
PFC/JA-88-13

Depletion and Diffraction
of an Electromagnetic Wiggler Field

during the Free Electron Laser Interaction

Similon*, P.L. and Wurtele, J.S.

April 1988

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

*Laboratory of Plasma Studies, and Cornell Theory Center, Cornell University, Ithaca,
New York 14853

I



Depletion and Diffraction
of an Electromagnetic Wiggler Field

during the Free Electron Laser Interaction.

P. L. Similon,
Laboratory of Plasma Studies, and

Cornell Theory Center
Cornell University

Ithaca, New York 14853,
and

J. S. Wurtele,
Department of Physics, and

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139.



4.BSTRACT

The self-consistent interaction of an electron beam with an electromagnetic wiggler

and a radiation field is analysed. The equations are derived from a lagrangian action

principle, which includes the relativistic particle lagrangians and the electromagnetic

field lagrangian. The action is then specialized for the FEL to include wiggler, radiation,

and space charge waves, and is averaged over the wiggler period. The approximations

are made in the action, rather than in the equations of motion, thereby guaranteeing the

self-consistency of the system. Equations are derived for the depletion and diffraction of

the wiggler field. Using a one-dimensional approximation, pump depletion is examined

for pulsed and steady-state electron beams. A three-dimensional analysis shows that

the wiggler diffraction is dominated by the nonresonant interaction of the electrons

with the wiggler wave. This is studied in detail for a specific electron pulse shape. It is

concluded that the depletion and diffraction should not substantially degrade the FEL

interaction.

PACS numbers: 42.55.Tb
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I. INTRODUCTION

Free electron laser (FEL) physics has advanced rapidly over recent years -'. Os-

cillators have lased from visible to submillimeter wavelengths. High-power and high-

efficiency operation have been demonstrated experimentally at millimeter wavelengths

and experiments have been in good agreement with theory.

The utility of the FEL for the scientific community will depend not only on the

power and frequency content of the optical pulses which it can produce, but also on

the cost and size of the laser. At present, unfortunately, an FEL operating at visible

wavelengths requires electron beam energies of approximately 50 MeV or greater. The

development of short wavelength (A, 1 mm) wigglers will allow for optical lasers

which require only 10 MeV electron beams. Various proposals for developing short

wavelength magnetostatic wigglers and the associated electron beam technology are

being studied 1 12. Another possible short wavelength wiggler, which is under active

investigation 123, is an electromagnetic wave. Such a wiggler may be realized 21-23,

for example, by using a gyrotron 24-26 to power a superconducting cavity. In this con-

figuration, the electrons influence both the wiggler and optical fields. New phenomena,

wiggler depletion and diffraction, can be studied through a formalism similar to that

which has been developed for the FEL.

The advantages and disadvantages of electromagnetic wigglers for use in the free

electron laser (FEL) have been examined previously 22. For a fixed output frequency,

the short wavelengths obtainable with electromagnetic wigglers allow for lower electron

beam voltages and, consequently, a more compact FEL. The magnetostatic wiggler has

transverse gradients which scale exponentially in x /A,. Unless the electron beam

radius scales with the magnetostatic wiggler wavelength, the performance of the FEL

can be limited by these gradients. If the gap between the wiggler magnets (or coils)

is held fixed, then the amplitude of the wiggler field on axis decreases exponentially

as the wiggler wavelength is decreased. These two factors, reduced field strength and
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severe transverse gradients, along with fabrication difficulties, motivate the examination

electromagnetic wigglers for compact FEL designs.

Theoretical models of the FEL 27-34, based on averaging the particle and field

equations over an optical period, have been compared, after appropriate modifications,

with experiment. Measurements of the nonlinear evolution of the wave amplitude and

phase in a Compton 5,35 and a collective 8 (Raman) FEL have obtained good agreement

with theory.

The free electron laser interaction produces both gain and phase shift. This phase

shift corresponds to a beam refractive index, and the optical mode can be guided by

the bunched electron beam. It has been shown 31-34 theoretically and numerically that

the self-consistent wave phase shift induced by the FEL interaction can compensate for

the diffraction of the light. Thus the electron beam acts like an optical fiber which can

support a guided electromagnetic mode.

The measurements of wave phase shifts are evidence of the refractive index pro-

duced by the FEL, and thus lend support. to the optical guiding theory. More recently,

direct measurements 36,37 of the electric field have been made.

The FEL resonance condition is

Ww + kw),311 2-y2 (1
W.,= (u;,. + kw),()

1 -#g 1+ a2

where ow and kw are the wiggler wavenumber and frequency, c 1, a, = eBw/mkw

is the dimensionless wiggler vector potential, 11 is the parallel electron velocity, and

-y =1/(1 - f.,3) 1 / 2 >> 1. By allowing for kw 7 ww, our model includes waveguide or

cavity modes as well as free space wiggler waves; the terms proportional to Ww arise

from electron oscillations in the wiggler electric field and those proportional to kw result

from oscillations in the wiggler magnetic field. With w_ = 0, Equation (1) reduces to

the well-known FEL resonance condition.

The exponential scaling of a magnetostatic wiggler field amplitude with wiggler

wavelength Aw and a gap g between the magnets is, in planar geometry, B.1 -
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Bmaxe-k-9 . As a consequence of this scaling, the gap must be reduced with the

wavelength. This results in constraints on the electron beam transport and in the

degradation of the FEL interaction as kmre increases (re is the electron beam radius).

With an electromagnetic wiggler the beam pipe may be kept at a fixed radius without

an increase of transverse gradients or an exponential loss of field amplitude as A,,, is

decreased. The transverse variation of the wiggler wave is determined, to lowest order,

by the vacuum dispersion equation kI = U , - k ,. A primary advantage of electro-

magnetic wigglers is this decoupling of the transverse spatial scale from the wiggler

wavelength.

One potential problem with the electromagnetic wiggler is pump depletion'.

Every photon produced in the optical wave must be created through the Compton

backscattering of a photon in the pump wave. The total photon flux in both waves,

N, - N,, is conserved. Since photons have energy hw, the power depleted from the

pump, PD, is given by PD = Pww/w5 , where P, is the power produced at the optical

frequency, w,. Recent estimates 22,23 using conservation of total power over the entire

interaction region, show that pump depletion, although small, is more important when

high efficiency and high power are desired.

Utilizing a Lagrangian formalism and an action principle, we derive, in Section II,

three-dimensional equations for the self-consistent evolution of the electron beam and

both the optical and wiggler waves. The pump depletion is examined in Section III,

for both long and short electron pulses, in a one-dimensional approximation. The lon-

gitudinal variation of the wiggler field amplitude is found to be quite different in these

two cases. For a long electron pulse, in which the optical and wiggler field amplitudes

are assumed time independent, the wiggler field is depleted rapidly at the end of the

interaction region. Except in the region corresponding to the final e-folding of the

optical wave, the estimate of the field amplitude obtained by total power conserva-

tion can be used. In the final e-folding, the total power conservation method yields
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an underestimate of the wiggler wave strength. For an intense short electron pulse,

such as those produced by a high brightness photo-cathodes3 8 , the wiggler wave suffers

depletion within the pulse.

In Section IV, the diffraction experienced by the wiggler wave as it interacts with

the electron beam is studied. There are wiggler phase shifts generated by the oscillating

electrons. An analysis of our self-consistent equations of motion shows, in fact, that

the FEL-induced phase shift (which guides the optical wave) has little influence on the

transverse variation of the wiggler field. This model also includes the phase shift due

to the nonresonant interaction of the beam and with the wiggler wave. This effect

corresponds to the term w20 /yw 2 in the dispersion relation for an electromagnetic wave

propagating through an electron plasma. It can be neglected for studies of the optical

wave propagation, but has a dominant role in the details of the transverse profile of

the wiggler wave.

A simplified model of the wiggler wave profile is solved in Section V, yielding

estimates for the transverse profile of the wiggler wave. For a short beam (less than a

Rayleigh range of the electromagnetic wiggler wave calculated with the electron beam

radius), the change in k, is seen to be given approximately by the one-dimensional

phase shift owo/w,12 -y. For a long pulse, the transverse phase shift is largest over a length

of one wiggler Rayleigh range from the front of the pulse. It is seen that transverse

gradients in k, are compensated for by corresponding gradients in W" when the electron

density is assumed to be a function of vt - z only. Thus FEL resonance condition is

unaffected by the diffraction.
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II. LAGRANGIAN THEORY

In this section, we write the action principle for particles and fields, in the system of

coordinates 28 where the spatial variable z (which defines the 'parallel' direction) plays

the role of the time-like variable. Self-consistent equations for the particles and for

the electromagnetic fields are obtained from the extremization of the system action S,

specialized to the free electron laser problem.

A. General formalism.

Consider a system of relativistic particles (electrons), interacting with an electromag-

netic field. Such a system is described by an action functional 3,o, formed from the

sum of the individual particle actions S,, and of the electromagnetic field action, Sm.

The dynamics of a particle will be given in terms of the evolution in z of its phase space

coordinates, namely the perpendicular position, rs(z), the perpendicular momentum,

p±(z), the time variable, s(z), and the particle energy, h(z). The corresponding hamil-

tonian is the parallel momentum, equal to

P(ri, s, p1 , h, z) = [(h - 0(r±, s, z)) 2 - 1 - Jp± - A±(rw, s, z),]1/2 + A,(r, s, z),

(2)

where A 1 (x 1 , t, z), O(x 1 , t, z), and A 1 (x1 , t, z) are the electromagnetic potentials,

and where we have chosen units so that velocity of light, electron mass and charge, are

equal to unity. With these conventions, the particle action for phase space trajectories

is S, f(Pdz + p_ -dr 1 - hds), or explicitly,

Sp dz P(r(z), s(z), pI(z), h(z), z) + pj(z) -rI(z) - h(z)s'(z)}, (3)

where the prime denotes derivation with respect to z. The condition that the variation

bS, vanishes for all variations of phase space trajectories generates the equations of

evolution for the particle.
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We adopt a Vlazov description of the electron gas, and neglect accordingly dis-

creteness effects. In the Lagrangian formalism, such a continuous system is best treated

by defining a reference state, D, whose points ri label the 'particles'. A measure dN is

defined on this reference state, and represents the 'number' of particles in some neigh-

borhood of the point rq. For instance, the particle density n and the plasma frequency

2
square W,P are

n(x, z, t) =w 20 (x, z, t)/47r = dN8(xw - r±(r1, z))b(t - s(77, z))s'(rq, z). (4)

The total action is

S = dNSp(77) + SM, (5)

where

SM = (1/87r) dx_ dzdt (E(xi, z,t)I2 - IB(x , z, t) (6)

is the electromagnetic field action, to be expressed in terms of the electromagnetic

potentials. The coupling between particle dynamic and field evolution occurs through

the field-dependent terms in S,. It turns out to be convenient to choose the (rather

unusual) gauge for the potentials

which is very similar to the radiation gauge, since the z coordinate plays in this formal-

ism the privileged role of the evolution variable. The action S is now to be considered as

a functional of the independent fields r1 (r7, z), p1 (rq, z), s(rq, z), y(, z), A 1 (xw, z, t),

and O(xj, z, t), where, instead of h, we adopt the new particle variable y = h - 4.

The variation of S with respect to any of those fields must vanish, which leads to the

relativistic equations of motions for the particles, and to Maxwell equations for the

electromagnetic field.
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B. Free electron laser model.

The formulation above is exact. Some simplifications of the action functionals are

appropriate for free electron laser ". In particular, the particles are highly relativistic

(-y > 1), and there are generally few electromagnetic modes present.

For large y, the parallel momentum equation (2) is expanded, and becomes, with

the gauge equation (7),

P = I + 1 p 2 L 2 + 0(_Y-), (8)

which can then be replaced in the particle action Eq. (3).

We restrict the electromagnetic field to the sum of three components: the wiggler

field (Am, , possibly tapered, the radiation field (A., 0.,), and the space charge

wave (A8 c, ,,c). For the wiggler and radiation fields, it is appropriate to use an eikonal

form

A. = (1/v) [a, (x, t, z) exp(i9,(t, z)) + c.c.] , (9)

A, = (1/x/2) [a,(xw, t, z) exp(iO.,(t, z)) + c.c.] , (10)

which separate the fast variation in the phases, and the slow spatial variation due

to tapering, field amplification and transverse variation in the amplitudes. Locally,

wavenumbers and frequencies are defined by

d9, = kdz + wdt, (11)

dO, = kdz - wdt. (12)

The potentials 0, and 0, must be written similarly. It turns out however that the

equations which are obtained from the variation of 0, and 0, allow for the trivial

solution 4, = 0, q,= 0 (i.e., El = 0). In this analysis, we will adopt the TE

polarization, and simplify the presentation by imposing it in the action already at this

point. The representation of the space charge wave is not eikonal, but uses the fact
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that space charge wave is nearly stationary (if side-bands can be neglected) in the

ponderomotive frame, moving with the bunched electrons. It is therefore given the

form

Oc =-- c(0, xi, z) and Ac =- Ac(O, xi, z), (13)

where the phase of the ponderomotive field is defined as

0(t, z) = O6(t, z) + 9,(t, z), (14)

from which

dO = (k., + k,)dz + (ww -w,)dt. (15)

After these substitutions, the action still includes betatron oscillations due to field

inhomogeneities. For tractability however, we neglect here betatron oscillations and

perpendicular particle motion due to space charge wave. Perpendicular electron motion

is thus dominated by oscillation in both wiggler and radiation fields. It is easy to see

that these approximations amount to replacing in the particle lagrangian the squared

velocity term lp1 - A 1 2 by the expression IA, -- As8 , i.e., the squared velocity due

to oscillations.

The particle action is now

S, = dz{( - ys' - Oscs') - (1/2y) Re[1 + la l2 + la,12

+ 2aw -a, exp(ie) + 2a,* - a, exp(-i9. + i6,)]

(16)

where the fields are evaluated at the particle position. The resonance condition is

dO(s(z), z)/dz = (k, + k,) + (w, - w,)s' = 0. (17)

Neglecting now the rapid oscillations along z, (exp(-i9w + i,)) -: 0, one gets the final

form of the particle action :

Sp = dz{y - ys' - 0,,s' - (1/ 27) Re[l + law 2 + a., 2 + 2aw -as exp(iO)] . (18)
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When the fields are substituted in the field action, and when rapid oscillations due

to the different wavenumbers are averaged out, the field action turns out to be the sum

of three terms,

SM = (SM). + (SM), + (SM)Sc , (19)

quadratic in the wiggler field, radiation field, and space charge field respectively

(Sm)w = (1/87r) Re dx 1 dt dz (w2 - k2 )Ia., 2 - |V 1 x a,,2

aa* Oa.*-2i kw a, . w + 2iwa. }

(20)

(SM), = (1/87r) Re dxi d dz (w - k)a 8 I 2 - V x a, 2

__* -w a*-2ika, -9 a.* 2iwL4;a, -a 7t)

(21)

and

(Sm),c = (1/87r) dxi d dz (w - W,) + 2

+ (kw + k, )2 _~s ~c 2) -V x A.c12

(22)

The action describing FEL's is therefore formed from Eq. (5, 18-22).
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C. Free electron laser equations.

The particle equations are obtained by varying S, Eq. (18) with respect to s(z) and

y(z), taking into account the fact that the fields are evaluated at the particle position,

i.e., at t s(z). One gets, using 69 = (w, - w,)bs,

bS, = dz (1 - s') + (1/2/ 2 ) Re [1 + Ia,, 2 + a, 12 + 2aw -a, exp(iE)] &Y

+ dz y' + (k. + k.) aokSC+ ac + (I/Y)(Uw - W,) Im [aw . a, exp(iO)]f ae 9

- (I1/2-y) Re a(Ia., 12 a. 12) +- 2 a(aw - a,) exp(i@) bs.

(23)

Extremization of the action over particle trajectories leads to the equations for the

particle phase

s 1 + (1/2-y) Re [1 + law 2 + a, 2 +-2aw . a exp(iO)] , (24)

and for the particle energy

(1/7)(w, - ww) Im [aw - a, exp(iO)] - (k, + k,) -

+ (1/2-y) Re (I as2 + law 2 ) +2 a(a, - a,) exp(iO).

(25)

The field equations, on the other hand, are obtained by variation of SM and S,

(19, 18) with respect to the electromagnetic potentials.

First, vary the wiggler field by baw. One gets the following expressions,

bS6  = (1/47r) Re dx d dz (w2 k2)a., - V1 x (V 1 xa.)-C*

a aa - w a (wa,) -aa

(26)
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and

SdN Sp = dx_ di dz ReI dN(-1/y)6(x± - r±)b(t - s)

[a, + a* exp(-iO)] - a* .

(27)

Stationnarity of the sum of Eq.(26) and (27) generates the paraxial equation for am,

0 0
(w2 - k2)a, - V1 x (V 1 x a,,) + ik-, a + i (kaw)

- ZLw- aw - -(wwaw)

W2(xt, Z) a K,,+ e)) a* .

(28)

Then, vary the radiation field by L,. The equations for the radiation field are

entirely similar to the previous ones, and one gets:

(w - k2)a, - V1 x (V ,

+ zw, a,at + i (w,a,)

=w (xI, tz) a-,

0
Is + i (k, a.)

Oz

+ Kexp(-iO) )a-
+YS , W

Finally, variation of the action with respect to the space charge wave field is com-

posed of

ESm = (1/47r) I dx 1 di dz (wW - ws)VIse -oe
{a

+ [(wm - - (k, + k,) 2 ] cASo
abAS C

0
x (V 1 x A,c) - 6Asc

+ (1/47r) dx_ dt dz VI (W.

+(kw+k,)2 0C SC
a®9 (90

- 8) A + Vj4c OSc
- 9 00

(30)
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and of

dN Sp = dN dz Ssc} -(1/4,r) dx dt dz w 2 0p. . (31)

The equations for the space charge fields are therefore

[(kw + k,) 2 _ _ 2 A,c - V- x (V 1 x Ac) =( - w3)V± a c (32)

and

(k,,, + k,) 2 + V-L VISc + (w, - wS) ,c ] 2. (33)

Note that 6A,c does not appear in 8S,, only in the vacuum field action 6SM : the space

charge wave is 'electrostatic' in the ponderomotive frame moving with velocity (w -

w,)/(kw + k.), and A,, only results from a Lorentz transformation to the 'laboratory'

frame, when one takes into account the gauge A2 = 0.

To eliminate A,c from the equations, take the Fourier transform in 0. With

WO = (0m exp(imO) (34)

and

. c= (kc)m exp(ime), (35)

Eq. (32) becomes

A., = XmV-(Okc)m exp(imE), (36)
m:#0

where

XM - (w W,) where m 5 0. (37)
S m[(k,, + kq)2 _ (Lo _W,2]

Substitution in Eq. (33) gives

Vi(q4sc)m (Wjo)m(X1)
m 2(08C)m A O-x (38)

(ku, + k,) 2 - (U, - .,) 2  (k, + k,) 2  (

where the denominator can also be written as

[(kw + k,) 2 (w ) 2 ]- = (kw + k,)-2. (39)

When u, = 0, the space charge equation (38) reduces to its expression for conventional

FEL 8,42
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III. PUMP DEPLETION

Pump depletion occurs because of scattering of wiggler field photons by the electrons.

It is calculated here in the one-dimensional approximation.

A. One-dimensional Equations

The one-dimensional equations are obtained by setting V 1 = 0 in equations (28, 29); in

this section, the wiggler and signal field are chosen to be linearly polarized TE modes.

Because of the uniformity in the perpendicular directions, it is possible to choose the

wavevectors appropriately (k, and k, deviate slightly from the vacuum values w, and

w)., so that the paraxial equations simplify as follows, for the radiation field,

8 8/exp(-iO)\
2ik, aas + 2iw, -a, = wL 2 ( ,) a*, (40)

19Z at P YS1

and for the wiggler field,

2ik, a, - 2i,1  aw = K0 ,exp ) a*. (41)
az at -YS1
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B. Steady State Beam

For a time-invariant electron beam, consider stationary solutions, and set 0/t = 0 in

the previous equations. It can be verified directly that usual conservation properties

are satisfied.

Photon conservation is obtained by taking the imaginary part of, symbolically,

a* x (40) - a*, x (41). One gets the relation

(N, - N.) = 0, (42)

where the radiation and wiggler field photon densities, N, and N, are proportional

to k, Ia, 2 and ke lan,2. Equation (42) means that the divergence of photon fluxes

(propagating in opposite directions) is zero, recovering thus the result that the FEL

interaction verifies the conservation of photon number. The same property can conve-

niently be expressed in terms of radiation energy densities P, = Nw, and P. = N"W..

It takes then the form

P, =-- P. . (43)

Energy conservation follows also from (40) and (41) : the. imaginary part of a;w, x

(40) - a*,, x (41) yields

a awa, exp(iE)) 2 0 d-(P. - P') -Im [w;O(, - 7wz) I -( o& (4 )

where one has used the particles energy equations

-- WW Im (aa, exp(i0)). (45)
dz y

Equation (44) shows that the divergence of the Poynting vector equals rate of energy

input due to the FEL interaction.

It is now possible to evaluate the depletion of wiggler field for a steady state

amplifier. Assume that the radiation field increases exponentially, and therefore that

the photon number has the form

N, = Nf exp[-2F(L - z)]; (46)
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photon conservation (42) implies that

N, = Nf - Nf exp(-2F(L - z)), (47)

where Nf and Nf are the photon number at the end of the interaction region. As a

result, the depletion rate is maximum at the end of the interaction region, and occurs

on a length (2F)-1 < L, which can possibly be much shorter than the length of the

whole device. This is illustrated in Fig. 1.

C. Pulsed Beam

An alternative picture emerges when the electron beam is emitted in short pulses

of length Lp. As the pulse propagates and as the radiation field grows, the pump

depletion increases along the device, to reach a maximum at the end of the interaction

region. The wiggler equation (41) is simplified with the following assumptions: first, the

pulse travels in the z-direction with uniform velocity v, and consequently WO(z,t) =

wOj(vt - z); second, the FEL interaction strength for an unsaturated beam is estimated

to be (exp(-i®)/ys') oc. 2ia,, a,; third, the radiation field grows exponentially and

travels along z with no slippage with respect to the electron pulse, i.e., is also of the

form a, 2 = exp(2Fz)f(vt - z), where f is some function depending on the relative

position with respect to the head of the pulse. Thus the wiggler equation becomes

2ik aa - 2iw, a = S(vt - Z)ak ) e2rz, (48)
w9z 9t

where S depends on the pulse shape, and with boundary condition a, = awo for z > vt.

This equation can be solved in two limits. It is useful to perform a change of

coordinates, from (z, t) to (z, (), where the relative coordinate ( = vt - z is the distance

with respect to the head of the pulse. In the new system of coordinates, Eq. (48)

becomes

k, - (kw + vw.) a = S(()e (49)
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The first case is the limit of long pulse, when FL > 1 and when /O( < 8/z.

Equation (49) reduces then to

2ikw _a = S(()aO)e2r2 , (50)
oz w

from which one recovers the steady state solution (47).

The second case is the limit of short pulse, when FLp < 1. One has now O/az <

,/9(, and the solution of (49) is

(0) 0)exp(2-rz) C
a,,,(z, )~~aw" aw" S((')d(' (51)2i(kw+vww) f0

It results that the depletion increases exponentially, like exp(2Fz), as the pulse propa-

gates. Is is maximum in the last e-folding, as shown on Fig. 2. In the three-dimensional

analysis, we shall see how large depletion rate localized to one Rayleigh length reduces

the field only locally, within the electron beam, therefore with increased result.

IV. PUMP DIFFRACTION

In this section the diffraction of the wiggler wave induced by the electron beam is stud-

ied by representing the wiggler wave with a slowly varying amplitude and phase. This

permits examination of the physically important terms which govern the diffraction of

the wiggler field.

The derivation begins by taking the dot product of Eq. (28) with a*, and finding

80 0
(wa - ) - * V1 x (V 1 x aw) + ikwa* a + ia*, (kwa)

iwwa*. aw - ia* - (wa)

25 exp(-iO)
= 02(xL, t, z) ,law| +) a*, - a*:.

(52)
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Multiplication of the imaginary part of Eq. (52) by w, results in

V 1 Im[a*, x (VI x a.)w,, + Re[kewa,.a* - a, + wwa*, (k.a.)]

- Re[w2 a* . a0  + wwa* - a

= - o(xI, t, z)wW Im expo) aw - a,.

(53)

Equation (53) can be interpreted as a relation between the divergence of the Poynt-

ing vector, derivatives of the energy density, and the current sources. The first term of

Eq. (53) is the divergence of the radial Poynting flux, and the second and third terms

correspond to kwa/az - w.(/(t acting on the energy density. On the right hand side

of Eq. (53) are the synchronous current sources.

The Poynting vector can be simplified by expressing the complex fields a,, a,

in terms of real, slowly varying, aLmplitudes and phases. With a choice of helical

polarization, the slowly varying amplitude and phase of the wiggler and signal fields

are defined by

aw= a- ( + i4)eiq6' ,

(54)

Using the relation (i + i9)(i - iy) =I + is x Ii, where I_ is the unit tensor perpen-

dicular to i, it can be shown that

12 1
Im (a* x (Vi x a,)) = -a V , + -V 1 x (au ) . (55)

Combining Eqs. (53) and (55), the amplitude of the wiggler wave is seen to satisfy

-2 . k V i -kk aak - kwa 2 k + k 2w# a + kwa a

= wO(x±, t, z)kK sin( , +O + 0,) aa,.
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(56)

The real part of Eq. (52) yields an equation for the evolution of the wiggler phase.

With the circular polarization, one finds

(Pwo- k,)a + V, -Re(a*, x (V 1 xa.))- lvi xa.l 2

- 2kwa2 Ow5 2uwaw9O

O[a1= 2 2fitz + cos( + OW + 0.,)
awa. .

(57)

With the identities

1 21
vi x awl 2 = Viaw2 + -aw lViO 2 + a,(Vw x Viaw) - i2 2

(58)

and

Vi - Re(a* x (V1 x a I) IV-aw12 + IawV aa(V\47 x (59)2L 2L0 Law 5)

Equation (57) can be rearranged to yield, after division by 2a2 k ,

w a
kw at

(w2- k 2)

2k2,
w 0(xw, t, z)

2k 

2k2OP(x-L, t, z)

2k2

42aw

K cos(E + Ow + 4) a,

\8 )s |a.

The equation for the slowly varying amplitude of the signal field can be derived

from Eq. (29) in a similar manner to the derivation of Eq. (56). The result is

02
-V_ -(k,a2Vq$,)-k 2 a a - k,a 2 0 k -

- wP (xi, t, z)k,

k~w, a a2- ksa2 49,S at S Ot L

sin(O + 0, + 0.,) awa

(61)
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1 0
kw Oz

IViO. 2

4k2
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The phase equation for the signal field is similarly found to be

1 W, - (PS - k ) O w(x, t, z) 1 Via, _LV .,2

( + )- 4 = _ _ _ ___ _ _k, az k, 2k2 2k s' 4k2 a, 4k2

W o(xi, , z) /cos( + . + q,)\a.

2k \

(62)

When, as is usually the case, the wiggler and signal field have fixed input frequencies

and wavelengths, the terms in 0.,/0t or 0k,,,/z do not appear in the amplitude

and phase equations.

In the following discussion of the order of magnitude of the current sources the

beam is assumed to be steady-state. Therefore, any time variation of q, and 0, is

neglected.

The phase shift induced during the FEL interaction (the term proportional to

(aw/a,) (cos(O + 0, + qw)/-ys') in Eq. (62)) has been shown to produce optical guiding

of the signal field. The FEL interaction causes a wave phase shift which slows the

wave phase velocity inside the electron beam. The signal wave can. then be regarded

as propagating along an optical fiber whose index of refraction is that produced by the

FEL interaction. The signal field has a axially invariant transverse profile, and thus

does not diffract away from the electron beam. In addition to the FEL-induced phase

shifts, which are driven by the resonant electrons which bunch in the ponderomotive

potential, there is also a phase shift from the unbunched electrons. This phase shift

(the term proportional to (1/y's') in Eq. (62)) tends to diffract the signal away from

the electron beam, but it is much smaller than the refractive phase shift which results

from the FEL interaction.

Transverse wiggler field profile modifications also occur. From Eq. (57), the phase

shifts of the wiggler wave due to the electron beam are

1 W2(x-, t, z) cos(O + . + O.,) a,
2k = (63)

k"(z 1  2k YS' a
FEL
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for the FEL-induced phase shift, and

10 _ w2 (xi, t, z) /i
k0O =k t . (64)k, 19z 2k2 81s

e - beam

for the usual electron beam phase shift.

The ratio of the FEL-induced wiggler phase shift to the unbunched beam phase

shift is approximately a,/aw < 1. Thus the FEL interaction, which would tend to

guide the wiggler field, exerts a smaller influence on the transverse wave profile than

the beam would experiences propagating, unbunched, through a an electromagnetic

wave. This is in contrast to the signal field, where the ratio of the FEL-induced phase

shift to the unbunched beam phase shift is approximately a,/a, > 1. Thus the wiggler

field is defocused by the oscillating electron beam.

Any transverse variation of k, across the electron beam might result in a loss

of FEL gain. Indeed, a major motive for utilizing electromagnetic wigglers is the

separation of the scale for transverse wiggler variation from A, and the beam radius,

re. The electron beam induces a phase shift, Ow(t,x±,z), with an amplitude that

depends on the current density. When the electron density can be assumed to vary as

Vt - z, the wiggler phase shift becomes ow(vt - z), and its contribution to the evolution

of the ponderomotive phase is seen to vanish, since +4./Oz + s'a0k/0t = 0, with

S' = 1/v.

In the following section the wiggler field profile is solved for perturbatively. From

the real and imaginary parts of the field perturbation the pump depletion and induced

phase shifts are estimated.

The relative importance of the FEL bunching on the wiggler and signal fields can

be seen by forming the ratio

Re(n, - 1)IFEL k -8Dw FEL a2 k 2 B2
S 3 S(65)

Re(n, - 1)IFEL sFEL al - B(6

where n, and n, are the indices of refraction of, respectively the wiggler and signal

fields. Thus the ratio of the indices of refraction scale as the ratio of energy densities,
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which can be of order unity. A better figure of merit for guiding properties of the beam

is, however, the fiber parameter V 2 = k2r (n - 1). From Eq. (65),

Re V,2FEL a2
= - <1

Re V 2 FEL aw

where V, and V are the effective fiber parameters for, respectively the wiggler and

signal fields. Comparing the dominant diffractive term for the wiggler, that from the

unbunched electrons, with the usual optical guiding term for the signal field, one finds

Re VIe-beam a,

Re V 2 IFEL

which is still small compared to unity. Overall, due to k, < k,, the transverse profile

of the FEL signal wave is influenced by the electrons more than is the profile of the

wiggler wave.

V. SIMPLIFIED MODEL OF PUMP DIFFRACTION

A complete study of the transverse wiggler field profile would require the numerical

solution of Eq. (28) for the various electron beam profiles and wiggler geometries.

Physical insight may be gained by analytically solving a simpler form of Eq. (28) in

which the FEL interaction is neglected. Representing the dielectric modification due to

the unbunched electrons with the coefficient S(vt - z, x 1 , z) - 20 /(-ys'), and assuming

vacuum propagation (w, = k,) and no field tapering, one has

-V 1 x (V± x a,) + 2ik, a - 2iu-a = S(, xi, z)a, (66)

where ( vt - z is the distance relative to the head of the pulse. Equation (66) is

simplified further by the choice of linear polarization, the approximation V 1 -a, = 0,

and the expansion a = af +aw ((,x1, z)+..., where the zero'th order wiggler field,

aw, has been assumed to be a plane wave. With the above assumptions, the solution
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for aw, the nth term in the expansion of a,, can be found iteratively, by approximating

the right side of the equation by S a$1. To first order,

2a2 + 2ikw- a() - 2i(kw + ow) a() = S(C, xi, z)ao) , (67)

with the wiggler field perturbation vanishing in front of the beam, i.e., a) 0 for

( < 0. Equation (67) may be solved exactly by Laplace transform method, for a profile

of the form

S((,xw,z) = So(x.)H(()erfc(a1 /2/2(1/2 ), (68)

where erfc is the error function, H(C) is the Heavyside step function, and where a

determines the rise time of the electron pulse.

The calculation may be found in Appendix A for the analysis in a slab geome-

try, where there is no explicit y-dependence in the sources or fields. The results of

Appendix A are summarized below.

With a radial profile

so() so if xI< r, (69)

one calculates the first order correction to the wiggler field a2j at the center and edge

of the beam, x = 0 and x = re. The diffraction of the wiggler field causes both a

reduction in field amplitude within the beam, given by Rea('/a(), and a radially

dependent phase shift, approximately equal to Im a$P/a2). The results are shown on

Fig. 3.

For distances far back in the pulse, asymptotic solutions are found in Appendix A.

It is shown that

a()(x, C - oc) = 0, (70)

i.e., that the wavenumber perturbation in the beam decreases tends towards zero.

Although the total phase shift and amplitude reduction keep on increasing,

a W)(x, ( -7 cc) -+ cc, (71)
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the relative phase shift across the beam tends to zero, while the amplitude reduction

across the beam remains finite,

(r,, oo) -a)0 Soar . (72)
2

Since

a a
a(,)( , t, Z) - a,') ( , (73)

az , (

equation (70) shows that far back in the pulse the wiggler adjusts to the electron beam

in such a way that these gradients vanish. For pulses with L, >> = (kw + vww)rf,

the variation of <0., across the beam is insignificant except at the front of the pulse

(< Co).

Even for high brightness accelerators, we estimate that this amplitude reduction

is small, less than 0.5%.

VI. CONCLUSIONS

An action principle formalism has been developed to study the self-consistent evolution

of the wiggler and signal fields. The equations are derived from a total lagrangian, which

includes the relativistic particle lagrangians and the electromagnetic field lagrangian.

The action is then specialized for the FEL to include wiggler, radiation, and space

charge waves, and is averaged over the wiggler period. This method requires only

one averaging, while in the standard treatment each of the equations of motion must

be averaged separately. This formulation is compact and automatically self-consistent.

The averaged action can then be varied to yield the equations of motion for the particles

and fields.

The self-consistent interaction with the wiggler wave is found to complicate the

FEL dynamics. The pump can suffer depletion, reducing a,, and it can suffer diffrac-

tion, generating an effective energy spread. In both instances the FEL performance is

not substantially degraded.
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Other questions remain to be studied. Many electromagnetic wiggler designs en-

vision using a high Q cavity. Each time the beam of an RF linac passes through the

cavity, the field undergoes a slight phase shift. The cavity is thus momentarily detuned,

but must recover before the next RF pulse arrives. There are severe constraints on the

mode purity in the cavity, and the periodic phase shift and depletion induced when

the beam propagates through the wiggler may provide a mechanism for mode coupling.

In the analysis in Secs. III-V, the depletion and diffraction were evaluated separately.

This restriction can eliminated by numerically solving the coupled equations of motion

for the slow variation of the wiggler and signal fields.

The pump depletion and diffraction during the FEL interaction is a rich set a phe-

nomena which needs further investigation as part of the quest for compact, inexpensive

free electron lasers.

ACKNOWLEDGMENTS

Our interest in the Lagrangian formulati6n of the FEL began while w6 were at the

Lawrence Berkeley Laboratory. We thank Allan Kaufman for his encouragement and

interest in this subject. We wish to acknowledge the generous hospitality of Saul and

Amy Cohen during the realization of this project. This work was supported by the

Cornell College of Engineering and the Office of Naval Research.

26



APPENDIX -

In this appendix, we solve the wiggler field equation, when a pulsed electron beam

propagates and diffracts the electromagnetic wave. Equation (67) is, in the slab ap-

proximation and in the short pulse limit (0/az = 0),

a2a
-a(') - 2i(k, + () a') = S((, x)a4) ,(74)

aX 2 'WW

where the pulse is an error function rising on a scale a in the axial direction, and a

step function radially bound to re,

/ 1/2

S((, x) So(x)H(()erfc 2(/2 (75)

SO(X) =So, if x<r, (76)
O J 1 0 , if Jx >r,

The boundary condition is such that the wiggler field is undisturbed ahead of the

electron pulse, i.e., a = 0 for ( < 0.

The solution proceeds by Laplace transform in , naming p the new Laplace vari-

able. Then aw2)((, x) is transformed into a(p, x), and Eq. (74) into

a21
a - 2i( kw + vw)pa = So(x)a) ! e- v . (77 )

This differential equation in x can be solved, with the condition that a(p, x) vanishes

for large x. One finds

a(p, x) = - Soa _ Ar(ech(Ax)) e-V', (78)

for JxI < re, and

(p,x) = -Soa sh(Ar)e-xe- v/, (79)pA 2

for x1 > re, where one has defined A(p) [2i(k. + Vw.)p]1/ 2 with Re(A) > 0.

In particular, at the beam center (x 0) and edge (x re), the solution gives

a(p, 0) = - _ ( -r,) - (80)
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and

a(p,re) = - Soa- 2 e . (81)

Replacing A by its value and performing the inverse Laplace transform yields

-SOa_ _ dp PC e-VM e-(V'+vlM)v) (82
2i(kw + vw.) 2r 2 (82)

at x= 0 and

-Soa) d e~ e- _____ rp_
a2lk 1.=+ f d ePC (83)

2i(kw+vww) 2ir 2p 2  2p 2

at x = re where (O = (kw + vwu)r 2 equals, for v c and k, = Wi, four times

the Rayleigh range of the wiggler wave computed for a focused spot size equal to the

electron beam radius.

The 1/p 2 can be eliminated by differentiation and the integrals may be performed

to yield

02 a()So a (.Va

2 .0 =4i(kw + vw)V/r/ 2  (84)
'((4

x (e-/4C - 2Co)2/4)

and
02 -Soa (O)/

41 (kw + .- w~v,, , V(85)

x e-"/4C - V/a + 2 2zCo (,(-+2 2io)2

The solution of these equations is shown on Fig. 3.

Asymptotic values are obtained using the following property of Laplace transforms:

lim pf(p) = Fl= , (86)
p-+0+

where f(p) is the Laplace transform of F((). Applied to F = al), F = al' x~r, -

a2j| =o, and F = 0a('/0( respectively, this relation yields

aw)(X, +o) = lim pa , = , (87)
P- 0
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)(r", - oo) - a*)(0, c) = lim p(al=,r - axe=o) =a (88)
2 (88)1

and

-a)(x, oc) =limp 2  0. (89)
( wp- 0
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FIGURE CAPTIONS

FIG. 1. Wiggler field amplitude versus position in a steady state, one-dimensional

model of the FEL; the depletion occurs over the last 7- 1 of the interaction

region, where IF is the signal growth rate.

FIG. 2. Wiggler field amplitude versus position in a pulsed one-dimensional model of

the FEL; the electron pulse and wiggler profile are shown at two different times

tj and t 2 , as the pulse propagates through the device. Maximum depletion

occurs at the end of the interaction region.

FIG. 3. Wiggler field perturbation in a three-dimensional model of the FEL. The

electron pulse shape is shown in Fig. 3a, where C measures the distance behind

the head of the pulse and is normalized to the pulse rising length a. Phase shift

Im a,' /a4), normalized to aSor2/2(o, as a function of ( is plotted in Fig. 3b,

at the beam center (1). and beam edge (2). On the same figure, the amplitude

reduction factor Re aw(' /aw(' is identically normalized, and is plotted at the

beam center (3) and beam edge (4). In Fig. 3b, the beam radius is chosen

such that (o = 2a.

33



I I I I I I ~ I I

L
Z

Fig. I

(0)
ow

aW

z

0

---



t = t2t =t

Z

Fig.

aw

e

2



1.0r-
(a)

0.5-

0.0-

1.0 _ (b) (

((4)

0.0

(3)

-1.0
0 I 2 3

Fig. 3


