fbO in

Eq.(41) is analogous to that followed in Sec. IV.A. Evaluating

the entropy associated with fbO in Eq.(41), we obtain

- J- d3PfbOtn(fbO/0)

*Ln b atz K l(M ]-

b \ 4n(mc)3OK2(az) 11 + ( ) 42)

2 a s 1(a ) z z2 z
+nb{1 + + + K ] r1 + - - 1) K 1 (O, ]

IM-L 2(az) I az 2(az

Using Eq.(31) to eliminate 0 in Eq.(42), and substituting Eq.(42)

into Eq.(32), we obtain
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K2(b) eb K 3(b - 2

mb ' 2 Ab) '

K2(K 2 (as )
- 12(z) + -- - NZ (43)

01- ( s 01L 2 ( s c )

([ a z K (a ) rK 1( a
x + I + + z ( ) 11 1 + - - 1 ) a (

K2("z) z 0-L z 2  z

For specified values of a - mc2/T z and a - mc 2/T,, Eq.(43) can

be used to determine the corresponding value of ab - mc2 /Tb. As

before, once ab is determined, Eq.(34) is used to evaluate rIMAX

for the choice of fb0 in Eq.(41).

Typical -numerical results obtained from Eqs.(34), (41) and

(43) are summarized in Fig. 7. Here, IMAX is plotted versus

Tz/T, for two values of a, - mc2 /T,, including a, - 50 (nonrela-

tivistic regime) and a, - 0.05 (relativistic regime). A striking

feature of Fig. 7 is that the normalized measure IMAX of the

bound on field energy [see definition of aMX in Eq.(33)] is very

similar in the nonrelativistic (%c - 50) and highly relativistic

(a - 0.05) regimes. Also, as expected, when Tz /T - / - 1,
the distribution function fbO in Eq.(41) corresponds to an

isotropic thermal equilibrium distribution, and no free energy is

available to drive instability. Therefore, I - 0 for Tz/T

in Fig. 7.
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V. CONCLUSIONS

Treating the electrons as the only active plasma component, in

Sec. II we made use of the global conservation constraints corre-

sponding to the conservation of total energy, average number

density, entropy, and total axial momentum, to obtain the formal

expression in Eq.(16) for the upper bound on field energy (AFIMAX

for general initial distribution function fbO M fb(x,p,0). From

Eqs.(15) and (16) it is evident that AeF(t) is bounded from above

by the value [66F MAX that would be achieved if fb(x,p,t) were to

relax to the relativistic thermal equilibrium distribution g -

a exp(-(ymc2 b VbPz )/Tb In Sec. III, the values of the

constants 0, Vb and Tb were chosen so as to minimize [A IMAX'
This led to the expression for [66 FIMAX in Eq.(27), where 0, Vb

and Tb are determined in terms of the initial conditions from

Eqs.(24)-(26). Finally, in Sec. IV, we applied the results in

Sec. III to three choices of initial distribution function fbO'

Two of the distribution functions [Eqs.(35) and (38)] have an

inverted population in perpendicular momentum p_, and the third

distribution function [Eq.(41)] reduces to a bi-Maxwellian in the

nonrelativistic limit. The lowest upper bound on the efficiency

of radiation generation, IMAX - [(6FIMAX/V 1d 3xfd3 p(y - 1)mc fb01

was calculated numerically over a wide range of system parameters

for varying degrees of initial anisotropy. As a general remark,

it is found that the normalized measure n MAX of the bound on field

energy is relatively insensitive to the initial kinetic energy

V~ fd3xld3p(y - 1)mc2fbQ [see Figs. 4, 6, and 7].
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As 4 final point, for specified initial distribution function

fbO, it should be emphasized that there is no a priori reason to

anticipate that the field energy AF(t) actually grows to the

level [46F]MAX defined in Eq.(27). Rather, the present analysis

shows that Ae,(t) never exceeds the value [6FIMAX in Eq.(27),

appropriately minimized by the conditions in Eqs.(24)-(26).

Indeed, the actual maximum value of AeF(t) achieved for specified

fbO could be much lower than that in Eq.(27). As a general

remark, if there are global conservation constraints in addition

to those in Eqs.(4)-(7), then the inclusion of these additional

constraints in the analysis will reduce the estimate of the

nonlinear bound (AFIMAX even further.3
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FIGURE CAPTIONS

Fig. 1. Schematic of the distribution function fb0(pj_'pz)

defined in Eq.(35).

Fig. 2. Plots of X versus L/6 obtained from Eq.(34) for

fixed 6/mc - 1.732, and values of a /A_ ranging

from 0.05 to 1, for the choice of distribution

function fb0 in Eq.(35).

Fig. 3. Plots of rMAX versus obtained from Eq.(34)

for fixed /mc - 1.732 and A,/ - 1 for the choice

of distribution function fbO in Eq.(35).

Fig. 4. Plots of rl versus A./ obtained from Eq.(34) for

fixed a /Ai - 1, and values of /mc ranging from

1.732 to 50, for the choice of distribution

function fb0 in Eq.(35).

Fig. 5. Schematic of the distribution function fb(p 'fz)

defined in Eq.(38).

Fig. 6. Plots of I versus _/4 obtained from Eq.(34) for

values of p/mc ranging from 1.732 to 50, for the

choice of distribution function fbO in Eq.(38).

Fig. 7. Plots of MAX versus TZ/T_ obtained from Eq.(34)

for ao - mc2/Ta. - 50 (solid curve) and mj_ - 0.05

(dashed curve), for the choice of distribution

function fb0 in Eq.(41).
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