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ABSTRACT

A new one-dimensional collisionless kinetic model is developed for the flow of ions to

probing structures in drifting plasmas. The cross-field flow into the presheath is mod-

elled by accounting consistently for particle exchange between the collection flux tube

and the outer plasma. Numerical solutions of the self-consistent plasma/sheath equa-

tions are obtained with arbitrary external ion temperature and parallel plasma flow ve-

locity. Results are presented of the spatial dependence of the ion distribution function

as well as its moments (density, particle flux, temperature, and power flux). The ion

current to the probe is obtained and the ratio of the upstream to downstream currents

is found to be well represented by the form R = exp(Kud), where K ~ 1.7 and uA is

the drift velocity in units of I(T/mi). The results are in good agreement with compa-

rable recent fluid calculations but show substantial deviations from other models which

ignore particle exchange out of the presheath. No evidence is found of the formation

of shocks in the downstream wake, contrary to the implications of some fluid theories.
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I. INTRODUCTION

The electrostatic probe is one of the fundamental techniques for measuring the prop-

erties of plasmas. In recent years it has found increasing use in fusion research as well

as in more traditional applications, since it has been realised that the edge conditions are

of great importance for magnetically confined plasmas. For example, the generation of

impurities from the interaction of plasma with material edge structures is a vital issue

for the achievement of clean and stable plasmas'. Also, edge conditions can influence the

central energy confinement directly, for example in determining the difference between L

and H mode2

One of the most important current applications is the diagnosis of scrape-off layer

plasmas which are flowing. Significant ion drift velocities can arise in the plasma edge

region of tokamaks and other magnetic confinement devices, for example because of scrape-

off flow toward a divertor plate or limiter surfaces". Such plasma drifts may play an

important role in confinement related phenomena such as impurity transport, fluctuation

levels, etc., and in the theory of divertors and limiters in fusion plasmas4 .

Many measurements have shown large asymmetries in the ion saturation current drawn

to probe faces parallel and antiparallel to the magnetic field5'. These appear to be caused

primarily by the presence of plasma flow along the field. When using diagnostic edge

probes, such flows introduce a complicating factor which must be accounted for in probe

data interpretation. More importantly, the asymmetry can be used to measure the flow

velocity provided that a trustworthy theory of probe operation is available. It is the

purpose of the present work to contribute to the establishment of such a theory.

In fact the physics of plasma flow to the probes used to measure edge plasma flows

is largely the same as that involved in the flows themselves. Thus the present theory has

relevance to the scrape-off physics itself as well as to probe interpretation.
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Another application to which this theory relates is the interaction of rapidly moving

bodies with plasmas.- This is, of course, a longstanding problem. Planetary objects in

the interplanetary plasma fall into this generic class. More recently, increased attention

has focussed on man-made satellites, particularly in low earth to ionospheric orbits. If

the objects are large then magnetic field effects can be important and in some cases the

present theory could be directly applicable. But some of the general features of our presnt

approach are significant even for the situation in which the magnetic field can be ignored.

Thus our theory may be applicable in part to many problems of the plasma 'wake' 7 -. The

upstream 'ram'10 tends to be less affected by the self-consistent electric fields and hence a

less difficult problem, from the plasma viewpoint.

The theory of probe operation in magnetic fields is notoriously difficult. Bohm1 1

obtained a criterion for stable sheath formation, assuming that ions are monoenergetic, and

inferred a weak dependence of ion current upon ion temperature for T < T.. This analysis

has become a standard part of Langmuir probe theory12 . However, his accompanying

analysis of particle collection took the processes to be diffusive in all dimensions and hence

excluded most situations of interest where collisions are unimportant for parallel flow.

Sanmartin13 performed an asymptotic analysis of particle collection by spherical probes

in a magnetic field for TilT. - 1. He concentrated on the electron collection and treated

ion collection as unperturbed by the magnetic field. Thus his theory, demonstrating the

blurred knee in current-voltage characteristic, is really only specifically relevant to cases

where the ions are not strongly magnetised. Laframboise et al" developed a theory of

a cylindrical probe with an arbitrary angle to a uniform magnetic field for a completely

collisionless plasma for arbitrary ion temperatures. The difficulty here is that cross-field

effects in most situations require.some form of collisions for their proper modelling.

Our theory is addressed primarily to the case where the magnetic field is strong enough

that the ion gyroradius is substantially smaller than the probing object. In this case ion
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collection across the field is diffusive even if the parallel flow is dominated by inertial

effects 12 . As a result, the quasi-neutral presheath region, where the acceleration of the

ions occurs into the sheath, becomes highly elongated along the field, until the cross-field

diffusion is able to balance the parallel collection flow. Since the perpendicular momentum

is unimportant in this process, it appears attractive to attempt to simplify the problem

by treating the presheath as effectively one-dimensional. One can then seek solutions

satisfying Poisson's equation and the Boltzmann equation in the parallel direction, treating

the perpendicular diffusion equation as a source term in the parallel equations.

Theoretical treatments of the one-dimensional plasma sheath have a long history.

Tonks and Langmuir' 5 derived an integral equation for the potential variation in a col-

lisionless plasma with a Boltzmann distribution of electrons. Harrison and Thompson'"

found an analytic solution for the plasma region and demonstrated that the sheath edge

potential and current density are independent of the spatial variation of the source term

when ions are born with zero energy.

Emmert, et a.l 17, extended their analysis to the case of finite ion temperature.

They chose an energy-dependent source distribution function which would give rise to

a Maxwellian ion distribution function if there were no electric field in the plasma. Bissel

and Johnson18 have solved same problem with different ion source distribution, corre-

sponding to ionization of a Maxwellian distribution of neutrals. These two treatments

give rise to noticeably different results, thus indicating the importance of the assumed

source distribution. Besides, neither treatment gives results for the important situation of

a plasma with parallel flow, where distributions with an appropriate flow velocity should

be used.

Stangeby" has applied the kinetic calculation results of Emmert et al directly to the

theory of magnetised probes by assuming that cross-field transport can be modelled as a

source in the one-dimensional parallel equations. He has also given20 a one-dimensional
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fluid calculation which proves to be analytically integrable even with plasma flow incor-

porated in the source. In either case the ion source adopted corresponds to 'birth' of ions

within the collection region considering only the cross field transport of ions 'into' the flux

tube.

Recently Hutchinson2 1 has investigated a fluid approach that uses a more physically

appropriate source, accounting not only for ions moving 'into' the collection region, but

also for ions moving 'out'. In the context of a one dimensional model this implies a sink

of ions characteristic of the inner presheath as well as a source of ions characteristic of

the external plasma. As Hutchinson shows, this modification corresponds to adopting a

realistic value of ion viscosity rather than making it effectively zero, as Stangeby's approach

does. In a further study 22 , Hutchinson has explored the effects of adopting different values

of the viscosity and shown that the results of Stangeby are in reality a singular case, not

relevant to any finite viscosity. In addition, this latter work includes a two-dimensional

calculation which shows excellent agreement with the one-dimensional approximation.

These latest fluid analyses offer a substantially more accurate and reliable basis for

understanding the interaction of probes with flowing magnetised plasmas. However they

cover only the subsonic regime and approximate the ion energy equation in a way that is

rigorously accurate only if the ions are isothermal, which they usually are not. Naturally,

also, they provide no information on the ion distribution function or related important

quantities such as heat flux within the presheath.

It is the purpose of this work to analyze the problem by using a one-dimensional

collisionless kinetic analysis but accounting correctly for the diffusive nature of the ion

source. In this way we obtain ion distribution information and provide an alternative

formulation to compare with the fluid calculations. We find in general very satisfactory

agreement with Hutchinson's fluid calculations at the subsonic plasma flow speeds for

which they are available. In addition the present model gives clear results well into the
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supersonic flow regime.

In section II, we set up the kinetic model which contains 'transport' source terms.

Section III deals with the numerical method used to solve the plasma-sheath equation. In

section IV, we present and discuss our results which, in addition to the ion distribution

function, include ion current, temperature, fluid velocity, density, power flux, and ratio of

upstream/downstream current. Potential variations are also included. Section V gives our

conclusions.

II. MODEL

A) GOVERNING EQUATIONS

The one-dimensional governing equations of ions in the presheath (including the

sheath) can be described by the Boltzmann equation, which is given by

(g+ v. + a. )f(z, v., t) = Cf + Sf,()

where f(z, v., t) is the one-dimensional ion distribution function, z is position along the

magnetic field, v. is the parallel velocity of ions, a. is the acceleration of the ions governed

by the Lorentz force, Cf is the collision operator, and S1 is the volume source of ions.

Assuming steady state(8/t=0), and ignoring collisions(Cf=0), the Boltzmann equation

can be written as

o q d4bO
(V, 0 q do )f(z,uv) = Sf, (2)

Here m, q,and 0 are ion mass, ion charge, and electric potential, while Sf will be taken as

the ion source due to cross-field transport.

The energy equation, governing the phase space orbits, is

1mV2 + q4(z) = E, (3)
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where E is the constant total energy.

The electrons are assumed to be isothermal, described by the Boltzmann relation:

n,(z) = nee(z)/T, (4)

where n,, T. are electron density and temperature, and subscript infinity refers to values

outside the presheath.

The electron and ion densities are related by Poisson's equation, i.e.

d2 1 -Tyq f(Z, v) d, - en, (z)]. (5)dZ2 
= 47r f''

The expected variation in the plasma potential and corresponding orbit is shown schemat-

ically in Fig.1.

The cross-field transport is considered to be governed by a frequency W(z, v) which

gives the rate at which particles are exchanged between the presheath and the outer plasma,

so the source due to vertical transport becomes

S1 = W(z, v)[f.(v) - f(z,v)]. (6)

The the first term of right hand side represents the ions entering the collection flux tube

from outside. The second term is the new term that we are introducing. It represents ions

being exchanged out of the collection flux tube. The rates of these two processes are taken

to be equal, representing random migration of ions in either direction. The rate is related

via

D
W ~ D, (7)

to D, the anomalous cross-field diffusion coefficient.

B) NONDIMENSIONALIZATION
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If we assume that W(z, v) is independent of v, the equations can be nondimension-

alized by using the following transformations. We define a type of ion acoustic speed,

ignoring the ion pressure, by

V- ZTe 8V, -*- (8)

where Z = q/e, and then define a characteristic length as

_Va= . (9)LaaW(z)'

This is the characteristic length of the presheath, but in general varies with parallel position

if W does. Then the nondimensional forms of the parameters are

fJ W(z)dz v

_eO E
- , (10)

(z) ' g(,U) =n, f(ZV),

where AD is the Debye length. In terms of these parameters the equations become

8 d778
(U + )g(Z, U) = g. (U) - g(x, U), (11)

2
C= -17, (12)

A2(X) = Z g(x, u)du - e-"'"). (13)

If the external ion distribution is Maxwellian with temperature T, shifted by a velocity

Vd, then

ZTe
goo(u) = exp[-ZTe(u d) 2 /2T]. (14)

V2 iT
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The boundary conditions on the distribution function are

g(x =O,u > 0) = 0, g(X = oo, u) = g.(u), (15)

which means that the probe has a perfectly absorbing surface and the ion distribution has

Maxwellian form outside the presheath. Those on the potential are

?7(x = 0) = i, (x = oo) = 0. (16)

The operator of the Boltzmann equation (11) can be written as

0 d7i d77 8 a d7 d77 a d 7 D
UX + cidx9 Tx(u5 + 5) =7- (5j+ Fu d. Du

where D/Du is the convective derivative along the orbit of constant total ion energy. Then

the kinetic equation is

Dg _1Du dt/d g-(u - gXz, U)J.. (17)=u dn/dx *

Since the ratio(A) of the Debye length to ion collection length is typically << 1, very

fine resolution is needed near the sheath region. To provide this without increasing the

number of mesh points excessively, we choose a non-uniform meshing along the z-direction

like that of Emmert et al". Putting

=s (6 > 1), (18)

Eqs.(11) and (13) become

Dg 6a6'
= g d/ (19)

A)2 [ 1 d2i? 6 - 1 d7
( )926-2 d2 - ,26-1 d] = p'), (20)
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with

p(s) = Z g(a, u)du - e (21)

Then we use a mesh that is uniform in a.

By taking the moments of the ion distribution we can get the ion density, fluid velocity,

current, temperature, and power flux as

n(x) = g(x, u)du, (22)

J(X) = ug(X, u)du, (23)

V(x) = J(x)/n(x), (24)

T(x) = [u - V(X)] 2g(., u)du, (25)n(x)J

P(X) = [!u2]Ug(X, u)du, (26)

These are, of course, in normalised nondimensional form.
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III. NUMERICAL METHOD

To solve the above equations, we guess an initial potential variation(7i). Along each energy

orbit(E,), velocity sets are obtained as

uij = 2(ej + 7), (27)

where i is the position index(l < i < Np) and j is the orbit(energy) index(1 < j 5 N,)

with a total of N, positions and N, orbits.

We obtain the ion distribution function along the orbits by solving the kinetic equation

with a semi-implicit method, i.e.,

gi+ij = pihijgoo, + [1 - (1 - 0)pjhi,]gj (28)
1 + Opihi,,

where

=i ui+1,, - i

and 4 is a mixing parameter. (If it is equal to 1, 0.5, and 0, the scheme is implicit, semi-

implicit, and explicit, respectively. We use 4 = 0.5 throughout our calculations). The

boundary conditions are

91, = 0, 9N,,j = goi,j- (29)

Because of the shape of the orbits and the fixed position grid, the velocity spacing

between adjacent points on an orbit is large near u = 0. In order to minimise the numerical

error which otherwise arises in the orbit integration, we introduce an additional point on

the orbit at u = 0. The value of potential there is appropriately interpolated between

the adjacent points on the position mesh. This greatly improves the accuracy of the

distribution function on the negative velocity side.
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We obtain the ion density by integrating the ion distribution over velocity space at

each position.

Since the Poisson equation(Eq.20) is an elliptic equation, we are able to solve it by

the successive over-relaxation method 24 for non-uniform meshing in z(but uniform mesh

in a). The scheme for the potential is

=+ (_W A1 2r_+ + (1 - wj)Bjq - wiCi7t+ 1 + wipi)/Bi, (30)

where

B= -2( )2

and

-1
Ai = Ci = Bj[1 + (6 - 1)sjAa/2].

2

Here pi is charge density at position i, w; is a generalized relaxation parameter which we

take equal to 1.9A, As = L/N,, where L is the total length of the flux tube, and P is an

iteration index.

For the quasineutral case (A = 0), Eq.(2.14) can be used to obtain the potential

directly as

+"= -Zln[nj(7')]. (31)

However, direct iteration schemes of this type are usually unstable2 s. Instead, a relaxation

scheme has been used,

7%+1 = 7 + wln(n,/ni), (32)

where w is a relaxation parameter, which we take to be 0.1.

We obtain self-consistent solutions for the potential and the ion distribution function

by iterating these procedures until they reach a convergence criterion
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where e is a small positive number.

After getting the self-consistent ion distribution and potential variation, the moments

of the ion distribution(density, flux, fluid velocity, temperature and power flux) are ob-

tained by Simpson's rule integration of the ion distribution over the non-uniform velocity

space.

IV. RESULTS and DISCUSSION

For the following results we use singly charged ions, Z = 1, non-uniformity of distance,

6 = 2.5, convergence criterion e - 10-', position mesh N, = 51 and energy mesh N, = 100.

The negative sign in ion fluid velocity, current, and power flux denotes motion toward the

probe surface.

A) Drift-Free Plasma Results

We give first some results when there is no ion drift(ud = 0) for a case with Ti = T,.

In Fig.2 are shown the variation versus nondimensional distance of the potential, ion

density, ion temperature, fluid velocity, power flux, and ion current. Fig.3 shows the ion

distribution at different potentials and hence positions. These results are essentially the

direct analog of those of Emmert et al " and Bissel and Johnson1". Because of our different

treatment, however, we find that the potential perturbation is noticeably larger in our case

and consequently the density falls off toward the probe more rapidly. These differences are

a consequence of the fact that our inclusion of exchange of particles out of the collection

flux tube constitutes a loss of momentum. In order to accelerate the ions to enter the

sheath at the sound speed then requires a greater potential drop than if the momentum

loss is ignored.

In Fig.4 we show the variation of the results with different values of the ratio of

Debye length to collection length (A). These show, as expected, that cases with small A,

e.g. 0.001, are indistinguishable from the quasineutral case, except actually within the
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sheath. This agreement is a useful verification of the two different Poisson solver schemes

used. The distribution functions shown here are those at the sheath edge. For the plasma-

sheath equations(A > 0), the sheath-edge is defined as the position where the ion fluid

velocity(v(i)) is the same as the ion acoustic velocity(C,) toward the probe surface, which

is defined by

C, = (T. + Ti)/mi, (33)

where Ti, is the ion temperature at the point where v(x) = V,(= 7T 7/m). For the

quasineutral case(A = 0) the sheath-edge is at the mesh-point adjacent to the boundary.

In our results hereafter we use either A = 0.001 or the quasineutral forms. These give

essentially identical results that are independent of the value assumed for the wall potential,

provided the wall is more negative than the sheath-edge potential (17, > 77,).

B) Drift Velocity Effects-Variation along the flux tube

We now give a series of results for T.. = T. with different drift velocities of the external

plasma. In Fig.5 are shown the ion distributions at various points along the collection flux

tube for four different drift velocities, u1 = -0.5,0.5, 1.4,2.0. We also give the potential

variations(Fig.6), ion currents(Fig.7), ion temperatures along the presheath(Fig.8), power

flux, and fluid velocity(Fig.9) for subsonic and transonic ion drift velocities, (-1.4 < ud 5

2.5). For cases with ions drifting toward the probe(uj < 0), the length of the collection

region decreases. Parameters other than temperature vary smoothly even with transonic

drift.

When U < 0, the temperature variation along the flux tube is monotonically increas-

ing. However with strong drift away from the probe, it is mostly decreasing. Intermediate

cases have some oscillations (e.g.,ud = 0.5 in Fig.9) along the flux tube. This kind of vari-

ation is common to both plasma-sheath(A > 0) and plasma equation(A = 0) treatments,
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and with different ion temperatures outside the presheath(T., = 0.2,1,2T,). These oscil-

lations are of uncertain physical significance and may in part arise from the discreteness

of our distribution function representation. Referring to Fig.5, one can see that there is

a balance between the acceleration due to the electric field, which draws the ions to the

probe, and the influx of ions with the external velocity distribution. If the external flow

is towards the probe, the distribution tends to narrow. If it is away from the probe, so

that the external and internal flow velocities are opposite, the distribution tends to get

wider. This change of the ion distribution along the flux tube with different ion drift

velocities(Fig.8) is what the ion temperature variation along the flux tube is showing.

Fluid treatments generally show singularities, which are interpreted as indicative of

shock formation, when the drift velocity exceeds the sound speed. In Figs.6-9 however,

there is no evidence of a shock for the transonic case and this remains true, as further

code runs have shown, even up to ui = 5. Substitution of our solutions indicates that

the theoretical necessary conditions for rarefaction shock 2 1- 2 T are not satisfied. Thus the

absence of shocks seems to be consistent, although we know of no a priori argument why

there should be none. It seems likely that it is the damping inherent in a proper kinetic

treatment, which is absent from the fluid models, that prevents shock formation. If so,

then results for transonic and supersonic velocities require a kinetic treatment such as ours.

C) Drift Velocity Effects-Sheath Parameters

For the purposes of interpreting the interaction of the plasma with material objects it

is the values of the parameters at the wall (material surface) that matter most. However

some of these values are dependent on the wall potential so it is difficult to give compact

general results for the wall value-. Adopting a wall potential that gives zero total electric

current (the floating potential) is a special value that is often adopted but by no means

generally appropriate. Our approach is to take advantage of the fact that for A << 1 the
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sources within the sheath are negligible. Therefore the values of the ion parameters at

the wall are related to those at the sheath edge via a trivial transformation: an energy

and flux conserving fall through a potential drop equal to the difference between wall and

sheath potential. This means, of course, that the wall ion flux is the same as the flux at

the sheath edge. Other parameters for any wall potential (more negative than the sheath

potential) can be calculated from the sheath values that we give.

Fig.10 shows ion distributions at sheath for Ti,, = T. with different drift velocities.

The similarities in shape for the different drift velocities are an indication of the fact that

the ions tend to flow into the sheath at the sound speed, regardless of external flow. The

different total heights show the density reduction when the external drift is away from the

probe.

In Fig.11 we show the ion current flowing into the sheath as a function of external

drift velocity, for three values of ion temperature. The dependence on Ti is noticeable but

not large.

The diagnosis of plasma fow via 'Mach' probes5 requires interpretation of the ratio of

the ion collection currents to the upstream and downstream faces of the probe. Therefore

in Fig.12 we give this ratio; it increases as judl and T. get larger. The values obtained

follow curves which are remarkably straight on the log/linear plot of Fig.12. Thus the ratio

can be expressed as

R = '' = eKud (34)
Jdown

where K is ~ 1.9, ~ 1.7, ~ 1.3 for Ti. = 0.2,1.0, 2.0T., respectively. For ion drift beyond

the range of Fig.12, up to 5, the ratio values were found to rise slightly above the straight-

line fits.

Fig.13 gives the other parameters of interest at the sheath edge. The sheath potential

is important in defining the sheath potential drop for given wall potential (relative to the
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plasma). At zero drift velocity, it proves to be only weakly dependent on the external ion

temperature, with a value quite close to the Harrison and Thompson 6 value, 0.854. For

subsonic ion drift flows(IudI < 1), the ion temperature at the sheath has smaller values

than outside the presheath. This is an interesting result because most previous fluid

treatments assume that there is no temperature gradient along the presheath. Our results

show that this is a bad approximation. The temperature appears to satisfy approximately

an adiabatic law: pn-'=const., with -y = 2 to 2.5.

For transonic ion drift away from the probe, sheath ion temperature increases again,

as we have previously discussed. This effect for large drift is stronger when Ti is small.

When the ion temperature outside the flux tube is 0.2T, the sheath temperature is larger

than that of 1.OT, and 2.OT, for the largest drift velocities.

As an example of a transonic flow case, the variation with position along the flux

tube of potential, density, temperature, fluid velocity, power flux, and current are given in

Fig.14 for Ti.=0.2, 1.0, 2.OT, with ud = 2.5.

Fig.15 shows an expansion of the temperature variations near the sheath and their

corresponding ion distributions. For low ion temperature and large ion drift (e.g.,Ti =

0.2T, and Ud = 2.5), there appears a double-humped ion distribution near the sheath.

Clearly the significance of attaching a temperature to such pathological distributions is

doubtful.

D) Comparison of Sheath Currents with Other Treatments

Fig. 16 shows a comparison of the results of different kinetic analyses 3 ,1 4 ,1 7 ,1 . Since

ours are really the first results to include ion drift we show only results for zero ion drift.

With the exception of Bohm's finite ion energy calculation, which is for a spherical probe,

the models are one-dimensional plane geometry cases. As anticipated, our model gives

somewhat lower currents than the other models, because we have included the ion momen-
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turn loss due to particle exchange. (Note: In the original papers of Emmert et al, and Bis-

sel and Johnson, the current was normalized by n, /2T=/7rmj and n. (T + T-)/mi,

respectively. In their normalization their results show a decrease of current with Ti..

However, the currents are increasing with Ti when they are normalized by our definition

of ion sound speed (V, =

In Fig.17 we compare the sheath currents calculated here with those of fluid models

20,21, which give results with finite ion drift. The fluid results are expressed in units

normalized by the 'ion acoustic velocity'. This is not the same as our parameter V,, which

includes only T, not T (see Eq.8). Thus there is a degree of ambiguity in the comparison,

since the effective acoustic velocity in the fluid treatments is 22

_ ZT,+yTi
C. m

and it is not obvious what to take for either -y or T. For the purposes of Figs.17 and 18 we

show our kinetic results when Tio = T. and scale the fluid results by taking C, = V2V..

This means that the fluid results, which are limited to jIv < C,, range over -V2 < ud <

V2. One can think of this assumption as being that y = 1 and the relevant ion temperature

is the external value. However, the physics is probably much closer to the case of y of order

2 to 2.5 and the effective ion temperature being 0.4 to 0.5 times T"..

On this basis, our results agree well with those from the fluid calculation of

Hutchinson 21 (and disagree with those of Stangeby20 ). This is perhaps not suprising since

Hutchinson's assumptions are essentially the fluid equivalents of the present kinetic model.

The kinetic calculation gives slightly larger current, although not very significantly, in view

of the uncertainties in the comparison. The present results extend to the supersonic case,

while the fluid treatments do not.

In Fig.18 we compare the ratio of upstream/downstream ion sheath current versus

flow velocity with several other theories. We include the fluid theories of Hutchinson and
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of Stangeby and also the naive particle model of Harbour and Proudfoot' (essentially

equivalent to that of Mott-Smith and Langmuir 2T , which takes the ion distributions at

the probe to be drifted Maxwellians and ignores the presheath field effects). Also shown

is the ad hoc empirical model of Proudfoot et al, which in our present normalization is

R = exp(1.2ud). The ion temperature is taken equal to the electron temperature.

All these results give remarkably straight lines on a log-linear plot, as Fig.18 shows.

They may therefore be summarised in the form of a single slope K, in R = exp(Kud),

as: Mott-Smith and Langmuir ~ 2.7, Proudfoot et al ~ 1.2, Stangeby - 0.8, Hutchinson

~ 1.75, and our pesent calculation - 1.7.

V. CONCLUSION

We have developed a one-dimensional kinetic model for the flow of plasma ions to a probing

object in a strong magnetic field. We use a new type of source term that treats consistently

the diffusive cross-field fluxes. Ion parameters such as current, ratio of up/downstream

current, density, fluid velocity, power flux, and potential variation along the presheath

have been obtained. Our results agree well with Hutchinson's 2 1 -2 fluid model, which

incorporates diffusivity and viscosity, but give considerable additional information.

The ion temperature variation along the flux tube is substantial and may be expressed

as approximately adiabatic with y = 2 to 2.5.

Our results extend the drift velocity from subsonic to supersonic. The parameters

show a smooth change from subsonic to transonic cases. There is no evidence of a shock

in the wake even for the case of low ion temperature and large drift velocity (T. = 0.2T,,

and up to ud = 5). However, it must be recalled that we are treating a very simplified one-

dimensional model. Multi-dimensional effects in the wake may reveal much more complex

physical structures.

The ratio of up/downstream sheath current can be expressed as an exponential of

19



drift velocity (i.e.,J,/Jd., = exp(Kud)) , where K is - 1.7 for Ti. = T.. This result

provides a calibration for the measurement of plasma flow using Mach probes.
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FIGURE CAPTIONS

Fig.1 Particle orbits and plasma potential variation.

Fig.2 Overall ion parameters. (a)Potential variation, (b)ion density, (c)temperature,

(d)fluid velocity, (e)power flux, (f)current along the flux tube for A = .001, Ud = 0,

Tioo = Te, 977 = 3.

Fig.3 Ion distribution functions at different potentials 77 =3(1),1.45,.87,.57,0(5) for A = .001,

Ud = 0, T. = Te, 77. = 3. Curve 3 is the distribution at the sheath.

Fig.4 (a)Potential variations, (b)sheath ion distributions, (c)power fluxes, (d)currents with

different A(= .1(1), .01(2), .001(3), 0(4)) for ud = 0, T. = T, 77u = 3.

Fig.5 Ion distribution functions for different ion drift velocities ud=(a)-0.5, (b)0.5, (c)1.4,

(d)2.0 when A = .001, Tim = Te, 7w = 3. 77i = 7w, 72 = }77w, 773 }76, 774 ~ ,77w7

77.5 = 77w.

Fig.6 Potential variations with different drift velocity, ud=-1.4(1), -0.9, -0.5, 0.0, 0.5, 0.9,

1.4, 1.8, 2.2, 2.5(10), for A = 0, T. = T,, and . = 5.

Fig.7 Ion current variations with different drift velocity, ud=-1.4(1), -0.9, -0.5, 0.0, 0.5, 0.9,

1.4, 1.8, 2.2, 2.5(10), for A = 0, Ti, = T, and i9 = 5.

Fig.8 Ion temperature with different drift velocity, ud=-1.4(1), -0.5, 0.5, 1.4, 2.2(9), for

A = 0, Tio T,, and 7 7. = 5.

Fig.9 (a)Power flux and (b) fluid velocity variation with different drift velocity Ud=-1.4(1),

-0.9, -0.5, 0.0, 0.5, 0.9, 1.4, 1.8, 2.2, 2.5(10), for A = 0, T. = T, and 7. = 5.

Fig.10 Ion distributions at sheath with different drift velocity (Ud= -0.9(2), 0.0(4), 0.9(6),

1.8(8) for A = 0, Ti = T., and 7,, = 5.

Fig.11 Sheath current for -1.4 <Ud :5 2.5, A = 0, when Ti. = 0.2,1.0, 2.0T,, and 7w = 5.

Fig.12 Ratio of upstream to downstream current into the sheath, for -1.4 5 ud < 2.5, A = 0,

To. = 0.2, 1.0,2.0T,, and i7w = 5.
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Fig.13 Sheath (a)potential, (b)temperature, (c)power flux and (d)density, for -1.4 < Ud _

2.5, A = 0, T. = 0.2(1), 1.0(2), 2.0T,(3), and 7, = 5.

Fig.14 (a)Potential, (b)density, (c)temperature, (d)velocity, (e)power flux and (f)current as

a function of position for Ud = 2.5, A = 0, Ti, = .2(1), 1(2), 2T,(3), and r, = 5.

Fig.15 Temperature variation:(a) and corresponding ion distributions:(b)-(d), near sheath for

Ud = 2.5, A = 0, 77. = 5, and three external temperatures T. = 0.2(b), 1(d), 2T,(c).

Positions 1 to 6 are as follows: X1 = 0, X: = .0032, X3 = .018, X4 = .05, X5 = .1,

xe = .18.

Fig.16 Sheath current variations with zero drift(ud = 0) for 0 < Ti/T, < 3 from various

theories.

Fig.17 Sheath current variations with drift(-1.4 S ud 5 2.5), for T. = T.. 1:present results,

2:fluid model of Hutchinson, 3:fluid model of Stangeby.

Fig.18 Comparison of the up/downstream ratio of sheath currents from various models, for

Ti. = T,. 1:Stangeby, 2:Proudfoot et al, 3:Present results, 4:Hutchinson, 5:Mott-

Smith and Langmuir.
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