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ABSTRACT

The stability of plasmas produced by ICRF slow wave excitation using a slot antenna

has been studied in the central cell of the Tara tandem mirror. ICRF provided stability

against macroscopic plasma motions in an axisymmetric configuration. The maintenance

of macroscopic stability depended on the gas fueling rate, ion cyclotron resonance location,

and w/wci at the antenna location. The ICRF ponderomotive force model is consistent

with many of the observed stability features and predicts that the E+ component of the

ICRF was responsible for the stabilization. The Alfv6n ion cyclotron micro-instability was

observed when the plasma O_ and anisotropy were sufficiently high. Probe measurements

of the unstable mode identified it as an ion cyclotron wave and the instability threshold

was within a factor of two of the predicted value.
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I. INTRODUCTION

Stability has often limited plasma confinement in mirror systems to levels substan-

tially below the limitation imposed by end loss. Magnetohydrodynamic (MHD) theory

predicts that stability to low frequency (frequency, w <the ion cyclotron frequency, oci),

macroscopic plasma displacements can be provided by absolute minimum-IB I geometry 1 or

pressure-weighted f dl/B.2 These techniques usually require regions of non-axisymmetric

magnetic field, which have been shown to lead to enhanced radial transport.3',4 The use of

internal coils to provide stable (good) field line curvature in axisymmetric geometry can

provide stability at the expense of particle losses to the coils and coil supports.5' Plasmas

produced by radio frequency (RF) excitation in the ion cyclotron frequency range (ICRF)

have been sustained in axisymmetric mirror cells and tandem mirrors. - The stability

has been attributed to the effect of the radial RF ponderomotive force.10 '1

Even when mirrors are MHD stable, they are subject to microinstabilities. Mirror-

confined plasmas tend to have anisotropic, loss-cone velocity distributions except when

they are highly collisional and flow 12 confined. In mirrors sustained by neutral beam

injection, the drift-cyclotron loss-cone (DCLC) mode 13 and the Alfv6n-ion cyclotron (AIC)

mode 14,15 have been observed to limit energy confinement. These instabilities produce

strong plasma fluctuations with frequencies w - wi (ICRF regime). The interaction of

the plasma with these fluctuations produces RF velocity-space diffusion which leads to a

more stable velocity distribution. The DCLC mode has been successfully stabilized by a

warm streaming plasma 13,14 but the AIC mode has been observed even when neutral

beams are injected with mirroring points off of the midplane (so-called sloshing ions) to

reduce anisotropy. 4'1 5 These instabilities are typically not seen in ICRF-sustained mirrors

for two reasons. Energetic neutral injection produces plasmas with both higher anisotropy

and 06 1 (the ratio of the perpendicular plasma pressure to the magnetic field pressure),

providing more drive for microinstability than ICRF-produced plasmas. Also, externally

applied ICRF can provide RF diffusion in the same manner as the unstable mode.

This paper reports the stability properties of plasmas produced by ICRF in the central
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cell of the Tara tandem mirror. The slow ion cyclotron wave was excited in a region where

w < wec and propagated along the magnetic field to resonances where W = wci. The wave

propagation and heating characteristics of this experiment are described in a separate

paper.1" Other tandem mirrors have used fast wave heating with w > wc in the regions of

excitation and heating, or non-resonant heating, with w < wc everywhere in the central

cell.1017

The plasmas in the Tara central cell were maintained in a steady-state, stable, ax-

isymmetric configuration by the ICRF alone. By stable is meant that no macroscopic

(MHD-like) plasma motion was observed. The central cell also contained an axisymmetric

magnetic divertor which supplemented the stability provided by the ICRF. The ICRF sta-

bilization in the Tara central cell differs from other ICRF stabilization experiments since

it was achieved by slow wave propagation into a magnetic beach. In a similar experiment

in the Phaedrus tandem mirror, stabilization was achieved by slow wave excitation in a

region of uniform magnetic field where w < wci. 18 The Tara magnetic geometry provided

stabilization as well as strong ion heating at the ion cyclotron resonance.

The heating and fueling configuration in the Tara central cell produced hot ion plasmas

with #j and anisotropy sufficient to produce microinstability. The observed unstable mode

was strongest under the conditions where the heating was expected to be strongest and

appeared to limit the peak 0 1 that could be achieved.

The paper is organized as follows. The Tara configuration, parameters, and diagnostics

are discussed briefly in Sec. II. They are discussed in more detail in Secs. II and III of

Ref. 16. Section III of this paper presents the experimental results regarding macroscopic

(MHD) stability of ICRF-produced plasmas. Section IV discusses calculations based on

the ponderomotive stabilization model. Microstability will be discussed in Sec. V and

conclusions are presented in Sec. VI.

II. DESCRIPTION OF THE EXPERIMENT

The Tara central cell was 10 meters in length, with the minimum field typically 2.2

kG, and the mirror ratio 11.5. In the midplane region the magnetic field was increased to
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produce a "bump" of mirror ratio 1.8. The gas box for fueling and slot antenna for ICRF

excitation were located on either side of the midplane on the bump.' An axisymmetric

magnetic divertor was also located on the bump, between the ICRF antenna and the gas

box. About 20-25% of the magnetic flux was mapped outside of the separatrix produced by

the divertor. The divertor provided MHD stabilization which supplemented the stability

provided by the ICRF. The divertor stabilization was not from pressure-weighted good

curvature but rather from electron azimuthal mobility near the null magnetic field point.'

This configuration is illustrated in Fig. 1.

By separating the region of high charge exchange losses associated with the gas fueling

from the ICRF resonances which were located near the minimum field regions or "wells"

on either side of the bump, hot mirror-confined ions were produced in the wells. The

application of 250-500 kW of ICRF at 3.47 MHz produced plasmas in the wells with 400-

800 eV ions, 75-100 eV electrons, densities of 3 - 5 x 1012 cm 3 , and peak fl of 2-3%.

The radial density profile had a Gaussian form with a scale length of 1/2 - 2/3 the limiter

radius of 20 cm. 16

The central cell was bounded on each side by axisymmetric plug cells outboard of

which the plasma was mapped through quadrupole mirror cells. The quadrupole mirrors

could provide MHD stability when their good curvature was weighted by sufficient plasma

pressure by local ICRF heating.19 For the experiments described in this paper, no ICRF

was provided in the quadrupole cells so they played no role in MHD stability. It is for this

reason that the configuration is described as axisymmetric. The results presented here are

for unplugged operation, with no ion confining potentials being produced in the plug cells.

The principal diagnostics used to characterize the plasma were arrays of diamagnetic

loops for stored energy and anisotropy, arrays of microwave interferometers for axial and

radial density profiles, and arrays of biasable particle collectors at the end walls to measure

end loss profiles. The fluctuations associated with macroscopic instability were observed

on interferometers, end loss collectors, and arrays of plasma light detectors. 2
' Fluctuations

associated with microstability were observed on an array of radially movable RF magnetic

probes and a microwave scattering diagnostic. 21 The diagnostics are discussed in more
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detail in Ref. 16.

III. MHD STABILIZATION BY ICRF

A stable plasma was produced in the central cell by ICRF with no stabilizing flj in the

quadrupole cells and without the magnetic divertor in the central cell. Since axisymmetric

mirrors are unstable to curvature-driven modes according to MHD theory, a stabilization

mechanism must have been operative during these experiments. The stability of the plasma

was sensitive to the ICRF power, the gas fueling rate, the resonance location, and the

magnetic field of the bump. When the plasma was unstable, the MHD mode observed was

radially rigid and flute-like, with an azimuthal mode number m = 1. It typically grew to

a large amplitude, saturated state where the entire plasma column was displaced from the

magnetic axis by 4-8 cm and rotated about the magnetic axis at a frequency of 5-20 kHz.2 0

ICRF stabilization of this mode is illustrated in Fig. 2. Here an unstable plasma was

produced at a relatively low ICRF power of 250 kW, in this case by using a very low gas

fueling rate. The instability is seen as a fluctuation on the central chord line density and

a displacement and oscillation of the plasma light centroid (position of the peak from a

Gaussian fit to data from the radial array of plasma light detectors). From 15-25 ms the

ICRF power was doubled, during which time the plasma fluctuations were eliminated and

the plasma density and fLj built up. Improved stability was in general determined by

the observation of lower plasma fluctuation levels, as seen in Fig. 2 . There was typically

an abrupt threshold for instability, rather than a gradual increase in fluctuation level.

Improved ambipolar radial confinement was associated with lower fluctuation levels. This

was seen in the ratio of the total end loss current to the fueling current. Lower fluctuations

correlated with an increase in this ratio. Instability could be produced in a number of ways,

as will be discussed later, and in all cases increasing the ICRF power improved stability.

When destabilizing Oj was produced in the plug cells (by ICRF or electron cyclotron

heating), higher central cell ICRF power allowed more plug 3j_ to be supported before

instability resulted.

The stability properties of the ICRF increased faster with power than the instability
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drive produced by the heating. The stored energy in the plasma was shown to saturate at

high ICRF power' 6 while the stabilization always increased with power. The edge plasma

density decreased with increasing power16 , making it unlikely that the stabilization was

due to edge line tying. The other sources of stability, the divertor and the quadrupole cells,

were shown to provide stabilization which was additive with the ICRF stabilization. 6""

The gas fueling rate played a very important role in the stability of the plasma. For

a fixed ICRF power, the plasma became unstable when the fueling rate was too low or

too high. At low fueling rate, the instability had the steady-state character shown in Fig.

2 . The plasma radius decreased when the fueling rate was lowered and this was shown

to reduce the ICRF coupling." Changes in the plasma radial profile that affect the ICRF

fields change both the power deposition and stabilization profiles. The ponderomotive

model for ICRF stabilization (which is discussed in the next section) depends on the

radial profiles of the RF electric fields. The radial equilibrium is established by a balance

of the radial profiles of the fueling and heating with the particle and power loss profiles.

A stable equilibrium also requires a balance of the instability drive with the stabilization,

which are both produced by the ICRF in this case. A stable equilibrium was not achievable

at low gas fueling rates.

At very high fueling rates, a relaxation oscillation occurred with a period of several

milliseconds. Each drop in density and diamagnetism was accompanied by a burst of m = 1

fluctuations. When the ICRF power was raised the stabilization was increased relative to

the heating and the relaxation oscillation was eliminated. The window for stable operation

was not restrictive and the addition of the divertor allowed an even wider range of stable

operation (typically 15-30 Torr-liters/sec).

MHD stability was sensitive to the location of the ICRF resonance. For a. given gas

fueling rate and ICRF power, the plasma had an abrupt threshold to instability when the

resonance was moved up the gradient from the magnetic well minimum field on either side

of the midplane bump. This is illustrated in Fig. 3 where the fluctuation amplitude of the

line density is plotted vs. the mirror ratio at the resonance location, Rm. Rm is equivalent

to w/wcio where wcij is the ion cyclotron frequency at the magnetic well minimum field.
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These data were produced by varying only the minimum field in the central cell while

keeping the ICRF frequency and the bump field fixed, so that the antenna coupling was

not perturbed. Data is shown for two cases, with and without the divertor. Without the

divertor, there was an abrupt change in fluctuation amplitude at Rm=1.06 , when a strong

m = 1 mode was generated. The plasma density and O1j showed a large drop associated

with the instability. Data for only one unstable value of Rm is shown because above the

threshold it was not possible to produce a plasma. With the divertor, the threshold is

increased to Rm=1.09. It was also possible to maintain stability at a lower gas fueling

rate with the divertor. Figure 3 shows stability thresholds for two particular cases. The

threshold for optimized conditions of divertor, gas, and power was Rm=1.15.

An explanation of this behavior relies on two effects. They are that destabilizing field

line curvature increases with mirror ratio and, as will be discussed in the section on mi-

crostability, that the axial extent of the hot ions in the wells was governed by the resonance

location. Moving the resonance to higher mirror ratio produced more plasma pressure in

the regions of the central cell with bad curvature, eventually leading to instability. Increas-

ing the ICRF power raised the resonance mirror ratio at which the instability threshold

occurred. At a given ICRF power, the effect of operating the divertor was to allow stable

operation with the resonance at a higher mirror ratio.

The stability properties of the ICRF were also affected by the bump magnetic field.

This is shown by varying the bump field with the well field held fixed. In Fig. 4, the

fluctuation amplitude of the line density is plotted vs. the bump-to-well mirror ratio

Rb, which is approximately equal to w/wcj at the antenna. There was a threshold for

instability when Rb was increased to the point that w/wcj at the antenna was below 0.55.

The resonance location was not significantly changed by varying the bump field, with any

small change caused by increasing the bump field moving it to a lower and more stable

mirror ratio. The effect of the divertor was again to allow stable operation at higher bump

fields than without the divertor.

This threshold appears to be due to a change in the ICRF stabilization rather than

the MHD drive. Changing w/wci at the antenna location by varying the bump field affects
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the coupling to the slow wave. Since the wave field radial profiles were observed to be

roughly preserved as the ICRF propagated along the magnetic field gradient' 6 , changes in

the profiles at the point of excitation would likely affect the overall stabilization properties.

Varying the bump field might also affect the coupling by changing the density at the bump,

but access to measure this was not available.

Another possible explanation concerns the effect of mode conversion at the Alfv6n

resonance.22 For the conditions in the Tara central cell, the Alfv6n resonance occurred

near the edge of the plasma and moved into the plasma as the bump magnetic field was

increased or the density was decreased. There was no experimental evidence to elucidate

the role played by the Alfv6n resonance.

IV. PONDEROMOTIVE STABILIZATION CALCULATIONS

The stabilization of MHD instabilities by ICRF has been attributed to the action of

the ponderomotive force.-" The stabilizing force is produced by the radial gradients of

the RF electric fields. In the ICRF regime the ponderomotive force may be written as 23

e2 VE 2  VrE 2  mi VE 2
I + . (1)

4mi Loc (o - wci) Wc,(w + c) me w2

Since the RF electric field radial profiles are not directly measured, it is necessary to use

models to calculate of the stabilizing force. The McVey code has typically been used to

model ICRF heating and stabilization in mirror geometry.' 7 23 2 4 The code includes the

antenna geometry in detail, stratifed radial profiles of plasma parameters, Doppler-shifted

ion cyclotron damping, and electron Landau damping. It does not include the effects of

axial gradients, most importantly, the magnetic field gradient.

For the Tara case, the code is run using the magnetic field at the antenna location in

order to model the coupling correctly, but the ion absorption is therefore incorrect. The

code predictions for RF magnetic field radial profiles have been compared to experimentally

measured profiles. For the range of 130-190 cm from the antenna, where experimental data

is available, they agree reasonably well in form and magnitude for the inner 2/3 of the

profile. An example is shown in Fig. 5 for 195 cm from the antenna. The disagreement
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at the plasma edge is due to the strong edge fields predicted by the code from the m = 1

fast wave.23 ,2. This mode is apparently not excited in the experiment, perhaps because of

the close proximity of axial gradients, particularly those of the divertor, to the antenna.

The good agreement between the code and experiment would not be expected very close

to the resonance but experimental measurements were done only up to 195 cm from the

antenna where w/wci=0.87. The measured parallel wave number, k1j, also agreed with the

code. More detail on how the code was applied to this experiment may be found in Ref.

16.

Since there was reasonable agreement between the measured and calculated RF mag-

netic field profiles, the RF electric field profiles from the McVey code have been used in Eq.

(1) to gain some insight into the stabilization. The result is shown in Fig. 6 . In this figure

the pondermotive force has been averaged azimuthally for the axial position 130 cm from

the antenna. One clear observation is that contribution of the E+ term to the ponderomo-

tive force dominates over the entire profile. This is true at all axial positions. The force is

stabilizing over roughly the middle third of the plasma and is strongly destabilizing in the

outer third. Since the edge fields were not observed in the experiment, their destabilizing

effect would also be absent.

The stabilizing region inside the plasma is due to a region of negative slope in the

E+ profile, as is required in Eq. (1) when w < wc,. Figure 7 shows an r-9 surface plot

of E+ from McVey code results for 130 cm from the antenna. The region of negative

(stabilizing) slope exists at all azimuthal angles. The large, destabilizing edge fields can

be seen but these were not observed in the experimental measurements. The existence of

a stabilizing region is sensitive to the distance from the antenna, the radial density profile,

and w/wci. The stabilizing region is not predicted by the code at axial positions less than

90 cm from the antenna and there is more radial structure and weaker stabilization for

distances greater than 160 cm from the antenna. An axial average of the ponderomotive

force is dominated by the near field contribution and is net destabilizing. This is not

consistent with the observed stabilization and implies that the code does not accurately

model the experiment. The close proximity of the divertor to the antenna likely played an
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important role in determining the near fields of the antenna. Even when the divertor coil

is turned off, it is necessary to produce very strong gradients near the antenna to map the

flux through this region.6

Figures 6 and 7 are from calculations with w/owc = 0.65 and a Gaussian radial scale

length rp = 13 cm; values which are consistent with the best experimental conditions.

When rp is decreased to 10 cm or increased to 19 cm, the region of stabilizing slope is

reduced significantly. For the rr = 13 cm case, lowering w/wci below 0.55 eliminates the

stabilizing region. With the limitations on the applicability of the model in mind, these

predictions do show qualitative agreement with experimental observations. In the experi-

ment, MHD stability was lost for very high and very low gas fueling rates, corresponding

to the very broad and very narrow density profiles that are predicted not to be less sta-

bilizing. The loss of the stabilizing region for lower w/owi agrees with the experimental

result that MHD stability was lost when the bump field was raised (see Fig. 4 ).

V. MICROSTABILITY

When the applied ICRF was resonant near the magnetic well minimum field, a plasma-

generated mode was observed by RF magnetic probes and by the microwave scattering

diagnostic" located in the north plug cell. A similar mode was also observed during ICRF

heating in the norh plug cell." Frequency spectra from a magnetic probe for two central

cell resonance locations are shown in Fig. 8. In the lower spectrum, two large frequency

peaks are seen, one the applied ICRF at 3.47 MHz and another close to, but below, both

the applied ICRF frequency and woc at the well midplane, woci. The second peak split

into as many as three closely spaced peaks when it was excited most strongly, as shown

in the upper spectrum in Fig. 8. The plasma-generated mode was stronger when the ion

cyclotron resonance was closer to the well midplane.

Figure 9 shows the scaling of the frequency of the mode with the resonance mirror ratio

of the applied ICRF, Rm. For a fixed applied ICRF frequency, Rm was varied by changing

the magnetic field in the wells. The magnetic field of the bump was held fixed so that the

coupling would not be affected. It can be seen that the frequency of the plasma-generated
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mode was 0.8-0.9 wcid, tracking the variation of the well field. The mode amplitude was

strongly dependent on Rm. This point will be discussed later.

Axially spaced magnetic probes provided data on the wavelength of the mode. The

probes were located along the magnetic field gradient between the bump and the north well,

measuring the fluctuating magnetic fields in the range 0.65 < w/wci < 0.9. The probe data

were analyzed using digital spectral analysis techniques.2 ' 2 7 Figure 10 shows the scaling

of the axial wave number, k2 , with w/wci for the plasma-generated mode. Here Be data

were used and the value of w/wei is the average of the locations of the two probes used to

determine k,. The magnitude and scaling of k2 agrees reasonably well with the dispersion

relation for the cold plasma ion cyclotron wave, shown as a solid line in the figure. The

cold plasma result plotted here is for a fixed, representative density of 1 x 10' 2cm- 3 , while

there was some variation in the density over the range of the experimental conditions.

Much of the scatter in the experimental data was due to the difficulty of the measurement

under many of the conditions because the mode was only weakly excited. A radial profile

of the Be component of the mode is shown in Fig. 11 for the case where Rm = 1.03. The

mode amplitude was small at the edge and peaked at about 6 cm from the axis. The point

at 3 cm may be lower because the probe perturbs the plasma at this location, reducing

,3_. The mode is seen to have been strongest in the high O_± core plasma.

These results indicate that the instability was the AIC mode. The AIC instability is

an electromagnetic instability that propagates primarily along the magnetic field.28 The

DCLC instability produces an electrostatic mode with small k,' 3 , which is not at all consis-

tent with the data. The AIC instability occurs in plasmas with high ion /3± and anisotropic

ion velocity distributions. It has been observed in mirror cells driven by perpendicular and

angled neutral beam injection and was shown to degrade ion confinement. 4 " An insta-

bility beta limit has been derived for an ion distribution that uniformly fills the confined

velocity space of a mirror.2 8 This is a reasonable model of the ICRF-heated Tara central

cell where the ion cyclotron resonance position defined a hot ion plasma length which filled

the two well mirrors roughly uniformly out to the mirror ratio of the resonance, Rm. The
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beta limit is

f' = 3.52 (T11 /T±)2 , T1 /Ti < 1 . (2)

The limit is lower when the anisotropy, defined as the ratio of the perpendicular to parallel

ion temperatures (Ti/T11), is higher. The presence of a warm ion component (the passing

ions which are trapped in the central cell but not in one of the wells) raises the beta limit

for a given anisotropy. For the Tara central cell the correction to Eq. (2) is 10-20% (from

Eq. 28 of Ref. 28).

Figure 12 shows the experimental scaling of O1 , the anisotropy, and the AIC amplitude

when Rm was varied. The anisotropy, defined here as the ratio of the perpendicular to

parallel plasma pressure, was determined from two axially spaced diamagnetic loops in

the well. 29 The data shown are for the south well which typically had 2-3 times higher

#13 than the north because of the asymmetric location of the gas box on the bump.' 6

Each data point is the average of several shots at the same conditions. Also shown is

the drive term, #j x (TI/T11)2 , assuming p 1/pj1=T 1/T. From Eq. (2) , values greater

than 3.52 should be unstable. For the data represented by triangles, /
3

j was the peak

value assuming the peaking effect of the measured density profile. The drive was clearly

highest when the instability was observed to be strongest (when the resonance was closest

to the well midplane) but the drive was lower than the predicted threshold. Though there

was no experimental measurement of the ion temperature profile, there was some indirect

experimental information based on the measured density, neutral hydrogen, and charge

exchange profiles. The self-consistency of these measured profiles requires that the ion

temperature be peaked on axis in a similar manner to the density.3 0 This would increase

the instability drive by a factor of four (as shown by the data represented by circles in Fig.

12), making the results consistent with the simple model being applied here.

The heating was expected to be strongest when the resonance was closest to the well

minimum field region since the resonant interaction between the ions and the ICRF would

occur over the longest distance. The hot mirror-trapped ions produced by the heating

tend to localize between the midplane of the well mirror and the resonance3 1 making

the anisotropy depend on resonance location. The data in Fig. 12 show that the highest
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,3 1 was not achieved with the resonance at the well minimum field. It appears that the

AIC instability was limiting the effectiveness of ICRF heating when it was expected to

be strongest due to the highly anisotropic mirror-trapped hot ions that were produced.

The effect of the unstable AIC mode is to reduce the anisotropy through the resonant

interaction between the ion parallel motion and unstable wave when (W - Wei) = k1 v11. By

increasing the ion parallel velocity, v11, the instability degrades mirror confinement.

V. CONCLUSIONS

The ICRF experiments in the central cell of the Tara tandem mirror demonstrated

that slow wave propagation into a magnetic beach provides MHD stability as well as effec-

tive heating. The ICRF stabilization allowed operation in an axisymmetric configuration

without high beta plasma in the quadrupole mirror cells. The stability provided by the

combination of ICRF and the divertor was sufficiently robust to maintain stability even

when destabilizing O-L was built up in the axisymmetric plug cells during end plugging

experiments. 6

The maintenance of MHD stability put limitations on the operating regime of the

experiment. Increasing the mirror ratio of the bump would be advantageous for energy

confinement by reducing charge exchange losses from the hot miror-trapped ions in the

wells.' MHD stability required that the resonance be kept close to the well minimum field

and that w/wci on the bump be sufficiently high, limiting the bump mirror ratio to less

than two. Lowering the gas fueling rate reduces both charge exchange losses and radiation

losses from electrons, but also led to MHD instability.

The RF ponderomotive force provides a consistent explanation of the observed ICRF

stabilization. McVey code results show that when the edge fast wave contribution is

neglected, stabilizing RF electric field profiles are predicted when sufficiently far from

the antenna. For the range of distance from the antenna where stabilizing profiles are

predicted, there was reasonable agreement between the code and experimentally measured

profiles except near the plasma edge. The absence of the edge fast wave fields in the

experimental measurements justifies neglecting their effect in the model calculation. The
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stabilizing region predicted by the code should therefore have existed in the experiment.

The strongly destabilizing code predictions from the antenna near fields caused overall

disagreement between the code and the experiment. However, there is good reason to

expect that the near fields are not well modelled by the code due to the strong magnetic

field gradients in the divertor region next to the antenna.

Another clear result of the code calculations was the dominance of the E+ contribution

to the radial pondermotive force at all radii and under all conditions that were studied.

The code predicted stabilizing fields only in the central region of the plasma. The narrow

Gaussian radial profile of the slow-wave-produced plasmas in Tara may have been due, at

least in part, to the ponderomotive stabilization profile. A stable equilibrium may have

only been attainable for narrow plasma profiles. The existence of the stabilizing region was

sensitive to the density profile and w/wci in a manner which would explain the stability

boundaries observed in the experiment. This gives more credence to the ponderomotive

force as the stabilization mechanism.

MHD stable hot ion plasmas were produced by the externally excited slow wave but

there was insufficient collisional and RF velocity-space diffusion to limit the anisotropy

produced by the heating. The AIC instability, which channels plasma energy into a slow

wave, occurred even when the heating source for the plasma was also a slow wave. To limit

the ion anisotropy and maintain microstability, the resonance could not be too close to the

well minimum field. There was a range of resonance mirror ratio of roughly 1.05-1.15 over

which both MHD stability and microstability could be maintained.

The improved confinement provided by end plugging would influence stability. The

experiments descibed here were performed in the absence of significant end plugging. If

strong end plugging were present in a tandem mirror, microstability would be expected

to improve. End plugging confines loss-cone ions, making the central cell plasma more

isotropic. Additionally, lower gas fueling would be required to maintain the density, re-

ducing the charge exchange rate and allowing the hot ions to undergo more pitch angle

scattering before being lost. This would further reduce the anisotropy.
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On the other hand, the more axially uniform plasma in a plugged central cell would put

more plasma pressure in bad curvature regions, increasing the drive for MHD instability.

Additional divertors or ICRF antennas on the gradients at each end of the central cell

could be used to provide additional stabilization while preserving axisymmetry.
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Figure Captions

Figure 1. The Tara magnetic flux geometry showing the bump region, one of the central

cell wells, and one axisymmetric end cell

Figure 2. The time evolution for the first 40 ms of a plasma shot in which the gas fueling

was sufficiently low to produce a large m = 1 motion of the plasma. From 15-25 ms the

ICRF power was doubled, resulting in the elimination of the macroscopic plasma motion.

Figure 3. The variation of the fluctuation amplitude on the central chord line density signal

(the standard deviation divided by the mean over a 5 ms period) when the ion cyclotron

resonance location was varied by changing only the magnetic well minimum field. The

upper plot is for operation at a gas fueling rate of 20 Torr-liters/sec with the divertor. The

lower plot is for operation at 26 Torr-liters/sec without the divertor.

Figure 4. The variation of the fluctuation amplitude on the central chord line density

signal when the bump magnetic field, and therefore w/wci at the antenna location, was

varied.

Figure 5. A comparison of Be radial profiles 195 cm from the antenna with experimental

measurements shown as diamonds and McVey code results as a solid line. w/Woc=0.87

for the measurements while the code results are for w/owc=0.65, the value at the antenna

location.

Figure 6. Radial profiles of the ponderomotive force calculated from Eq. (1) using McVey

code results for the RF electric fields. Plotted is the azimuthal average for a 13 cm Gaussian

density profile 130 cm from the antenna.

Figure 7. A surface plot of McVey code results for the magnitude of E+ in an r-O plane

130 cm from the antenna, the same conditions as the results shown in Fig. 6.

Figure 8. Frequency spectra for two magnetic well minimum fields, corresponding to two

ICRF resonance positions. The largest peak in each spectrum is the applied ICRF at 3.47

MHz.
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Figure 9. The variation of the frequency of the plasma-generated mode when the magnetic

well minimum field, and therefore the resonance location, was varied.

Figure 10. The scaling of the axial wave number, k., with w/wcj for the plasma-generated

mode. The experimentally measured points are shown as triangles and the cold plasma

theory for a density of 1 x 10"cm- 3 as a solid line

Figure 11. The amplitude of the plasma-generated mode as a function of radius, as mea-

sured by an RF magnetic probe.

Figure 12. The scaling of the measured instability drive and instability amplitude when

the magnetic well minimum field was varied. The data shown as circles are a factor of four

higher, assuming the peaking effect of the ion temperature profile as well as the density.
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