
PFC/JA88-19

ON DISSIPATIVE MODE-COUPLING IN
ICRF MINORITY HEATING

V. FUCHS* and A. BERS

May 1988

Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 USA

*Centre canadien de fusion magnstique, Varennes, Qudbec
Canada JOL 2PO



DISSIPATIVE MODE-COUPLING IN ION-CYCLOTRON RESONANCE

MINORITY HEATING

V. Fuchs

Centre canadien de fusion magnftique, Varennes, Qu6bec, Canada JOL 2P0

and

A. Bers

Plasma Fusion Center, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

Coupled wave-equations and the corresponding wave energy-flow conservation

law describing the fast magnetosonic and ion-Bernstein waves are derived

for minority heating in the ion-cyclotron range of frequencies. This

fourth-order full-wave system is subsequently reduced in order through

representation by means of two, completely decoupled, second-order systems.

One is a second-order equation for the fast wave in which the Bernstein

mode is treated as a driven response. The second are coupled-mode equa-

tions for amplitudes varying slowly under the influence of coupling, inho-

mogeneity, and dissipation. The coupled-mode equations are approximately

solved for both high-field and low-field incidence to give the transmis-

sion and mode-conversion coefficients in closed form for arbitrary wave-

numbers parallel to the magnetic field. Good agreement with fourth-order

calculations is obtained.
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I INTRODUCTION

Rf heating of a high-temperature plasma typically occurs through the trans-

formation of the incident wave to a kinetic mode which is dissipated on the

charged particles by Landau and/or cyclotron damping. Such is the case,

for example, of heating by the fast Alfven wave (FAW) in the ion-cyclotroft

range of frequencies (ICRF) 1- . As the incident wave propagates into the

hot core of the plasma, such a transformation can take place gradually and

this is describable by the usual geometric optics formalism. However, near

resonances a more abrupt and fundamental change of mode structure (e.g.

polarization, orientation of group velocity, etc.) can occur. There is

then a singular layer in the propagation and the geometric optics is in

applicable. This process of transformation we term mode-conversion.

Dissipation and mode-conversion may become locally intertwined and a good

part of the incident power may also be reflected. The FAW by itself is

essentially an undamped hydrodynamic wave. However, in the vicinity of

ion-cyclotron resonances the FAW couples to an ion-Bernstein wave (IBW)

which is a kinetic mode. Through this coupling some of the incident of

power may thus be dissipated.

ICRF heating experiments5-7 have been very successful and a number of

existing as well as planned future tokamaks are committed to the installa-

tion of powerful (>10 MW) ICRF systems. Correspondingly, there is an

intense ongoing theoretical and computational effort whose goal is the

understanding of the coupling process, and the prediction of the fraction

of incident power dissipated.
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The starting point for such studies is the Vlasov-Maxwell equations, from

which a set of coupled wave-equations is derived for the two waves in ques-

tion8 ~1 1 . Special effort and methods are required for the numerical inter-

gration of these equations in order to overcome difficulties associated

with the presence of exponentially-growing spurious signals appearing on

the low-field side of the ion-cyclotron resonances where the IBW is evanes-

cent. This, and the need to go beyond slab models to toroidal geometry,

are other aspects of the problem giving motivation to a particular effort

aimed at obtaining analytic solutions of the full fourth-order system12 , or

the reduction of the system to simpler decoupled second-order

1 3-17
equations

Relevant to the issue of reduction, a major trend in coupled-mode theory

has been the work on representation of coupled waves by second-order18-24

or even first-order 2526, equations from which the transmission coeffi-

cient could be easily derived. Except for the last reference, which only

determines the transmission, these theories are presently limited to non-

dissipative systems.

In the present work we remove this restriction and develop a framework al-

lowing to specifically determine conversion coefficients. We first formu-

late the full-wave coupled mode equations for minority heating, and derive

first-order coupled equations for amplitudes varying slowly under the ef-

fect of plasma inhomogeneity, coupling, and cyclotron damping. The equa-

tions are solved analytically and the transmission and conversion coeffi-

cients are given for an arbitrary oblique angle of incidence (i.e.

ni * 0). In high-field (HF) incidence of the fast wave (FAW) this then
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completely resolves the problem of order reduction and of wave-energy

transfer. In low-field (LF) incidence the transmission is the same as in

HF incidence, but the IBW cutoff is now accessible and reflection can oc-

cur. Hence all four wave-branches, forward- and backward- propagating, are

present but order- reduction by means of decoupling is possible. In the

scheme we propose, the LF conversion coefficient is expressed in terms of

the HF results and the FAW reflection coefficient, which itself is obtained

from a different second-order approximation of the full wave-equations.
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II WAVE EQUATIONS AND CONSERVATION IAN

We start from the standard 2x2 zero-electron-mass Vlasov-Maxwell ICRF local

dispersion relation

2
e - n £

'DC n xy

- E - n2 0, 
(1)

xy yy

where n = kc/w, Eap are the dielectric tensor elements 1, 4 and

v k 2 /W 2 << 1 is assumed (k, = k ). We assume slab geometry in which

the tokamak toroidal magnetic field is directed along the z-coordinate, and

its gradient along x. The gradient scale length is R0, the Tokamak major

radius.

In a usual ICRF heating situation v2kl/, is much less than unity, and

typically the highest cyclotron resonance with the lowest ordering in

p k1 which falls into the plasma cross-section is the majority (or single-

species) second-harmonic. We therefore expand the dielectric tensor

elements E to first order in v 2k2 2

E E = E0 + elnxx y

(2)

Exy = i (g + Eln!)
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2 2
where we retain P kw terms only coming from the majority second-harmonic.

For D(H) minority heating (of which pure second-harmonic heating is a

special case) this gives

2 2
cA 1 Z2 __ 2
,7 CO - - + -- Z(a2) E K + N ,
c 3 4 /P 2N

2
ZI

4 N /iZ(ai ) E KI

2
C A 2 1
-7 g = K + N -,
C 1 3

(3)

(4)

(5)

where we have introduced quantities normalized to the Alfven velocity cA

C = x/cA , N = ncA/c = kcA/W (6)

and Z is the plasma dispersion function. Further, Zi, 2 = 1 is the ion

charge and

2

/2 vTl 2  
2 B0

1,2 c A 0 nIm 1 1,2
1

N1, Ivp 1 2 "'A

where RA = RO w/cA. The majority ion population is labeled 1, the

minority 2, and we have situated the fundamental minority resonance at the

origin = 0.

(7)
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In terms of the functions K0 and KI introduced in (3) and (4), the

approximate electrostatic ion-Bernstein dispersion relation C - n2  0 is
xx I

2
K0 + K1N1 = 0 , (8)

and the dispersion relation (1) becomes the quartic

NiK1 + N (KO- 2NK1) - 2XNKO + X = , (9)

2
XN = 1/3 - N.

Equation (9) describes the fast and ion-Bernstein waves, whose coupling at

this point is implicit, but can be made explicit by straightforward

factorization. We find

(2XN - Nj) (K0 + K Nj) = , (10)

which preserves the form (8) of the kinetic IBW and identifies a true

coupling constant 2 independent ofN. To this extent the

factorization is unique and allows us to immediately write down the

corresponding coupled second-order differential equations H(...)' d/dQJ

F'' + 2XNF = XN ( (11a)

(Ki4')' - KA = -N F , (11b)

where F and 0 are respectively the normalized FAW and IBW field amplitudes.
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It was shown in Ref. 17 that the given form of the IBW differential opera-

tor is the appropriate representation of (8) compatible with criteria

established by Berk and Book27 for slowly-varying media.

The type of coupling described by Eqs. (11) can be illustrated by the local

dispersion relation (9) or (10), through plots of Re N-L versus F. This

is schematically shown in Fig. 1, where first we have plotted Re N 2 for

both waves to explicitly demonstrate the coupling and show the IBW cutoff.

In Fig. lb and Ic we then indicate the powerflow pattern in respectively

high-field and low-field incidence of the fast wave.

The energy-flux conservation law associated with the system (11) is

(Im (F*F' - =*K1@')]' - 4**ImKo - 4'V'*ImK 1 , (12)

easily obtained from the two equations through conjugate manipulations.

Exchange terms depending on XN vanish on account of XN being real. It

is almost obvious that Im (F*F') must be the fast-wave Poynting flux and

that Im (4*KI') is the IBW kinetic flux. On the HF side Re K1 is posi-

tive, signifying that the two waves have oppositely-oriented group veloci-

ties. On the low-field side, only the fast wave propagates. The global

power conservation law is obtained by integrating (12) between the

asymptotic HF and LF sides where the waves are well-represented by

eikonals of the form a exp (ifNjd&), a being a power transfer factor. In

low-field incidence, for example, we obtain

1 - TT* - pp* - Re KI HF pi* 'diss , (13)



9

where for the incident wave we have taken a - 1, and associated T with the

transmitted wave, p with the reflected wave, and pL with the IBW. In high-

field incidence p - 0.

The power transmission, reflection, and mode-conversion coefficients are

respectively

T= * , R = pp* , C = pp* Re KI1HF (14)

and Pdiss is the integral of the right-hand side of (12).

Before we now proceed with the reduction of Eqs. (11) to a coupled second-

order system, we note that a very useful second-order equation for the fast

wave was derived in Refs. 13 and 14 by treating the IBW as a wave driven by

the fast wave at the coupling wave-number N1 = Nc. The present treatment

offers yet another way of obtaining the same second-order equation .

First, the IBW response to the FAW can be here obtained in explicit form

from Eq. (11b), by successive approximations of the solution 0. As the

zeroth-order iteration for D we simply take the eikonal solution

exp(iNc) in the coupling region, as required by the stationary-phase

argument of the next section. This gives (KID')' = -KINc 2 0, and on

expressing D from (11b) in terms of F we immediately obtain the fast-wave

approximation 1 4

2

F'' + (2X -2 ) F = 0, (15)
N K 0 + N2Ki

from which T and R can be obtained. The information needed to complement

the reduced coupled-mode equations is R, while T is redundant but can be

used to check the compatibility of the two systems.
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III REDUCED COUPLED-MODE EQUATIONS

We wish to reduce the system (11) to a set of two first-order equations,

describing the spatial evolution of wave-amplitudes due to plasma inhomoge-

neity, coupling, and dissipation. We do so on assumption that the system-

atic evolution of the amplitudes is slow on the eikonal (i.e. fast) scale,'

permitting separation of the fast and slow scales in the sense that the

wave-function is written as a product of the eikonal exponential and a

slowly-varying amplitude.

Before doing this, however, it is useful to realize that the net slow

effect is due to two different causes, and this should be taken into

account as far as the perturbation-asymptotic ordering is concerned. The

inhomogeneity is due to wci(x) and is manifested through the dependence

of K0 and Ki on wci. The effect, as is well-known from WKB theory, is

the appearance of a slowly-varying flux preserving factor. This can be

established separately. Further, the systematic depletion due to dissipa-

tion arises because of non-Hermitian terms in the dispersion tensor (i.e.

Im Ko and Im Kj). Finally, there is a spatial variation due to coupling,

i.e. due to transfer of energy from the fast wave to the Bernstein wave.

We suggest that, at least in the case of interest here, variations due to

dissipation and coupling have to be ordered equivalently, the reason being

not only that both depend on the existence of the kinetic mode, but that

the coupling itself is already a form of dissipation of the fast wave, the

result of which is an irreversible reduction in its amplitude, no matter

what thereafter happens with the kinetic mode. This is clearly manifested
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by the Budden case of nI - 0, (the "cold" ion-ion hybrid resonance) where

the "missing" energy can be immediately recovered as either dissipated if

we remove singularity by a small amount of damping, or as mode-converted if

we add a warm correction to introduce another mode.

We shall now proceed. It is a straightforward matter to separate out the

variation due to plasma inhomogeneity and we deal with this first. Recall-

ing that in the IBW propagation region Re KI > 0, we introduce

B = @ KI . (16)

This transformation eliminates first-order terms in (11a), and we neglect

terms O(e 2) in comparison with terms 0(1), where we have ordered KI - c.

This gives

F'' + 2 XNF = 1N B/K1 (17a)

B'' - KO B = - X F/K . (17b)
Ki N

we now write

F = F(6) wF( ) , B = B(6) wB(5) , (18)

where wF and wB are the undamped and uncoupled eikonal solutions and

where the slow variation 6 is ordered with the dissipative term Im (KO/Kl)

I



12

and the coupling. The uncoupled fast wave is obtained in the asymptotic

limit of al,2 C1 >> 1, in which KI + 0 and K 0 - 1/3 - N2, wherefrom

2 xN (1 + N )
w - exp (iN N) , N I

F c c 1/3 + N

The IB eikonal is

2 K0
wB = exp (NBd) , NB- Re 7.

(19)

(20)

We now substitute (18) into (17), and to first order in 6 we obtain the

reduced system

N w
~F ... i N B l.2KN BwF

x wF Im (K0 /Ki)
B' .i F - + B,

2KNwB 2NB

(21a)

(21b)

The transformation

F = f , B = be
D(C)

D( -) =

Im (KO/Kj)

2NB

then gives the more symmetric form

(22)
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f ' % - i ( D ( Q )

2K Ncf e
b (23a)

f (23b)

f (N((') - N ) d'.

The problem of integrating the system (23) is greatly simplified if we make

use of the fact that the phase Cp is stationary (i.e. 4' = 0) at the point,

say &c, where the two eikonal wavenumbers match, NB = Nc. The prin-

cipal contribution to the amplitudes f and b thus comes from the neighbor-

hood of , = &c, and we can approximate (23) by

fV iX ic li'( - , )2 Df' =- ie " , c e b ,

-i -Ji ''(g - E ) -D
b'= iX c c e c e c f

where Dc =D(c),

. 2 (1/3 + N )

c - 2 , To' - ,
c 4N lc c NiRA

(24a)

(24b)

(25)

b' -i e e

2KT B
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and Cc is the solution of

2
N - - Re (K0/Kj) . (26)

This is the final form of the coupled-mode equations, which now can be

solved analytically. There are two things to note. First, it is easy to

verify that in the dissipationless case the symmetrized system (24) auto-

matically conserves powerflow. Second, the asymptotic solutions of

Eqs. (24) are directly the wave energy-flow factors. This can be immedi-

ately seen if we reconstruct the wave amplitudes F and P through (22),

(18), and (16), and substitute these into the conservation law (12). With

this in mind, we now solve Eqs. (24) to obtain the transmission and

conversion coefficients.
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IV TRANSMISSION AND MODE-CONVERSION

In this section we establish the transmission and conversion properties of

the fast wave on the basis of asymptotic solutions of Eq. (24). We do so.

by transforming Eqs. (24) to Weber's equation, whose asymptotics is well-

established 28, and use (24) itself only to impose the appropriate boundary

conditions. In this respect we recall that ( + -- is the high-field side,

and & + - is the low-field side.

Let us first derive Weber's equation associated with (24). To begin, we

easily obtain

f' + iK (- )f' -X2 f = 0c c

b' - iK ( - , ) b' - b= 0
c c

where we

mations

(27a)

(27b)

have introduced a positive dephasing rate K = -T". The transfor-C

f = D nexp(z2/4), b = Dnb exp(-z2/4),

where

(28)

; I = 0 or 1,Z = /1K (C - Ecc) e (29)
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then immediately give Weber's equation

2 + (n + - z2 /4) D -0
dz 2 n

(30)

The amplitudes f and b given by (28) are distinguished by the respective

index of the parabolic cylinder function Dn:

f 2

nf K ig n b - n - - (31)

The importance of carefully manipulating expressions with the index n

cannot be over-emphasized. The index determines the leading asymptotic

behavior of Dn, and via the Stokes phenomenon the transmission proper-

ties. The asymptotic analysis we carry out here is merely an application

of textbook material to a more sophisticated example, so we only present

its essential steps.

The leading asymptotic behavior of Dn is given by the connection formula

D n ez2/4
n

D - z e Z2/
n

arg zI < 4

,12_1 innm -n-i z2 /4 U 5it
n- e z e ~< arg z< 4--(T-)

which we can write in symbolic form

(32a)

(32b)

;
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D D (T)n n

(33)

D D (INC) + D (C)
n n n

from which it is obvious which branches in (32) correspond to the incident,

transmitted, and converted wave-amplitudes.

Let us first consider HF incidence of the fast wave. Since the transmitted

wave is on ( > 0, we take X = 0 in (27), so that arg z = -n/4 on the trans-

mitted side and arg z = 3n/4 on the incidence side, as indicated in

Fig. 2. We substitute these phases into (32) and divide through by

exp (inf 3n/4), the coefficient at the incident branch. We find the

transmission factor T = exp (-infi), and the power transmission coeffi-

cient is

T = TT* = exp (-2n Re X /K) . (34)c

In order to obtain the associated conversion coefficient, we have to relate

the fast wave branch D to the Bernstein amplitude via Eq. (24a). Tonf

leading order in 1/z we easily find

df /2 K in n z2/4 -n -i-
f e(n ) e z e , (35)

so that the Bernstein amplitude is



b- Cc + e)
b - e 4 -Z 2 /4 1K -Dc

e 7 e
C

/29 e -if nff z2 /4 -nf

-(-nf ) e e IzI

The expression standing at the asymptotic eigenfunction Iz 1-nf exp (z 2 /4)

is the conversion factor y ,

YHF (

-(C+ I) /K /2 1

X r-n)

-i i nf
e 2 -De c

(37)

and the conversion coefficient thus is

C F Y Y*F
HF HF HF

= 2K

XC

- Re X2 -2D
K c C

e e
I r(-nf)1 2

Without dissipation, Eq. (38) becomes, as expected,

C + 1 - exp(- 2X /K) 1 T,
HF C

where for N1 + 0 we easily find

T + exp [-
i Row

2 cA

TI
(- +
2

2
vT1

CA

14 26
The same result in this limit was also obtained by other methods I

18

(36)

(38)

(39)

(40)
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This resolves the general problem of transmission in systems described by

equations of the type (11), as well as the particular problem of

transmission-conversion in HF incidence of the fast wave. However, in ICRF

heating, low-field incidence of the fast wave is the more interesting con-

figuration, and in this case the results given so far are not sufficient to

provide a complete picture of wave-power transfer. We will discuss this in

the next section.
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V CONVERSION OF THE FAST WAVE IN LOW FIELD INCIDENCE

In LF incidence of the fast wave there are two coupling events such as

discussed in the previous sections, plus reflection at the IBW cutoff, as

schematically illustrated in Fig. 1c. In the first coupling event, the

fast wave is partially transmitted and partially converted to an IB wave

going to cutoff. The reflected IB wave partially transmits to the HF side,

becoming what we call the mode-converted branch, and partially converts to

form the reflected fast wave.

In the absence of dissipation, once T is established the problem can be

completely resolved20 on the grounds that the power coming out of the

2cutoff must be 1 - T. Then CLF - T(1 - T) and R = (1 - T) . This

procedure, with T calculated from the reduced, coupled-mode equations,

8 12gives exact agreement with fourth-order theories P2. With dissipation,

particularly in the given case with cyclotron resonances close to the

cutoff, the reflection is bound to be modified by dissipation, and the

scheme outlined above cannot be applied.

Despite this complication, a simple reduction scheme still exists for the

given case. First, we find R by means of the second-order equation (15).

Next, using R as a boundary condition for the reflected fast wave, we will

consider its coupling to the corresponding Bernstein branch and find the

relation

CCRFLF = T R exp (- 4Dc (41)

I
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This then resolves the problem of conversion in LF incidence.

We now proceed. The transmission side is now & > 0, so in (29) we take

I- 1, and the phases we substitute into (32) are arg z - -n/4 for & <0,

and arg z - 3n/4 for & > 0 (Fig. 1). Consider first the transmission of-

the incident fast wave. We get T - exp (-innf), the same result as in HF

incidence.

Next consider the transmission of the IB wave from the cutoff to the high-

field side. As we already emphasized, in this particular problem the inci-

dent power is generally unknown but this is not a constraint since we

assume that R is given and only one boundary condition in the connection

formula (32) need to be specified.

In the connection formula (32), the index n is then nb - nf -1, the

conversion factor is associated with the Bernstein branch D T), and then

boundary condition is imposed on the reflected fast wave f related through

Eq. (24b) to the Bernstein branch D (C). From the second part of (32b) we

have

(C) /2% inbn -n b1 z2
D - e z e . (42)

nbr(-nb)

Using this in (28), the leading asymptotic behavior of db/d is

3n 2
db 1 -z /4 nb + 1 (C) (43)

z nb
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and so using (24b) the reflected fast wave branch is

i(c z2 /4 Xc
f- -e e

To obtain the conversion

an arbitrary constant a,

-n -2
f = pIZ b exp (z2 /4)

This gives

pc
P ~ 7

c z 2/4
e

/2% inb 4 Dc -nb-2 z2/4
- e e IZI e (44)

factor we multiply the connection formula (32) by

and impose the boundary condition on (44), i.e.

, where pp* = R is the reflection coefficient.

inn D
V2n b4 c

I(-nb e e

On the other hand, the conversion factor, which is the coefficient in

(32a), is

nF =b
YLF e

(45)

(46)

Since p is assumed as k

tion (15), we can solve

CLF = LF LF = R

iown from the solution of the fast-wave approxima-

for a from (45) and finally obtain

- Re X -2D . i 2
eK c c c 2K I c Ir(- nf)I2 (47

Equation (41) easily follows.

)
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In the dissipationless limit (47) becomes

C + RT
LF 1 - T (48)

and since in that limit R - (1 - T) 2, we obtain, as expected, CLF + T(l

- T).

It is now worthwhile noting that when

Re >> 1IM X , (49)

which is the case for moderate values of kH, then the coefficients (38)

and (47) reduce to the very simple forms

CHF = (1 - T) exp (- 2D C)

and

C - RT 2
LF - 1 - T exp (- 2Dc)

where from (22) with c

c
Dc i-

(50)

(51)

(52)
Im (Ko/Ki)

(- Re Ko/Ki)

and c is given by Eq. (26).
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VI EXAMPLES

As mentioned before, to get the reflection coefficient R we numerically

integrate Eq. (15), the details of which are presented in Ref. 14. In

order to evaluate the other coefficients, we must determine the position

&c of the stationary-phase, or coupling, point, and the related parame-

2
ters Xc, K = - 4'', and Dc. First, it can be shown that to orderC c

0 (1/aZ 3 ), the dephasing rate K is independent of &c and given by

(25). The remaining parameters are best determined numerically. A first

good guess for &c from (26) is its small - N1 limit

+ - 1 A 2 (- + 0 N2 (53)
c 4 1/3 + NI c

Finally, in (52) it typically suffices to integrate from a lower limit of

about ( = - 5.

We now give some examples. In Fig. 3 we compare our results for a PLT-type

plasma with results from the full-wave boundary-layer code of Imre and

29
Weitzner . The respective numbers are given in Tables I and II, where we

have also included (Table II) results from the reduction schemes of

Refs. 17 and 26.

We see that while in most cases there is good agreement between the results

obtained by the various methods, there also are some substantial
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differences. Thus, for example, the transmission coefficients calculated

by any of the methods agree very well. Quite striking is the agreement

between T from Francis et al.26 and T from the fast-wave approximation.

The origin of this agreement probably lies in that both methods treat the

ion-Bernstein wave as a resonant plasma response to excitation by the fast

wave. We wish to point out that in the asymptotic limit Ia1jcl >> 1 our

transmission coefficient (34) becomes

RAN 3

T = exp [- 2 2 (T) + 1 N )], (54)
4 (1 + N 1) c

which is exactly the coefficient given by Francis et al.26

We would now like to draw attention to the conversion efficiencies CHF

and CLF. While CHF from Eq. (38) agrees with the results of Table I

quite well, the agreement for CLF from (46) is not so good (and the same

can be said for CLF from Ref. 17) for larger values of ki. At the

moment we cannot offer an explanation for these discrepancies.

The next example, minority heating in a CIT-type plasma, is shown in

Fig. 4. The LF incidence conversion coefficient CLF remained less than

1% over the entire range of ki and is therefore omitted. Likewise, also

transmission remains very small. In LF incidence the incident power is

therefore either reflected or dissipated. The crossover point is ki = 5,

beyond which strong dissipation occurs.



26

VII SUMMARY AND DISCUSSION

We have derived a set of coupled first-order equations (24) describing the

systematic spatial evolution of wave-amplitudes under the effect of plasma

inhomogeneity, cyclotron damping, and coupling. The equations are solved

analytically and the transmission and conversion coefficients are obtained.,

in closed form.

In ICRF minority heating by means of the fast wave incident from the high-

field side, the analytic results from coupled-mode theory can be immedi-

ately applied to get the fraction of power dissipated. In the case of low-

field incidence, the fast wave reflection coefficient is first calculated

from the completely independent second-order equation (15), and this data

is then used as a boundary condition for a coupling problem from which the

conversion coefficient is established. Compared with this, the reduction

schemes described in Refs. 16 and 17 require the numerical solution of two

second-order systems even in HF incidence.

Complementing the obvious advantages of the given reduction scheme there

are well-defined validity conditions. More specifically, as pointed out at

the outset of section V, the coupled-mode equations in the absence of dis-

sipation give an excellent representation of slow amplitude variations due

to coupling. Furthermore, the separability of the eikonal and dissipative

spatial scales which is the basic premise of the present theory is well-

satisfied away from the cutoff and cyclotron resonances in the region



27

between the coupling point Cc and the asymptotic HF side, where the

Bernstein mode is described by the coupled-mode equations (24). Throughout

the cutoff and cyclotron damping region WKB validity is violated, and there

we use the approximate full-wave equation (15), which is not limited to

weak dissipation. We thereby avoid the difficulty we see with a previous

treatment12 of the dissipative case, where to obtain the effect of dissipa-

tion on the incoming-reflected Bernstein mode, WKBJ solutions of the

Bernstein wave-equation were used throughout the cutoff and cyclotron

resonance region.

Having found the transmission, reflection, and mode-conversion coeffi-

cients, the dissipation per unit of incident fast-wave power can be obtain-

ed from the global conservation equation (13).
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FIGURES CAPTIONS

Fig. 1 Roots of the local dispersion relation (9) or (10). (a) Identifi-

cation of asymptotic branches and branch points. (b) Powerflow in

high-field incidence. (c) Powerflow in low-field incidence.

Fig. 2 Orientation of the independent variable z in Weber's equation (30)

with respect to the spatial variable , in HF and LF incidence of

the FAW.

Fig. 3 Power transfer coefficients T, R, CHF, and CLF for PLT minority

heating. Comparison of present results with results from Imre and

Weitzner. (For details see Tables I and II).

Fig. 4 Power transfer coefficients T, R, CHF, (CLF < 0.01), and the

powers dissipated DHF and DLF, for CIT minority heating.

Ro = 1.75 m, f = 95 MHz, B0 = 7 T, To = 14 keV,

ne = 1.3 x 1020 m 3, D(H), Ti 0.05.
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