
PFC/JA-87-42

Microwave Plasma Diagnostics

H. Meuth
University of California

Berkeley, California 94720
and

E. Sevillano
Plasma Fusion Center

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Supported by United States Department of Energy Contract DE-AC02-78ET51013.



TABLE OF CONTENTS

I. INTRODUCTION

II. PLASMA WAVES AND THEIR APPLICATIONS IN MICROWAVE

DIAGNOSTICS

A. The Dielectric Tensor of a Cold Plasma

B. Maxwell's Equations

C. Wave Equations and Wave Solutions

1. Waves in a Magnetized Homogeneous Plasma

2. Guided Electromagnetic Waves in Vacuum

D. Boundary Conditions

1. General Conditions

2. Conditions on a Conducting Wall

E. Examples of Diagnostic Interest

1. Free Propagation in a Magnetized Plasma: Microwave Interferometry

2. Free Propagation in a Magnetized Plasma: Faraday Rotation

3. Cavity Resonances: The Unmagnetized Homogeneous Plasma

4. Cavity Resonances: The Unmagnetized Inhomogeneous Plasma

5. The General Cavity Resonance Condition: The Homogeneous Plasma Column

F. Optical Approximations: Diagnostic Applications

1. Microwave Horn Antennae and Microwave Imaging

2. Optical Refraction in Plasma Columns

3. Fabry-Perot Methods

III. CAVITY AND WAVEQUIDE DIAGNOSTIC TECHNIQUES

A. Cavity and Waveguide Loading by a Plasma

1. Poynting's Theorem

2. The Quality Factor or Q Value

3. The Lumped Circuit Analog

B. Resonant Cavity Techniques

i



1. Perturbation Theory Formulae

2. Cavity Configurations and Microwave Circuitry

3. Microwave Reflectometry

IV. INTERFEROMETRIC TECHNIQUES

A. Basic Relations

B. Types of Interferometers

1. Frequency Swept Interferometers

2. Bridge Inteferometers

3. Heterodyne Interferometers

4. Frequency Modulated Interferometers

5. Quadrature Interferometers

6. Other Interferometers

C. Abel Inversion and Multi-Chord Interferometers

D. Interferometer Design

1. Choice of Microwave Frequency

2. Choice of Interferometer Type

3. Power Requirements

4. Choice of Components

E. Phase Detection Techniques

V. MICROWAVE SCATTERING AND RADIOMETRY

A. Microwave Scattering

1. Measurement Techniques

B. Radiometry

2. Measurement Techniques



I. INTRODUCTION

Similar to optical diagnostics microwave plasma diagnostic techniques employ the

measurement of (a) the wave reflection from, or, (b) the wave transmission through, or,

(c) the wave absorption in a plasma, or any combination thereof (see Fig. 1). Exceptions

to this are the case of interferometry, where only the effect of the plasma electron density

upon the phase of the wave is of importance, and also the case of radiometry, whereby the

plasma luminosity is recorded, and possibly spectrally resolved. But, unlike in optics, for

reflection, transmission or absorption measurements in the microwave regime, the plasma

is typically placed, or generated, in a cavity or a waveguide. Consequently, the goal of

the measurement is to extract from the resulting loading effect some information about

certain plasma properties, notably the plasma density and collisionality, and any properties

associated with them.

At lower frequencies, up to about 1 GHz, commonly referred to as rf frequencies, the

loading characteristics of a circuit element are mainly determined with the aid of a bridge

circuit. This procedure presupposes that the element under investigation can be ideal-

ized as a single lumped circuit element. Resistors, capacitors, and inductors are common

examples, that are measured with an LRC bridge. However, for the frequency range of

microwaves, customarily defined as 1 GHz to 30 GHz (in the more restrictive sense of the

word), free-space wavelengths are on the order of centimeters. The lumped circuit model

has to be replaced more and more by a distributed circuit model, consisting of an array

or network of individual components. Naturally, this applies even more so for millimeter

waves for frequencies above 30 GHz. * The measurement circuits are basically of a bridge-

type configuration, and, for many applications, are referred to as network analyzers (Masi

and Phillips, 1986). There is a great number of such microwave bridge schemes, although

they are variants of only a few basic designs. Hardware cost and technical support re-

quirements can vary tremendously between a stand-alone cavity setup, or a one-channel

interferometer for a small table-top plasma device, and, a fully computer-interfaced high-

* For the purpose here, we will always use the more loosely defined term microwaves

for the entire frequency range of diagnostic interest.
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power scattering apparatus or the multi-channel interferometer employed on present-day

large scale machines for fusion research.

While waveguide and resonant-cavity experiments are typically performed at a few

gigahertz, the range for interferometry extends to above 100 GHz; and microwave scattering

and radiometry frequencies up to about 200 GHz are used in today's large fusion machines.

Which frequency range to use depends to some extent on the parameters of the plasmas

under investigation, especially for the latter two techniques.

Even after more than fourty years since the introduction of microwave techniques,

their technology and engineering are still rapidly developing, nowadays particularly in the

sector of active solid state devices (Morgan and Howes, 1980). Nevertheless, most of the

components, like antennae, mixers, oscillators, amplifiers, detectors, and so on, are still

serving essentially the same principal functions, just that some new diagnostic designs

may have become more feasible. This fact will permit to emphasize the various diagnostic

schemes that are commonly used, rather than their technological specifics. Moreover, there

is ample, and also introductory literature available that has kept pace with new techno-

logical developments in the field (Gandhi, 1981; Bhartia and Bahl, 1984; Roddy, 1986).

Analog and digital techniques for data acquisition, evaluation, and display have rapidly

emerged and are now widely used, and some details will prove useful to the diagnostician.

In this chapter we restrict ourselves to the most commonly used microwave diagnostic

techniques. The various sections are written such that they can be used independently.

Prior to discussing the more experimental aspects of the various diagnostic methods in

Sections III through V, a brief and basic, yet comprehensive introduction is given to waves

in cold plasmas, with or without a static (i.e., time-constant) embedded magnetic field,

as they apply to microwave diagnostics in a plasma. As in any diagnostic technique,

the applied power levels are assumed to be small enough, so as not to alter the plasma

properties. However, similar techniques can be used for plasma formation and heating at

higher microwave power (Herlin and Brown, 1948; Asmussen et al., 1974; Mejia et al.,

1985; Paraaszczak et al., 1985). The latter is not part of the present chapter.
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Finally, quite a number of books and survey articles exists, that cover some aspects

of the subject presented here (Wharton, 1957, and 1965; Hermansdorfer, 1968; Podgornyi,

1971; Lisitano, 1975; Heald and Wharton, 1978; Golant, 1984; Luhmann and Peebles,

1984). This chapter should be considered as a complement that, however, will assume

no background on plasma physics and that is intended for a larger audience of scientists

and engineers performing research with any type of plasma. While in the past decades,

plasma research was mainly directed towards the achievement of controlled fusion, many

new and diverse applications have emerged very recently in material processing, or for the

fabrication of integrated circuits (Chapman, 1980).

II. PLASMA WAVES AND THEIR APPLICATIONS IN MICROWAVE

DIAGNOSTICS

Most treatises dealing with plasma waves usually discuss a variety of specific cases of

waves. This is a consequence of the many parameters involved, that we enumerate here

for electron plasma waves: the plasma angular frequency wp,, that depends on the electron

density n,; the cyclotron frequency we, depending on the magnetic field; and the collision

frequency, ve, for electrons with other plasma particles or neutrals. Then, there is a set

of wave numbers, or inversely, wavelengths, one parallel and generally two perpendicular

to the static magnetic field vector, and the microwave frequency, f = w/27r. The electro-

magnetic wave fields are vectors characterized by their projections in and normal to the

direction of propagation, or of the static magnetic field. All these mentioned quantities

are interrelated according to propagation laws, or dispersion relations, and this allows that

the plasma parameters, n, and ve, can be inferred by measuring the propagation charac-

teristics. If the plasma is spatially bounded, boundary conditions may significantly modify

the wave dispersion. Such bounded plasmas are usually confined by metallic waveguides

or cavities, commonly used for microwaves. A typical waveguide situation imposes the

frequency, e.g. by an oscillator, and lets the wave numbers assume their permitted values.

In a cavity, the wavelengths are set by the cavity dimensions, which therefore determine

the resonant frequencies.

In this section, the propagation properties, i.e. the critical and resonance conditions,
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are developed, as they are suitable for most diagnostic applications, invoking the cold

plasma approximation, with or without an embedded homogeneous magnetic field. Both

bounded and unbounded, homogeneous plasmas are considered, but as an exception, the

inhomogeneous plasma column is also treated in Sect. II.E.4. The justifications for a homo-

geneous approximation are: (a) microwave measurements yield only a spatially integrated

density or collision frequency; (b) with the above simplifications, the entire family of wave

modes can be determined analytically.

While the earlier literature frequently gave results also in graphical form, this was

omitted here. With today's widespread computerization, manipulation routines for, e.g. a

6 x 6 matrix, and Bessel functions of all kinds are readily available on libraries for computers

of any performance level.

A. The Dielectric Tensor of a Cold Plasma

The dielectric tensor is a measure of response of a dielectric medium to external electric

fields. To derive an explicit form for the dielectric tensor, we consider the case, where the

plasma response is solely due to the plasma electrons, which move with the same speed.

The first idealization implies that we are primarily interested in oscillatory electric fields of

such high frequencies that the plasma ions with their much larger mass cannot follow these

field oscillations. Microwaves are in this frequency range. The latter assumption precludes

that the electrons have a sizable thermal motion of their own. Hence, the description

addresses the cold plasma. While quite simplistic, these idealizations capture, to a large

extent, the characteristics of the plasma response to external microwave fields.

We consider an electron of charge -e, and mass m, that moves under the influence of

the Lorentz force in an electric field E and a magnetic field B, with velocity V-, and of a

damping force proportional to iV:

-M ($ + V- x B) - vi(1)

The damping is usually caused by collisions. The quantity v can be identified in the simple

picture presented here as a collision frequency, assumed to be velocity independent. We
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are specifically interested in electromagnetic wave fields, i.e., we write E and B in terms

of their Fourier amplitudes:

= Ee t (a), B(t) = Bo + Bewt  (b) (2)

We also assume v, E, and B to be small compared with B,. Then the second order

term i x B may be ignored * and we can set i oc e'wt, to reduce Eq. (1) to an algebraic

equation. This V- x B term, and a second neglected nonlinear term, that also emerges

from Eqs. (1) and (2), give rise to the ponderomotive force. It is of importance for the

understanding of microwave scattering in a plasma, which will be discussed in Sec. V (Chen,

1984). Any DC electric fields are not considered in Eq. (2), because the high mobility of

the charges inside the plasma tends to short out such fields, except in the edge regions (or

sheaths) not considered here.

The alternating electronic motion of Eq. (1) results in an alternating current density

J = -enev = E$, (3)

where n. is the number density (m-3) of the electrons, and *0* is the (AC) conductivity

tensor. Its tensor character arises from the cross product V x BO = vYB 0 . - v.Boey,

where the z-axis is chosen along the direction of the (homogeneous) magnetic field B.

An appropriate superposition of v. and vy, or j. and jy for that matter, will make *0*

diagonal:
1 1 1
S (X. T iX,)<-+ X1 = {} (XL ± XR) (4)

In analogy to optics (Born and Wolf, 1980), the indices L and R stand for left and

right circular polarization. Varying notations can be found in the literature, including

unit vectors, which are self-orthogonal. With the transformation (4), the diagonalized

conductivity tensor is made up of the elements:

2 2

01P= -2., (5)

* More succinctly, we will consider the self-consistent electric and magnetic fields in

the plasma, as they result from the plasma response to just these fields.
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introducing the plasma frequency, w,, and the Larmor frequency, Wc:

2 lee2
2, e (6)

Wc= (7)
m

The (relative) effective dielectric tensor, as it follows from Maxwell's equations (c.f.

Sec. II.B), can then be expressed in the three diagonal elements:

'f L I 11 L (8)
P P

In cartesian components, the dielectric tensor takes the form:

S -iD 0 '
iD S 0 , (9)
0 0 P

where

W 2(W - iV) Wjw 2 CW2
S = P D = - P = P (10)

Figure 2 shows qualitatively these quantities as a function of w, for v = 0. The zeros of

S and P and the singularities of S, D, and P signify, non-propagation and bulk resonances

in the plasma, respectively. In particular, the (longitudinal) dielectric constant P vanishes,

given a certain frequency w, and neglecting the collisionality v, for a critical density nc,

for which:

e2

In terms of S, D, and P, the diagonalized tensor elements EL, ER and ep can be written

as:

e = S t D ; p= P. (12)

B. Maxwell's Equations

The two homogeneous Maxwell's equations do not contain explicitly any currents or

charges:

Vax1 (13)

V- =0. (14)
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The remaining two equations, in terms of current and charge densities, j and p, and

the relative dielectric tensor +T according to Eqs. (3) and (8), read:

aE __

V x B = po(j +E 0  ) = poo (15)

V -eOE =p (16)

By vector identity, we conclude from Eq. (15) that:

V. -E = 0, (17)

which is also a direct consequence of the continuity equation for the current, V j+2 = 0,

and of Eq. (16). With B = pOH, Eqs. (13) to (16) can be cast into the form,

-V x (V x E) = poco & 2  (18)

-V x (V x H) = -- o (19)

For waves in infinite plasmas the usual procedure is to expand E and H in plane

waves with wave vector k, i.e., E, H oc e'(wt- . The operator V x (Vx ) can then be

replaced by -k x (kx ). The ensuing equation of the form ME = 0 has only non-trivial

solutions for E when I M| = 0, where M depends on IkI, the angle (k, Bo), and the various

elements of the dielectric tensor (Chen, 1984). The assumption of a plasma of infinite

spatial dimension, and therefore, of plane waves, is justified, whenever the characteristic

wavelength is much smaller than the extent of the plasma under investigation. However,

for diagnostic purposes we axe interested not only in plane wave propagation, but also

in waves in bounded plasmas, as they occur in waveguides and cavities. There, e.g., the

boundary conditions at curved surfaces will not admit plane wave solutions, as we will

see in the subsequent sections. Still, essentially all configurations of diagnostic interest

permit a plane wave expansion along the magnetic field direction. We pursue therefore, a

more general approach that is akin to the one used in standard waveguide theory (see e.g.

Gandhi, 1981). Since the goal is to provide formulae to interpret microwave measurements

in plasmas, the plasma parameters and notably the dielectric tensor, are assumed to be
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homogeneous but by no means isotropic. As an exception to this we also will treat a

particular case where e depends on the radius alone in Sec. II.E.4.

C. Wave Equations and Wave Solutions

1. Waves in a Magnetized Homogeneous Plasma

All vector quantities are separated into generally two perpendicular components and

a parallel (or z-) component. For cartesian geometry one sets:

I(x,y,z,t) = (iX(x,y) + Xz(x,y)ez)e(wtk), (20)

while for cylindrical geometry one uses, instead:

X(r,W,z,t) = (:X(r) + X(r)6z)e((t+mk.21)

The Fourier amplitudes Xi and X, carry still a tag for w, k, and if applicable, for

m. * In the following, the arguments (X, y) or (r), and the Fourier modulation factors will

be omitted unless they are needed for clarity.

The z-components of Eqs. (18) and (19), respectively, turn, with the aid of Eqs. (9),

and (13) through (17), into

(VI - k2 + 2  P)EZ = (VI + 2E)Ez = -iwk poHz (22)

and

(VI - k2 + w2 1 E )H = (VI + X2')H2 = iwk-DPE 2  (23)

with the transverse gradient defined, in analogy to Eqs. (20) and (21), as Vi = V + ikez.

Equations (22) and (23) are coupled for E, and Hz. As a consequence, in a magnetized

plasma, generally no pure TM or TE modes familiar from (empty) waveguides and cavities

can exist. Only for (a) electrostatic modes, where w -+ 0, (b) modes at cutoff, where k -+ 0,

or (c) modes in unmagnetized plasmas where D -> 0, this classification may possibly still

* For comparison with the literature attention has to be paid to whether the Fourier

modulation factors in (20), (21), or their conjugate complex are used.
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be valid. However, the mixture of TE and TM modes that is here due to the bulk properties

can also arise from a coupling in the boundary condition (c.f. Sec. II.D).

The longitudinal Eqs. (22) and (23) do not depend on any of the transverse components

of the fields , and may thus be solved independently. Therefore, before proceeding to the

transverse equations, we first observe some general properties of Eqs. (22) and (23). As

long as wkD/S 3 0, we can combine them in the two forms:

(v +r )v2+r2AE 2D2 p E
(VI +, )(VI ,){E }k2k2 D2{E }. (24)

The wave number ko = w/c characterizes the free-space propagation with the speed

of light c = 1/4Iioe~. Anticipating the solutions of Eq. (24) in terms of Bessel functions

for cylindrical geometry, or plane waves for cartesian geometry, we make the substitution

V2 -+ -K 2 , where r is the transverse propagation constant. The two characteristic values

for r 2 follow from the now biquadratic Eq. (24) as

2 = 2 1 ( - 2 )2 + (kok D)2P. (25)4) 2J( 2) 4 S- 2 P

In all generality, there will be four characteristic solutions to Eq. (24), the linear

superposition of which will still have to obey the boundary conditions. The indices {1, 2}

in Eq. (25) were chosen such that for kw/c = kko -+ 0, we have 02 _+ , 2 2 _ 4. We

mentioned already in Sec. II.A that for a critical density nc, or for P = 0, the wave can

no longer propagate, or, in other words, is cut off. This is, in view of Eqs. (22) and (23),

only rigorously correct in the unmagnetized plasma. Another critical case follows from

Eqs. (24) and (25), when two of the modes are transversely cut off, for which .2 -+ 0. The

condition for this to happen is

Ikl =kol , (26)

which still describes propagation of plane waves along the magnetic field, with a modified

speed characterized by the dielectric constants CL or CR given by Eqs. (12). Again, such

modes may still be disallowed by the boundary conditons. Aside from plane waves, where

9



K = 0, Eqs. (25) and (26) lead also to waves with non-trivial transverse wavenumbers:

)2 =T 2 E(L - 7R +
4n EL + CR EIr

We now specifically consider cylindrical geometry. There, the general non-singular

solutions to Eq. (24) read, aside from a common Fourier modulation factor:

E, Jm(Kjr)Ej (28)

and

H= Jm(jr)%j. (29)

The coefficients C and 'H are, by virtue of Eqs. (22) and (23), still subject to the

relation

Ej = e(iK)-L (30)

or

Ni = h(tj)Ej, (31)

where

e( = -i DP Z) 2( 32)

and

S 2 (33)h(r) = i powkD (KE K~ -

Clearly, from Eqs. (24) and (25), one gets e(K,)h(K,) = 1. In the limiting case wk -- 0,

one has h(K1) -+ 0; Ih(r-2)1 -+ oo; Ie(Ki)I --+ m, and e(K 2 ) -- 0. Regarding the solutions

(28) and (29), any basis of coefficients (H 1 , W2 ), or (E1, E2), or (E1, %2), or (E2, 1 ) may

be chosen, while all others follow via Eqs. (30) to (33).

The equations for the transverse components can be cast into the following form,

making use of Eqs. (13) through (17), and the symmetry properties of If

ko++ -- k2 TL)E± = -ikVEiE +4spw(e. x V±)Hz (34)
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and

(k 2T - k2+ )H± = -ikViH, - icowE (6. x V±)E.. (35)

The subscript .L refers again to the (x, y) or (r, Wo) components only, and I is the

unit diagonal tensor. Therefore, once the solutions for E, and H. have been determined

from Eqs. (22), (23), (24) and (28) through (33), the inhomogeneous particular solutions

for all the transverse components can be constructed. In Eqs. (34) and (35), we encounter

again the component mixing property of the cross product. It can be disentangled by a

complex principal axis transformation of the sort of Eq. (4), that can also be written in

cylindrical coordinates:

1 1 1
X = e ei(Xr+iX,) +-+ = { } -(Xe t k Xje-i). (36)

In any case, independently of the geometry chosen, Eqs. (34) and (35) readily reduce,

also by virtue of Eqs. (20) or (21), to the four algebraic equations for EL, ER, HL and HR:

E 1 81(-ik{ E_ wlf ,H}) (37)
HI k2f, _ kP H, CeeEz

where f = {L, R}, and SL = +1, SR = -1. The differential operator at, acting on the

known functions Ez and Hz, is defined in analogy to Eqs. (4) and (36). In particular, for

cylindrical geometry, one has

e8eCm(Kr)e m' = (8,) Cm- 1(Kr)ei"m'). (38)

The Cm's stand for any cylinder function Jm, Y,, Im, eimKm (for the latter two modi-

fied cylinder functions the factor (s) on the RHS is to be omitted). For cartesian geometry,

the action of 91 on plane waves is trivial via the substitution 81 -+ (-1/V 2)(ik + seky).

In microwave plasma diagnostics, the most common configuration is cylindrical, to which

in what follows, we will restrict ourselves. The cartesian or slab configuration can be dealt

with analogously with the simpler property of 91, or by the plane wave method discussed

in Sect. II.B.
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On the basis of Eqs. (28), (29), (36), and (38), we find the solutions to Eq. (37) in

terms of the radial and azimuthal components.

Ef = (}(rr) i wyoA I (rjr)h(rj))Ej (39)

and

H = (kA, } (ncr) + weB (,r)e(rj))'H, (40)

that still have to be subjected to Eqs. (30) to (33). The radial dependency is in the

functional coefficients A(Kj, r), B(ic,r):

{ K(J)a=(K{)}(41)
I=L,R 0

-K -Ic (42)

These sums can be expanded in terms of Jm and J,= dJm(z). For this we recall that

SL = +1,sR = -1, and make use of standard recursion relations for cylinder functions,

and of Eqs. (12), (22) and (23):

A,(.)iKI (K2 Jk P X(Kr)A(P E) _I iM ( nE43)
A 2 (K,r) k - k2 )S+ k4 \-ik2 ) 2 m(Kr)

B_(r) 44S 2)

B2 (K,r) k2(K - k 2 )S + k 4-ijnk k2 D) i J .(Kr)

The x-product is to be understood between the matrix () and the column {}.

Equations (28) and (29), in conjunction with Eqs. (30) to (33), and Eqs. (39) and (40),

in conjunction with Eqs. (41) to (44), constitute the entire family of solutions of waves

in a cold plasma, suitable for cylindrical geometry. To construct a specific solution, their

linear superposition has to obey the boundary conditions, which will be addressed in Sect.

II.D.

2. Guided Electromagnetic Waves in Vacuum

Prior to that we shall briefly quote the wave solutions in a vacuum layer between
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the plasma edge and the wall. They are of importance for the propagation and resonance

properties in waveguides or cavities that are only partially filled with plasma. Along the

very same lines as in the preceding section, however, with the simplification that now

D = 0, P = S = 1, we can expand the solutions in the form

{H} = { }C)(Kvr), (45)

where CM2 ) = (Jm, Yin) are the regular and singular Bessel functions; and the vacuum

transverse propagation constant is given by .2 = 2/c 2 - k2 = k2 - k2 . The common

Fourier modulation factors were omitted in Eq. (45). The resulting transverse components

are then:

E = (kK{I Fi ± WPOK' 2 2 ) (46)

and

HI = (wweXK Fi {kK + 0 (47)

with the radial functions X given in terms of the Bessel functions and their derivatives:

X"I(K 13r) = -1 C(''(Kvr) and X'(Kvr) = -- C('(K,,r). (48)

D. Boundary Conditions

The boundary conditions follow directly from integrating Maxwell's equations through

any arbitrary interface, and are therefore consistent with the wave equations of Sect. II.C.

However, since not only Maxwell's equations, but also the equation of motion for the

electron plasma, Eq. (1), were used, caution has to be exercised. Any sufficient and

linearly independent set of conditions that is consistent with both Maxwell's equations

and the equation of motion may be chosen to uniquely determine the wave solutions.

1. General Conditions

We consider first the conditions resulting from Maxwell's equations (13) and (14):

They require that, on any physical or fictitious surface, characterized by its local normal
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vector fn, the normal component of the magnetic field and the tangential component of the

electric field be continuous:

ni - (B'< - fx>) = 0 x(E - >) = 0. (49)

Equation (15) leads to

fi x ( - >)= -oI,. (50)

Unlike in hot plasmas, there is no singular surface current in a cold plasma, i.e., 1, = 0.

Equation (17) yields the requirement for the quantity i - (cT) to be continuous. For a

cylindrical boundary of radius r0 where ii = 8,, this implies that

SEr< - iDE = Er> at r = r., (51)

which in the isotropic unmagnetized case, where D = 0, S = P , reduces to the condition

familiar from electrostatics: PEr< = Er at r = r,. Equation (51) neglects the presence

of any surface charge E, for if we consider Ohm's law through the surface, j, =

the current has to drop instantly to zero at r = r0 + 6. This will lead to charge build-up

according to the continuity equation V j+ 8= 0. Consequently, the electrostatic solution

(51) may not be used to determine the solution.

We briefly point out the importance of the surface charge for the coupling of waves

in the boundary: the resulting charge distribution in the surface is such that, whenever

there exists a wave mode with finite axial wavelength (i.e., k # 0), radial electric fields

will always be accompanied by axial electric fields (and vice versa), as they are induced

by the plasma vacuum boundary. And it is so regardless of whether the static magnetic

field is zero or not. This situation is schematically depicted in Fig. 3. A similar statement

applies for any non-zero azimuthal mode number (i.e., m $ 0). It should be recalled that

the bulk properties of the plasma lead to such coupling only for a non-zero magnetic field

(c.f. Sect. II.C.1). Even if the physically more reasonable assumption is made that the

electrons may move across the boundary, the situation still remains the same, as can be

argued from Fig. 3(b). In reality, there is never such a sharp plasma edge. But even in
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a more diffuse plasma-vacuum transition, a polarization charge is induced and the above

applies at least qualitatively. If the plasma however, is in contact with a conducting wall,

then the axial E-fields are largely shorted out, as will be discussed now.

2. Conditions on a Conducting Wall

At an infinitely conducting wall, Eq. (49) reduces to

n -f -- *0 ; f x E< -+ 0, (52)

since no electric field, nor any oscillatory magnetic field may exist inside the conductor.

For waveguides or cavities, where the plasma is not in contact with the conducting wall,

the boundary condition '-B (r = r,) = 0 is also used (Jackson, 1975). More generally,

from the <p-component of Eq. (15) we have, invoking the conditions (52), for a plasma in

contact with the wall

OB~ 1 1
= -WP.6(f - eR)E = -wpooDEr, at r = re. (53)

r2 2

The RHS vanishes for a non-magnetized plasma, just as in the case for the empty wave-

guide.

The discussion so far concerned explicitly the boundary conditions in transverse di-

rections. The boundary conditions (49) and (52), applied in axial direction, where ft is

parallel to the z-axis, are easily met by an appropriate superposition of the axial plane

waves. Clearly, considering the symmetry properties of Eqs. (28), (29), (39), (40), (45),

(46) and (47), with respect to the change of sign of k, solutions can always be constructed

such that, say, H., Er, EW c sin kz and E,, H,, HW oc cos kz to ensure that the field pro-

jections (52) vanish. It is, therefore, not necessary to differentiate between running waves,

as they occur in waveguides that are not subject to axial conditions, and standing waves,

that occur in an axially bounded plasma in a cavity, with, however, one exception: for

k = 0, the situation is different. As a result, TEm 0o modes * cannot exist in cavities, with

or without plasma.

* The notation m, n, p (here p = 0) characterizes respectively, the two transverse (here

azimuthal and radial), and the axial mode modulations.
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The homogeneous conditions of the type (52) cannot hold everywhere on the conduc-

tive enclosure of the plasma for the necessity to feed in the microwave power. The efffect

is that (a) there will be a certain field configuration imposed at the feed point in the wall

which usually leads to selective mode excitation. Locally, (b) the induced field will possibly

be distorted, because the nodal plane formed by the wall is interrupted there. The latter

effect can be minimized by an appropriate feed geometry, while the first underscores the

necessity to know all field components from Sect. II.C in order to know which mode is being

excited, in particular for nearly degenerate modes with only slightly different resonance

frequencies (Sect. II.E.3-5).

E. Examples of Diagnostic Interest

1. Free Propagation in a Magnetized Plasma: Microwave Interferometry

We shall consider now a typical configuration, used in interferometry in a magnetized

plasma column of large diameter (compared with the probing wavelength). From Fig. 2

it is clear that a magnetic field even for w, > w, has essentially no effect on the dielectric

tensor, and therefore on the microwave propagation for w > Whybrid = W + P , for

which we have D -+ 0, S -+ P -- 1. But this also implies that the plasma density must

go to zero, a case that is not desirable for a density measurement. To extend the useful

range, even in the presence of a magnetic field, the geometry schematically shown in Fig. 4

is employed: A waveguide carrying a probing microwave power in TE10 mode is expanded

into a horn. As a result, the emerging wave vector is largely parallel to the waveguide

(Fig. 4(a)). The waveguide with horn antenna is pointed at the plasma, oriented such that

the wave's electric field vector is parallel to the static magnetic field 7,, that is embedded

in the plasma (Fig. 4(b)). The wave vector component along 7, vanishes approximately

(i.e., k -- 0), and the wave will propagate inside the plasma as a pure TE mode with a

wave vector, say, k.. From Eqs. (22) and (23) we see that then

(k2 - kiP)EZ =0 (54)

(55)

Inserting this into Eqs. (34), (35) or (37) we conclude that BL = -BR = ikEl//,
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i.e., B, -- 0, By = -kE,. The characteristic wave propagation, or dispersion follows from

condition (54) for non-trivial E,:

k = kp ) - ) (56)

As already discussed in Sect. II.A, whenever n, > n, (disregarding v at this point),

the wave cannot propagate. Then, namely, k < 0, resulting in solutions that spatially

decay exponentially in the x-direction. Otherwise, measuring the wavelength in the plasma,

A, = 27r/k,, the electron density n, can be determined via the plasma frequency (6).

As simple as the above derivation is, it forms the basis of any microwave interferometry

used to determine the plasma density. It is valid under the assumption that (a) the plasma

diameter be large, i.e., many plasma wavelength across, and (b) that there be no sizable

diffractive plasma effects that could deflect the wave from its direction of propagation.

Both assumptions can become violated when n -+ n,, since then, from Eq. (56), k: -+ 0,

or A, -* oo, a reason why we have always stressed the wavelength in plasma. We shall

discuss these questions briefly in Sec. II.F, while all aspects of interferometry will be covered

in Sec. IV.

2. Free Propagation in a Magnetized Plasma: Faraday Rotation

We now consider a plane wave travelling along the magnetic field, and assume no

boundaries nearby. From Eq. (26) we see that a left-polarized and a right-polarized wave

each travels with different speed. Consequently, the polarization vector of a linearly polar-

ized microwave will rotate along the magnetic field direction. This Faraday-rotation effect

is used to measure the line integrated density along the field lines, supposing that the mag-

netic field strength is known. For simplicity we disregard any collisionality effects. From

Eq. (26), the angle of rotation y, that results for propagation through an axial distance z0

is given by

zo 22y=27r-[ 1 - w2  1- ww ]. (57)
A, w(w +wc) o- )

The vacuum wavelength of the microwave radiation was denoted by A0 . For low densities

where w , < w, the term in the brackets can be approximated by [ W W/w(w 2 _ W2),
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making y proportional to the electron density n, [c.f. Eq. (6)]. A more detailed account

of the Faraday effect in plasmas and of the suitable microwave diagnostic techniques are

given by Kiinstler (1965).

3. Cavity Resonances: The Unmagnetized Homogeneous Plasma

To gain some insight in resonances in plasma filled cavities, and the accompanying

mode structures, we treat in this section the simplest possible case, where the unmagnetized

plasma fills the cavity entirely. Then, and only then, by the arguments given in Sects. II.C.1

and II.D, pure TE and TM modes exist, as they are familiar from empty cavities (Gandhi,

1981). All the equations for the plasma-filled cavity reduce here to the equations governing

the modes in an empty cavity, only that the following substitution is to be made:

E, -+ E'P (58)

Mode structures and resonance frequencies of empty cavities of various cross sections

and configurations can be found in the microwave literature. As a specific example, we

choose the frequently used TMOno modes in a cylindrical cavity of radius r,, for which

k = m = 0. There the resonance frequency is given by the condition [c.f. Eq. (22)]:

J0 (KErc) = J \(w ,ioe 0P(w)rc) = 0. (59)

Specifically, the mode with no radial nodes, labeled by n = 1, that arises from the

first zero of Eq. (59), displays the resonance frequency, disregarding collisional effects, by

virtue of Eq. (10)

WOiO 1 2.4052 + nfee 2 .,ir2/m
foI - - 2 , (60)21r 2-i Coro2

from which the electron density n, can be extracted.

4. Cavity Resonances: The Unmagnetized Inhomogeneous Plasma

Everywhere up to this point in Sect. II, we have dealt with a homogeneous plasma,

whose properties, as they enter the dielectric tensor, are spatially constant. In order to

get an impression of how much any spatial variation of may influence the resonance
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frequency, we also give now the equations for an isotropic, non-magnetized, but inhomo-

geneous plasma, as they can be derived from Maxwell's equations (13) to (16):

V2E + k e(r)E + V(E -V)lnE(r-) = 0 (61)

and

S k e(r - (V x B) x Vlne(F) = 0 (62)

The analysis of these equations becomes rather simple for the case where (a) the fields

have no axial or azimuthal dependence (i.e., k = m = 0), * and (b) the dielectric constant

depends solely on r, c = e(r). For comparison with the TMOno modes discussed in Sect.

II.E.3, Eqs. (61) and (62) reduce, with E = Ei., B = BeW, to

(VI + k (r))E = 0 (63)

(VI + koE(r))B - iwE Or = 0. (64)

If we assume that the plasma is in contact with the wall, we can immediately find the

resonance condition by imposing the radial boundary condition (52) upon E at r = r,.

For this, it sufficient to seek solutions only to Eq. (63), as it does not depend on B, and

B does not enter the boundary conditions (52).

For a parabolic plasma density profile, we have

r2 r2
) or e(r) =E + E 2 -, (65)
r 2

C

where
-2 w-2

Ei1- E2 P p = ,(n ). (66)
W(W - iv)' w(w - iv)

The quantities fi and 6 follow from Fig. 5(a), and are entirely arbitrary, although a

physically reasonable choice would assume A < nc, 0 < 6 < 1. Using the abbreviation

* Another reason to consider only modes with k = m = 0 is that otherwise no pure TM

or TE modes can exist for a radially varying plasma, as discussed in Sect. II.D. This of

course would also follow directly from Eqs. (61) and (62).
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02 = .,2POEOI/r 2 the solution

E(r) = ez E0 Re e F1[ 2(1 [ F i( iko/fko), 1, -Firko] (67)

can be written in terms of confluent hypergeometric functions. Since their zeros are some-

what awkward to discuss, we choose a slightly different power-law profile. This will permit

to make a direct comparison with the results of the preceding section, to estimate the effect

of the density profile on the TMo0 o resonance frequency. We assume the worst possible

case, where the density on axis h, takes the critical value n, from Eq. (11), for which

ei = 0. * Clearly, for a rectangular profile, as assumed elsewhere in Sect. II, no oscillatory

fields could form in the cavity for r = 0. Therefore, to determine the influence of the

profiles we will instead require that the radially integrated density f rdrn, (r) be the same

for the rectangular and the power law profile defined by

n,(r) = n[1 - 6( )2A], or E(r) = 6( r)2A. (68)

Again 6 and A > 0 are arbitrary (c.f., Fig. 5(b)). The equivalent mean density is then

<= n[1 - 6/(A + 1)]. The solution for a profile of the form (68), takes the form

E(r) = E0 J0 (O /.E( (1) ) (69)

The ratio of the resonance frequencies for the rectangular profile of Sect. II.E.3 and

of the power-law profile (68), with the same mean density,

- =____-- (70)WP (A + 1)2

is rather insensitive to the choice of b and A, where 0 < b < 1, and A > 1/2. Consequently,

the error in the density determination, incurred by assuming a rectangular rather than a

diffused profile is, at least for the TMOnO modes, small.

* Because of the nonlinear (square-root type) dependency of the resonance frequency

on P, and therefore on n. [c.f., Eqs. (59) and (60)], the profile properties will play their

greatest role for ii -- n,.
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5. The General Cavity Resonance Condition: The Homogeneous Plasma Col-

umn

After having discussed the resonance conditions for an unmagnetized plasma, both

homogeneous and inhomogeneous, that fills entirely a cylindrical cavity, we will now con-

sider the general situation: A circular magnetized, homogeneous plasma column of radius

r, is coaxially situated in a cylindrical waveguide or cavity. Again, we will not concern

ourselves whether there are axially standing or running waves, that differentiate the two

applications under the following proviso: In addition to the critical condition given below,

the cavity case will require that the axial wavelength A = 27r/k, be determined by the

length of the cavity, le, via

k =7 ,(71)
lc

in order to match the axial boundary conditions, with the exception of the TMOo family,

where all the field components that are subject to these axial conditions, vanish identically.

Recalling the host of wave solutions and boundary conditions, and in particular the

fact, that, for k 3 0, no pure TE or TM modes can exist, it may appear at first glance a

hopeless venture to treat the general case. However, all that is needed in order to find the

specific solutions and the corresponding set of critical conditions is that the 6 x 6 coefficient

determinant vanish. The six homogeneous equations, or the matrix of coefficients, for the

six independent unknowns of Eqs. (28), (29), (39), (40), (45), (46) and (47), here chosen

to be El, W2, F1,7 F 2, 1 and 92, can be composed in the compact scheme of Table I. The

omitted arguments of the functions A; and Bi [c.f. Eqs. (41) and (42)], e and h [c.f. Eqs.

(32) and (33)], and ) [c.f. Eq. (48)] follow from their respective rows and columns. The

empty squares are meant to be zero. As an example, the equation for E,,(rE,) (first row)

would thus read:

Jm(Kiro)Ei - Jm(K,ro)F - Ym(nsr.)F 2 + e(i 2 )Jm(K 2 ro)W 2 = 0 (72)

As in the two preceding sections, an infinite set of characteristic solutions will ensue

because of the multi-valuedness of the principal solutions, i.e., here the Bessel functions.

For k -+ 0 and m -+ 0, a case that was discussed in detail by Buchsbaum et al. (1960), we
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see, in light of the limit values of A, B, e and h that the 6 x 6 matrix of Table I becomes

reducible into two 3 x 3 matrices. Hence, pure TM modes (where W 2 = g1 = 92 = 0),
or pure TE modes (where El = F1 = F2 0) are then permitted, regardless of whether

the plasma is magnetized or not. But while TMOO modes can exist in an axially bounded

cavity, the TEOO modes exist only as cutoff modes TEO, in a waveguide. The electrostatic

limit for which w -- 0, yields similarly a reducible blockform, which is most easily seen

when the rows for E,(r0 ) and H,(r0) are interchanged.

Finally, for comparison with the TMo0 o mode family in an unmagnetized plasma,
discussed in the two preceding sections, we consider the simpler case resulting from Table I,
when the plasma fills the cavity completely (r. = rc). The subset of conditions from Table I

is then

J,.(Klrc)[kA 2(r 2 , rc)e(K2 ) - w/pAj(K2 ,rc) = e(K2)Jm(r-2rc)x

[kA 2(K1, rc) - wiL.Ai(ni, rc)h(K1 )].

(73)

Particularly, for k = 0, m = 0, and by virtue of Eqs. (25), (32), (33), (43) and (44),

this reduces to

J o(KErc)Jj(KHrc) = 0, (74)

permitting either E 0 for J1(KHrc) = 0, or 02 0 for Jo(KErc) = 0. The latter is, as

above, the condition for the TMOO cavity modes where, as in the unmagnetized case Eq.

(58), the substitution

E0 -+ oP (75)

makes the connection to the empty-waveguide or cavity solution. The second condition

can only be fulfilled for a TEO, waveguide mode at cutoff.

In section III.B.1, we present approximate perturbation techniques to simplify the

results of the present section. They may be used whenever the plasma introduces a small

perturbation to the fields of a cavity, either by a low plasma density, or by a thin plasma

column, r. < rc.
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F. Optical Approximations: Diagnostic Applications

Starting from Maxwell's equations as they apply to dielectric media, light refraction

and diffraction can be suitably described by geometric optics or by wave optics. Both

deal with the modification of the light propagation by the dielectric properties of matter,

and its boundary surfaces. Wave optics are appropiate whenever the wavelength is of

the same order of the magnitude as the characteristic dimensions of the dielectric body,

and plane waves are a reasonable assumption. Geometric optics are applicable when the

wavelength is much smaller than any characteristic gradient length (Cornbleet, 1976 and

1984). Given the appropriate range of validity, the same formulations may be applied

to microwave propagation. They yield efficient tools for a qualitative, and, often times,

excellent quantitative description of the propagation phenomena. Microwave lenses and

mirrors, but also beam refraction or deflection by plasma density gradients are common

examples for the use of geometric optics. On the other hand, diffraction patterns emerging

from horn antennae, the Fabry-Perot transmission and reflection properties of a plasma

layer, or the coherent Bragg scattering of microwaves off a plasma density wave are well

described by wave optics.

Rather than justifying the theoretical basis of these optical approximations, which can

be found in an abundant literature (Cornbleet, 1976 and 1984) we will only briefly cite a

few applications useful to the diagnostician.

1. Microwave Horn Antennae and Microwave Imaging

While microwave power is best transported in waveguides, it is frequently necessary

to shine it into a plasma sample for investigation. For this, horn antennae are used (Love,

1976; Milligan, 1985). Lenses and mirrors are employed when better imaging is neces-

sary, for instance for improved spatial resolution (Primich et al., 1965). Microwave lenses

are usually made from a polymeric compound of suitable refractive index (Brown, 1953;

Gandhi, 1981; Milligan and McDonnell, 1986). Another possibility for a lens is to use

a plano-concave metallic channel plate, which, via Huygens' principle, transforms, say, a

spherical wavefront into a plane wave front, and vice versa (Uckan 1981). Mirrors serve

not only for imaging purposes, but also for double path transmission of interferometric
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measurements in low-reflection plasmas (Efthimion, et al., 1985; Overzet and Verdeyen,

1986); and mitre box type mirrors are, for example, used for microwave beam scanning

applications (Uckan 1983). Partially reflecting mirrors and grid polarizers permit exper-

imental setups essentially equivalent to their counterparts in light optics (Fellers, 1962;

Davis and Patsakos, 1983; Suvorov et al., 1984).

2. Optical Refraction in Plasma Columns

Associated with the dielectric constant of a plasma there is also a refractive index

defined by
C kc k

n, - - (76)
Vphase W k

In the geometry of Sect. II.E.1, this becomes using Eqs. (54), (55) and (10)

nrvP = 1- ()
w( - iv)

As long as v < w, the effective refractive index of a plasma is nr < 1, unlike in most

other optical materials. With the identification (77), we can characterize the refractive

imaging properties of a homogeneous plasma column in analogy to the optics of a cylinder

lens (Meuth, 1986). This simple calculation is usually sufficient to estimate the deflec-

tion that the beam may suffer in multi-channel or scanning microwave interferometers,

or the divergence in transmission measurements. For inhomogeneous plasmas of circular

or elliptic cross section, the more realistic, but also more involved ray-tracing method is

available, based on Eqs. (54) or (63) (Shmoys, 1961; Jones and Wooding, 1965; Faugeras,

1965; Tallents, 1984), see also Sec. IV.D.1.

3. Fabry-Perot Methods

Similar to the resonances in cavities, and the propagation characteristics in wave-

guides, whereby the electromagnetic waves bounce back and forth, reinforcing themselves

constructively, there are such resonance and transmission phenomena in any bounded

dielectric, be it enclosed by a metal wall, another dielectric or by vacuum. Dielectric wave-

guides are an example; when immersed into a plasma, the altered wave propagation in
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the waveguide can be used to determine the plasma density interferometrically with high

spatial resolution (Stewart and Robson, 1965; Lisitskaya and Shustin, 1981; Armand et

al., 1982).

As in the case of an optical interference filter, a plasma slab or column displays trans-

mission and reflection characteristics for microwave radiation near the cutoff, that are

oscillatory with frequency, or plasma density. This effect is due to multiple internal re-

flections in the plasma (Heald and Wharton, 1978). With the plasma density approaching

its critical value given by Eq. (11), the wavelength in the plasma becomes large according

to Eq. (56). Hence, the situation where the wavelength is of the order of the plasma slab

thickness or column radius, may easily arise. Moreover, if the plasma is situated in a

conductive chamber, microwave reflections off nearby walls can make a similar additional

effect, making the interpretation of measurements difficult. This is of particular impor-

tance, when the plasma density and therefore the plasma wavelength vary with time. The

Fabry-Perot effect can be exploited to reduce such unwanted reflections from metallic walls

by methods similar to those used for anti-reflection coatings in optics (Severin, 1956; Kato

and Hutchinson, 1984). The most desirable situation, especially for microwave interferom-

etry, is that the plasma density be low, while its thickness accomodate many wavelengths.

However, this cannot always be achieved. For higher plasma densities, n, --+ n, and

smaller column width, A - r0 , a Fabry-Perot cell, in conjunction with focussing lenses, can

be employed (Bize et al., 1965; Primich et al., 1965; Davis and Patsakos, 1983).

III. CAVITY AND WAVEGUIDE DIAGNOSTIC TECHNIQUES

In Sec. II.E, the propagation and resonance conditions for microwaves in bounded

and unbounded plasmas were derived. We now proceed to various experimental schemes

to measure such propagation or resonance properties for plasmas in waveguides or cavities.

The final goal is, as already mentioned, to determine the plasma parameters, as density,

collisionality, and, in some instances, also the electron temperature.

A. Cavity and Waveguide Loading by a Plasma

A cavity resonance can directly be observed by insertion of a small probe (Sec. III.B).
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The presence of a plasma in a waveguide or a cavity can be measured by the microwave

transmission, absorption, or reflection that the plasma causes. In any case, the plasma can

be interpreted as a load. We include both a dissipative load, that converts electromagnetic

energy into thermal energy and a reactive load, that, like in an inductor or a capacitor,

only temporarily stores energy, usually in an oscillatory fashion, cycling energy into and

out of the rest of the microwave circuit. Once the notion of a load (or impedance) is in

hand, the reduction to a lumped circuit scheme is simpler (Adler et at., 1960; Fano et al.,

1960). Therefore, we first determine the flow of energy in and out of a plasma-cavity or

waveguide configuration.

1. Poynting's Theorem

The energy associated with the wave fields follows from Maxwell's equations (13) and

(15):
1 8(eE 2 + ,H 2)_
1 &E + + V- (E x H) =-j- E. (78)2 t

The Poynting's theorem (78) is nothing else than the continuity equation for the

energy density of the electromagnetic fields, u = e0E 2 /2 + ps0H 2 /2; its changes are due

to energy convection, given by the poynting vector E x H, or due to the work done by

the electric field on all the charged particles, and vice versa. The latter can be seen when

equating j -E = nF - di/dt = neE -di/dt. For the spatial and temporal field oscillations

(20) or (21)where the Fourier amplitudes are still complex, Eqs. (13) and (15) lead to a

somewhat different form:

iw(eoIE12 - p.sIH12 ) = V . (E x Nj*) +j* . (79)

Equation (78) is equivalent to (79), once it is integrated over one temporal or spatial

period. Equation (79) provides a direct interpretation: (1) Magnetic and electric energy

are 180' out of phase. (2) The real part of its RHS accounts for, as expected, a damping, or

a dissipative load while the imaginary part gives rise to a reactance. In light of the complex

conductivity (5), that enters, via Eq. (3), the term j* -t, the latter is of importance for

plasmas with low collisionality. The complex conductivity is a consequence of the fact
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that the plasma electrons can pick up and return field energy. They generate displacement

currents, while their collisions lead to dissipation of the microwave power.

2. The Quality Factor or Q Value

In Sect. II.E, we saw that a plasma situated in a cavity will alter its resonance fre-

quency and mode spectrum. Before discussing the diagnostic applications of this fact, we

will first consider the resonance properties of a cavity. These may be characterized by the

quality factor Q, defined as the ratio of the (energy stored in the cavity) x (resonance

frequency, when no damping is assumed) to the average dissipated power loss. In order to

compute these quantities, Poynting's theorem (78) is integrated over the cavity volume to

get
1 1 fdVj-E+fdafi.( x 1)

- (80)Q wO pifdVH 2

where, in the denominator, the fact was used that at resonance W = wo, and after period

averaging, electric-field energy = magnetic-field energy = 1/2 total electromagnetic energy.

Note that, had Eq. (79) been used instead of Eq. (78), the Q value would then be defined

as the real part of the resulting complex products analogous to those of Eq. (80), relating

Q to the dissipation. * Clearly, for an empty cavity, whose walls have infinite conductivity,

Q -- oo, invoking the idealized conditions (50) and (52). For the realistic case of a very

large, but finite wall conductivity a, (Jackson, 1975; Gandhi, 1981), the average power

loss in the numerator of the RHS of Eq. (80) becomes, to leading order of 1/0c, A powAH ,

where HII is the magnetic field just outside the conductor, tangent to the cavity wall, and

6 is the skin depth, 62 = 2/(powo-c). The field HI1 follows from a mode calculation similar

to the one presented in Sec. II, where the boundary conditions (50) and (52) remain, again

to leading order in 1/c, unaltered. This implies that Q depends on the chosen mode.

There are various simplifications possible for specific modes, e.g., the TM modes, and the

Q factor can commonly be reduced to the form (Jackson, 1975),

Q = (V) x (Geometrical factor), (81)
Sc6

* Sometimes, the term Q value is also used for a cavity with a dielectric plasma present,

which makes Q complex.
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with Vc/Sc being the cavity's volume to surface ratio. The importance of the quality

factor to the resonance width will be illustrated in the following section. The Q value in

the presence of plasma follows also from Eq. (80), by inserting the fields, and the plasma

conductivity discussed in Sec. II. Specifically, plasma effects will contribute to the Q value,

if there are ohmic losses in the plasma, or if the wave fields are evanescent inside the

plasma, which happens for w < w,.

3. The Lumped Circuit Analog

The discussion of the preceding section can be illustrated for an LRC-circuit. There,

the magnetic energy (in the inductor L) is Wm = 1I2, I being the current, while the

electric energy (in the capacitor C) is W, = !q 2 /C, q being the charge, with 9 = I2 dt-

according to Kirchhoff's law. The power dissipated by the resistor R is given by Joule's

heat, Pt = RI 2 . Thus, conservation of energy (or Poynting's theorem) requires 8 t(Wm +

W,) = -Pt. Consequently, the current I obeys the equation for free oscillations

Ld2I(t) +RdI(t) + I(t)= 0, (82)
dt2 dit C

which, with I(t) oc emn, gives

)2. (83)w 0 2Qw2Q 2Q

The lossless resonance frequency is denoted by w0 = 1/ v/i C, whence the quality factor

Q = 2woWm/Pt = wL/R, using Wm = W, for w = w0 . Equation (83) can be solved for

1/Q to yield:
Swo 1 -=0. (84)SQ

Meanwhile, for oscillations forced by an in-series drive, the RHS of Eq. (82) becomes

Otu(t). With u = uoeit , the (stationary) solution for the current is then

(t) = + i( - W)] - ewt. (85)
WOL Q wo w

Writing I in terms of amplitude and phase I I I ei+(I,u), the amplitude attains

its largest (resonant) value for w = ±w,, and drops to one half of that for Iw/wol =
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/1 + 3/(2Q)2 ± V//2Q, in contrast with Eq. (83). And while current and voltage are in

phase for w = w0 , the current tags the voltage, and vice versa, respectively, for W > w0

(due mainly to the inductor), and for w < w0 (due mainly to the capacitor). A totally

different situation arises if the circuit is driven in parallel.

These examples show that, while the quality factor Q is directly related to a circuit's

dissipation, the resonant properties, like resonance frequency and half width, depend, aside

from Q, also on how the currents are permitted to flow. In a cavity, this is dependent upon

the choice of mode, as already mentioned. Hence, a lumped circuit has to be chosen in

accordance with a certain mode or mode family.

Lumped circuits provide not only model descriptions for resonant cavities, but also for

the mentioned transmission, reflection and absorption measurements usually far away from

any resonance. Terms as impedance, with its real part, the resistance, and its imaginary

part, the reactance, (or, inversely, the admittance, with conductance and susceptance,

respectively), have all their counterpart for waveguides, and can be calculated from the

wave fields via Poynting's theorem (78) or (79) (Adler et al., 1960; Fano et al., 1960;

Jackson, 1975).

B. Resonant Cavity Techniques

One of the earliest plasma diagnostic techniques, the resonant cavity method was

developed by Slater (1946), and first applied to the characterization of ambipolar diffusion

in a helium plasma (Biondi and Brown, 1949). As already mentioned, the presence of

the plasma in the cavity will result in both a shift of the cavity's resonance frequency

and a change in the Q value. These two effects are, respectively, related to the plasma

frequency, and therewith the electron density, and to the frequency of collisions of the

electrons with other plasma or neutral particles. The early success of this technique was

based on the fact that the experimental results had a simple theoretical interpretation,

when employing a first order perturbation theory, which obviated a machine computation,

something rather involved in those days. However, in order for the perturbation approach

to be valid, a series of conditions on configuration and parameters of the plasma have to

29



hold, which cannot always be met under laboratory conditions (Chen et al., 1968). The

rigorous, in the limit of a homogeneous cold plasma model, methods of Sec. II must then be

employed to compute the resonance frequencies and the mode structures in a cavity, and

its dependence on the plasma density, collision frequency, plasma radius and the physical

dimensions of the cavity.

1. Perturbation Theory Formulae

The assumption is made that the plasma, or the displacement currents in the plasma

modify only very little the resonant wave fields of an empty cavity. Following Slater (1946),

we describe the damped cavity oscillations, just as in Sec. III.A.3, by means of the real

and imaginary part of the angular frequency w, as given by Eq. (79). There, the energy

flow in and out of the interior of the cavity is determined by V - ($ x N*), the imaginary

part of which accounts for the wave reflections off the walls, and thus gives rise to the

cavity resonance frequency, while its real part accounts for dissipation in the wall, leading

to damping, characterized by Q. Assuming that the currents j = *5*E, in the plasma are

mainly non-dissipative displacement currents, v < w,, we can obtain from Eq. (79) the

small relative frequency shift due to the plasma (Biondi and Brown, 1949; Biondi, 1951;

Buchsbaum, et al., 1960):

6w 1 Im f dV E* -(a(8
W 2wcE fdVIE 2

The complex conductivity tensor *U* is given by Eqs. (5), or (8) and (9), and the

integration is to be taken over the cavity volume; the resonant frequency w, and the wave

fields $ are those for the empty cavity. When dealing with a non-magnetized plasma,

where a is a scalar, Eq. (86) reduces further to

6w 1 f dVImoIE12  fe2G.(
__ _-_ _ _ G. (87)

W 2wE, fdVIE12  mw 2 6,

From the discussions in Sec. II, this result also applies to magnetized plasmas, when a

TMomo cavity mode is used. Thus, aside from a yet to be determined geometrical factor G,

the average plasma density i can directly be inferred from measuring the relative resonance
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frequency shift 8w/w. Various authors have derived or used approximate formulae for G

(Biondi 1951; Buchsbaum et al., 1960; Golant, 1960; Anissimov et al., 1965; Bisschops and

de Hoog, 1985), defined in terms of the known, unperturbed electric field distribution E(F)

and the assumed, or determined by other diagnostic measurements, density distribution

n(F) /fi:

G = VEf , F- (88)
f dV|IE_( F)|12

and a similar, although somewhat more complicated definition holds, if * a is still a tensor.

Therefore, unlike in the rigorous model description of Sec. II, plasmas with an axial density

variation may be described by the perturbation approximation, as long as the latter is

justified.

A perturbation approximation is usually applicable when the plasma modifies but

little the empty cavity fields. This is the case whenever (a) w, < w, v < w, and (b) if

a magnetic field is used, for w, < w, or (c) the radius of the plasma column, r0 , is much

smaller than the cavity radius, r, irrespective of how large the plasma density, as long as

the penetration depth e for the evanescent cavity fields e > r0 . The depth e is, in the

absence of collisions, not related to the skin depth used in Sec. III.A.2, but is of the order

of (Buchsbaum et al., 1960):

C 1
c 1 (89)

As an example, we evaluate Eq. (86) or (87) for the TM010 mode. The electric field is

then E. oc J0 (rw/c) (Gandhi, 1981; Secs. II.C.2 and II.E.3), where rcw/c = 2.405 in order

to meet the radial boundary condition (49). Furthermore, since k = m = 0, (a) -+ Op [Eq.

(5)], which is non-zero only within the plasma column, r < r0 . For r0 < rc, the integral

in the numerator may be expanded and evaluated by the mean-value theorem, to yield

212 )(r 2 /2), while the integral over the cavity radius in the denominator is evaluated by

standard procedures for Bessel functions. As the final result we get the average electron

density in terms of the frequency down shift I w1, the resonant frequency w, and the plasma
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cavity radius, r, and r,:

li = 0.54folmwI I, (90)e2 2

or, with w = 27rf (Hz):
r 2

e = 6.7 x 1o-afl8fl (i-. (91)

Whenever the above mentioned conditions for a perturbation approximation apply,

then the quantitative range of validity of Eqs. (86) through (88) can be determined by

appropiate Taylor expansions of the general resonance condition of Sec. II.E.5 (for specific

examples see Buchsbaum et al., 1960; Agdur and Enander, 1962; Lieberman and Lichten-

berg, 1969). This procedure is only correct in the absence of axial density gradients. For

plasmas with such gradients, only qualitative arguments can be given, usually invoking

the electrostatic approximation which is generally not valid. In such a case, the validity

limits cannot be quantified, potentially giving rise to an appreciable systematic error when

interpreting resonant cavity measurements by means of Eq. (86) or (87).

2. Cavity Configurations and Microwave Circuitry

A number of cavity configurations are commonly in use, generally in the shape of a

right circular cylinder (Biondi, 1951), although rectangular cavities can be used (Schulz

and Brown, 1955). Depending on the configuration and technique, the density range

roughly suggests what microwave frequency to use. Frequencies between 1.5 and 10 GHz,

and rarely, up to 35 GHz have been reported in the literature. Since the cavity has to be

resonant at the chosen or available frequency and mode, this will determine the overall

dimensions.

a) Empty Cavity. The resonance frequency of an empty cavity, for an (m, n, p)

mode is given by

f, = en + .(92)
2 b2  (2

The axial length of the cavity is denoted by 1, while the parameter amn depends on the

transverse geometry. For a rectangular resonator with major and minor dimensions a and

b, a 2 = M 2 + n2 b2 /a 2 , for both TE and TM modes. For a circular cylindrical resonator
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of radius r, = b, 7ramn is the nth zero of Jn(7ramn) = 0 for TE modes; and the nth zero

of Jm(7ramn) = 0 for TM modes. If the transverse dimensions a, b or rc are much smaller

than the axial dimension 1 (or vice versa) the first (second) term under the square root in

Eq. (92) becomes dominant, assuming a low order mode, where {m, n, p} = {0, 1, 2}. Thus

for rc < 1, the resonance frequencies become virtually independent of the cavity length.

This is always the case for the TMmno mode family.

b) Open Cavity. Open cavities (Fig. 6(a)), i.e. cavities with no axial end plates, are

based on this fact. But at high wave numbers p (shorter axial wave number k), they behave

more like waveguides. This type of cavity and its diagnostic applications are discussed by

Vainstein (1963) and Anissimov, et al. (1965).

c) Closed Cavity. The most common type is the closed cavity. Two typical config-

urations are shown in Fig. 6(b) and (c). To interpret the measurement for high densities

(n > n,) by means of the perturbation theory of the preceding section, the radius of the

non-conductive plasma vessel has to be much smaller than the cavity radius (Fig. 6(b)).

This is also advisable to minimize the effect upon the Q value of the two holes in both

end plates that serve as feed-throughs for the quartz tube. Circular waveguides, that are

well below cutoff for the cavity resonance frequency, usually extend from these holes to

reduce radiation losses. Choosing a thin-walled quartz tube minimizes its dielectric effect

in the cavity. All these deviations from an ideal cavity may distort the fields near the holes

(fringe fields). A change in Q and the resonance frequency, compared with their calculated

ideal values, is the result; and a recalibration, possibly with a dielectric rod, instead of the

plasma column, may be necessary (Chen et al., 1968).

These problems can largely be avoided if the plasma vessel and the cavity are the same

(Fig. 6(c)). Such a configuration requires that both the microwave power that generates

the plasma, and the probing microwave radiation are fed into the same cavity, although

each may form a different cavity mode (Schulz and Brown, 1955; Asmussen et al., 1974).

Frequently, plasmas are also generated by power application in the radio-frequency (rf)

range, for instance in a plasma reactor with plane parallel electrodes. Both electrodes can
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be configured such that they close to a microwave cavity (Bisschops and de Hoog, 1985),

possibly using appropiate choke connections that are matched for the microwave frequency

while constituting a high impedance for the rf frequencies in the MHz range. When us-

ing such a plasma vessel cavity configuration it is permissible to apply the perturbation

formulae of Sec. B.1, only for low plasma densities, whenever w, < W.

Most measurements in closed circular cylindrical cavities of either type of Fig. 6(b) or

(c) are based on the TMOO mode family, usually for low order modes, n = 1, or 2. The

reason for this is (c.f. Secs. II.E.3 to E.5) the simple interpretation of the results in this

case, since such pure TMOno modes can exist in a cavity, be it empty, partially or entirely

filled,with a plasma of arbitrary density or collisionality, and with or without an embedded

axial magnetic field, that is present in many experimental configurations. The empty-

cavity Q value for these modes is easily calculated (Sec. III.A.2), and the perturbation

formulae become particularly simple (Sec. III.B.1). By choosing the dimensions such that

rc/l > 0.493 [c.f. Eq. (92)], the TM010 mode will have the lowest cavity resonance frequency,

which can be helpful for unambiguous mode determination. The most commonly selected

mode is the TM010 mode, although there are also benefits in choosing the TM0 20 mode

instead (Harris and Balfour, 1965). Since the resonance frequency for any of the TM,.no

modes is independent of the cavily length I (since k = p = 0), the cavity lacks simple

tunability for such modes. Modes with p 4 0 can be tuned by means of sliding endplates

(Asmussen et al., 1974).

d) Large Plasma Vessel. Sometimes, the experimental or technical situation ne-

cessitates a rather large plasma vessel. It is simultaneously to be used as a cavity, high

mode numbers m, n and p will be the consequence, whenever the dimensions a, b and 1 are

much larger than the vacuum wavelength for the used microwave frequency. But as long

as the quality factor of the vessel is sufficiently large, the density can still be determined

by the plasma-induced frequency shift (Akulina, 1965; Fessenden and Smullin, 1965). A

high cavity Q is required in order to separate well any of these high order modes that are

narrowly spaced in frequency, and can be accomplished by low-resistance chamber-wall

seams and joints, and a minimum of feed-through orifices.
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e) Capacitor Resonator. Frequencies in the low microwave or the high rf range are

used to excite dipole resonances in a plasma column, situated in a capacitor type resonator

(Fig. 6(d)). Such a resonator is more akin to a TEM structure than a cavity. The dipole

resonances are closely related to the plasma frequency (Tonks, 1931; Dattner, 1961), and

can therefore also be used to measure the plasma density. For this low frequency range the

electrostatic limit is invoked that suppresses all the rf magnetic fields in comparison with

the electric fields. The employed diagnostic frequency must still be much higher than any

characteristic ion frequency. The electrostatic potential obeys Laplace's equation. For a

cylindrical plasma column of radius r0 , placed into a plane-parallel capacitor, with plate

spacing d > r0 , the electric field induced in the plasma by the capacitor field E" is then

given by (Crawford et al., 1963)

E 2E" (93)
(2 - W)

relating the resonance frequency to the plasma frequency, W,. = wp,/-/2. It is thus less than

the plasma frequency. Crawford et al. (1963) addressed in particular the modifications

of Eq. (93) due to the presence of a static magnetic field, and Ankin (1965) considered

the plasma-capacitor coupled oscillations in an LC circuit. Experimentally, higher order

resonances also emerge, and Parker et al. (1964) have achieved good agreement between

their measurements and a non-uniform hot-plasma model description. They also treated

the quadrupole oscillations of a plasma column.

f) Power Feed. The geometry of the microwave power feed, and its location in

the cavity or waveguide wall is decisive for the excited mode structure. The various feed

schemes are essentially the same as with (a) waveguide-to-waveguide junctions, or (b)

coaxial line-to-waveguide junctions (Ishii, 1966; Gandhi, 1981). A loop coupling (c.f. Fig.

6) induces locally a magnetic field perpendicular to the loop. Local electric field excitation

can be achieved by a coaxial line, whose outer conductor is connected to the cavity wall,

while its inner conductor protrudes slightly into the cavity. For waveguide-waveguide or

waveguide-cavity junctions, iris couplings and slot couplings are used. The latter select

a particular electric field polarization. The location of the power feed should match the

location of the field maximum for the desired mode, for waveguides usually A/4 away from

35



the end wall. For higher order modes, possibly several feeds at appropiate positions may

be necessary.

g) Circuitry. The aim of the microwave circuitry is to detect the change in resonance

frequency due to the susceptance change, Re(E), and/or the change in Q value due to the

conductance change, Im(E). Both changes are caused by the presence of the plasma within

the cavity (Harris and Balfour, 1965). A microwave discriminator (Pollard, 1980; Gandhi,

1981; Somlo and Hunter, 1985) provides the standard scheme for such standing-wave-ratio

measurements that determine, respectively, the plasma density and the collision frequency.

The discriminator consists of an oscillator (microwave generator), two hybrid tees, to which

detectors and/or matched loads are attached, and a short-circuit plunger to balance the

reflections from the cavity under off-resonance condition. A simplified, frequently used

scheme retains one directional coupler (instead of the hybrid tee), and isolates the source

by in-line attenuators (Biondi, 1951). Another method to directionally couple out the

measured signal is the use of pick-up probes in the cavity, similar to the driving couplers

discussed earlier (Schulz and Brown, 1955). The latter are a natural consequence when

coaxial lines or TEM waveguides are used.

h) Source. A microwave source with some tunability, that depends on the envi-

sioned density range, is required, be it manual or by sawtooth type frequency sweep. In

the case that the plasma source is modulated or pulsed, the manual operation is simple

but time consuming; the frequency swept operation requires a trigger in synch with the

plasma source, possibly with an additional adjustable time delay provision (Biondi, 1951;

Lieberman and Lichtenberg, 1969; Bisschops and de Hoog, 1985). The tuning range is

limited by the frequency dependency of the discriminator components, particularly of the

short-circuit plunger.

3. Microwave Reflectometry

Transmission and reflection measurements, c.f. Fig. 1, can be performed on plasmas

that partially fill a waveguide, or by irradiating the plasma surface with microwave power

(Vadnjal and Buffa, 1965). Transmission measurements are rare, since the density range
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where this would be feasible is narrow. Either (a) the plasma is tenuous or optically thin

at the used wavelength, and virtually all the microwave power is transmitted. Then the

dispersive effects and to a lesser extent, the refractive effects are dominant. The dispersive

effects are the basis for most cavity measurements, * and for interferometry. Exploiting

the refractive effects for diagnostics would have to rely on complicated inverse ray tracing

calculations and has, therefore, not been employed so far. Or (b) the plasma density is

close or has reached the cutoff level, and/or it is much thicker than a penetration length.

Then essentially all of the microwave power gets reflected, which is used for reflectometry

(Anissimov et al., 1960). This technique was used to characterize moving or stationary

plasmas filling a waveguide segment (Bethke and Ruess, 1964; Minami and Takeda, 1969).

Roughly speaking, the plasma acts as a waveguide termination, that can be determined

by a bridge circuit or discriminator. If the plasma is not optically thick, but terminated

by a shorting (wave reflecting) endplate that closes off the waveguide end, the same bridge

technique can determine the phase shift after a double pass, and the attenuation constant

the microwave has suffered by the plasma. This technique is a hybrid between a transmis-

sion measurement and interferometry, and requires that no appreciable power is reflected

off the plasma. Bhattacharya, et al., (1967) used this technique to monitor the ionizing

radiation in a nuclear reactor. They also used the same bridge scheme for a radiometric

determination of the electron temperature (see Sec. V).

IV. INTERFEROMETRIC TECHNIQUES

Microwave interferometry is one of the methods used to obtain the line integrated

density of a plasma. This measurement, and the knowledge of the plasma dimensions

give the average plasma density, one of the basic parameters needed to characterize a

discharge. In contrast with probes (Chen, 1965), which can perturb the plasma to be

measured, interferometry is non-intrusive.

A. Basic Relations

As a consequence of the dispersion properties of a plasma at microwave frequencies

* Even for wp, > W, the plasma still has to be optically thin to apply perturbation theory

[c.f. Eq. (88)].
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discussed in detail in Sec. II, a wave propagating through a plasma undergoes a phase shift

relative to a wave propagating in vacuum. For a wave with an electric field parallel to the

magnetic field in the plasma, the propagation properties are independent of the magnitude

of the magnetic field. For this case, known as the ordinary mode, the wave number in the

plasma is given by Eq. (56). In practice, for a waveguide carrying the fundamental TE10

mode, the electric field is parallel to the minor waveguide dimension.

In interferometry, the plasma whose density we would like to measure is inserted in

one of the arms of a Mach-Zender interferometer, as shown for example in Fig. 7. The

resulting phase shift between the waves traveling along paths of equal length, one through

the plasma, and the other in the waveguide, is measured to determine the plasma line

density. The phase shift AO is related to the plasma parameters by

64= (k,, - k.)dx = k,, [1 - 1--)1/2 ]dx (94)f W2

where the integral is along the plasma path. The plasma frequency w, is given by Eq.

(6). We have assumed that the collision frequency is much smaller than the microwave

frequency and, therefore, the effects of collisional damping can be neglected. For w2 <w 2

or, equivalently, for a plasma well below cutoff n, < n,, with n, the critical density given

by Eq. (11), the phase shift in units of 27r, i.e. the number of fringes, is given by

N = AOMt= 4.48 x 101 8A0 (cm) ne(x, t)dX (m- 2 )

= 1.34 x 10-1 1 n,(x, t)dx (m-2) (95)
fo (GHz) m

where A, and f, are the microwave vacuum wavelength and frequency, respectively.

B. Types of Interferometers

Although the basic interferometer configuration is common to all systems there is

a great variety of methods to determine the phase shift. Next, we discuss some of the

techniques typically used:

1. Bridge Interferometers

When the expected fringe shift N < 1, that is for low density plasmas, a bridge inter-

ferometer (Hotston and Seidl, 1965) is a simple system to set up. In this interferometer,
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the microwave power from a source goes through a ferrite isolator and is then divided into

two branches. One is used as a power monitor, the other goes through another directional

coupler to obtain the two arms of the interferometer. Each leg contains a variable at-

tenuator used to adjust the signal amplitudes in each leg. The reference leg contains in

addition a phase shifter also used for the initial adjustments. A hybrid tee with two diode

detectors after ferrite isolators is used as the detector assembly. A detailed discussion of

the adjustments required is given by Hotston and Seidl. With a proper setup direct phase

measurements are possible, since for small phase angles sin Aq Z A0. Their system was

limited to phase shifts A0 < 7r/9. One advantage is that the time response of the system

is limited only by the detector response which can be several MHz (see also: Overzet and

Verdeyen, 1986).

Another system (Lindberg and Eriksson, 1982) extended the phase evaluation to ar-

bitrary phase angles by using exact analytical expressions of the detector response. A

detailed discussion of the phase evaluation is discussed in their paper. In their system

there is still an ambiguity at some values of the phase angle where it is not possible to de-

termine whether the phase increases or decreases. They propose that an alternate density

measurement such as probes could be used to eliminate this ambiguity. In cases where

probes are impossible to use, phase quadrature techniques can be employed as discussed

in Sec. IV.B.5.

2. Frequency Swept Interferometers

A schematic diagram for a serrodyne, frequency swept or "zebra" interferometer is

shown in Fig. 7. The operation of the interferometer is as follows: an additional length

of waveguide AL is introduced in one of the arms of the interferometer which produces a

phase shift At = kgAL, between the arms, where k. = 27r/Ag. The guide wavelength Ag

is frequency dependent and is given by

1
1\g (96)9 [(Lo)2 ( 1 2]1/2

where c is the speed of light and a the major dimension of rectangular waveguide.

The microwave source, either a klystron or Gunn oscillator, is swept in frequency
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using a sawtooth of frequency fp. After an isolator, that prevents reflections back to the

source, a side-arm coupler is used to split the power into the two interferometer arms. The

detector is a double balanced mixer (Roddy, 1986), a device whose intermediate frequency

(IF) output has two different frequency components given by the sum and difference of the

input frequencies of the local oscillator (LO) and signal (RF) inputs. The sum frequency

is naturally rejected by the frequency response of the circuitry used after the IF. In this

interferometer, the plasma leg is connected to the RF input and the reference leg with

the additional phase shift is connected to the LO, but the arrangement can be reversed.

The microwave power in the LO leg should be high enough to drive the mixer. Its value

depends on the unit and is typically 3 to 7 dBm.

The phase information from the plasma is contained in the difference frequency signal

of the IF output, in which the microwave source frequency cancels. This term is propor-

tional to cos(kg(t)AL - AO(t)). The time dependence of the argument is a consequence of

the frequency sweep, i.e. kg, and A4, the phase shift produced by the plasma. For times

less than a sawtooth period, the guide wave number is given by:

kg(t) = kg(0) + Ak Pt = k,(0) + 1 k A foft (97)
27r 2r df,

where Af, is the amount the source frequency is swept and fl = 27rfP..

Substituting for this value of kg, the IF output has the form cos(n1t - AO+constant),

where n is given by
1 dk AL A 2Af(n =---f 1 L - ( ) - (98)2 rdf, Ag Ao f"

The interferometer is adjusted to obtain integer values of n, usually n = 1 or one complete

cycle. In this case the IF output is modulated at the sweep frequency.

Since the oscillator has a limited frequency sweep range of typically several hundred

MHz for Gunn oscillators, Eq. (98) is used to determine the required AL. In practice, AL

is chosen taking into account the practical limitations in Af 0 and the amplitude of the

sawtooth voltage is adjusted until a clean sine wave is obtained at the IF port. Usually, the

output frequency of the source is not linear with the applied voltage over the entire range
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of adjustment. When the required frequency sweep exceeds the linear range there will be

some distortion of the sine wave at the IF port. If possible, AL should be chosen such that

the amount of frequency sweep occurs over the linear range, however, this may require an

excessively long waveguide and attenuation may become a problem. In addition, at the

sawtooth resets there will be "fly-back" glitches in the signal. A tunable amplifier or a

bandpass filter can eliminate the problems associated with the distortion and fly-back.

Finally, the IF output from the double balanced mixer is pre-amplified and sent to a

phase detection system. The phase between a reference square wave from the sawtooth

generator is compared to the square wave of the IF output that results from a bandpass

filter and limiting amplifier. The phase sensitivity is 27r/16 limited by the sweep frequency

of 1 MHz and the response of the components used in the phase detection circuit. More

details about phase detection techniques are given in Sec. IV.E.

3. Heterodyne Interferometers

As the plasma density and size increases, as in present day fusion experiments, the

microwave frequency required to avoid cutoff and refraction problems, discussed in detail

in Sec. IV.D.1, increases. It becomes necessary to use millimeter and submillimeter sources

and techniques. At these higher frequencies, the available source power decreases rapidly,

the losses in the transmission elements become significant and waveguide alignment needs

to be accurate. It is therefore important to improve the sensitivity of the detection system.

Heterodyne techniques, which involve the use of two different frequency sources, are quite

powerful in this respect.

One example of such an interferometer (Cummins, 1970) operates as follows: a mi-

crowave source of frequency f0 is used as a local oscillator, a different source operating at

frequency f, + fm provides the plasma signal. Care has to be taken to keep the LO and

main source locked to each other so that the difference frequency remains constant. This

is accomplished using automatic frequency control (AFC) loops. The signals are combined

in a mixer which provides an output at the intermediate frequency fm which in turn con-

tains the phase shift produced by the plasma. A local oscillator at frequency fm is used
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to detect this phase shift using phase quadrature techniques.

Some super-heterodyne receivers use several frequencies to eliminate frequency drifts

in the transmitter and local oscillator (Efthimion et al., 1985), using up and down con-

version with appropiate filter stages. Other receivers (Coffield et al., 1981, 1983) use two

different intermediate frequencies (IF). A high radio frequency (several hundred MHz),

is used to separate the microwave sources. The proper combination of mixers and lo-

cal oscillators provides down conversion to another IF output which contains the plasma

phase information. This second IF output, at a frequency of tens of MHz, is sent to phase

comparator circuits to obtain the phase shift which is then stored in transient digitizers.

The complexity and cost of these systems increase tremendously in comparison with

those previously described. The reader is referred to the references for more details on

these techniques. Super-heterodyne receivers are widely used in scattering and radiometry

which will be discussed in more detail in Sec. V.

4. Frequency Modulated Interferometers

A system developed by Ernst (1964), which operates on a similar principle as the

heterodyne technique, uses a microwave source of frequency f, which is split using a side

arm coupler with one arm going to the LO input of a mixer. The other arm, goes through an

isolator into a single side band modulator which generates an output with frequency fo +fm,

where fm is an intermediate frequency used in the modulation source. This wave traverses

the plasma, undergoes a phase shift A0 and goes to the RF input to the mixer. The mixer

output of frequency fm and which contains the plasma phase information is compared with

a reference signal from the modulation source. Again, basic phase detection techniques

can be used. The modulation frequency can be tens of MHz which allows excellent time

resolution and the capability of using FM demodulation techniques (Jacobson, 1982) to

obtain the phase. Phase digitizers are commercially available in this frequency range. One

problem with this system is that single side band modulation at millimeter wavelengths

has a conversion loss on the order of 30 dB. In addition, care should be taken in the

suppression of the carrier or unwanted side bands generated in the modulator as discussed
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in detail by Ernst.

A variant of the technique is given by Wallington and Beynon (1969). The standard

microwave bridge, with a side arm coupler to split the power into the main and reference

legs is used. However, two modulators are added in the plasma arm, one single side band

modulator and a balanced modulator. Each is driven by frequency synthesized signals

differing in frequency by 1 kHz, in their case, the single side band unit driven at 111.101

MHz and the balanced at 100.100 MHz. The reader is referred to their article for a detailed

explanation of the different frequencies generated in these modulators. The net result is

that the signal traversing the plasma differs by 1 kHz from the microwave source, and when

both are combined in a mixer, a 1 kHz output results. The reference 1 kHz is obtained

from mixing the two frequencies that drive the modulators. The phase difference is then

determined with a counting circuit. High phase accuracy 27r/1000 is obtained with a 1

MHz clock that drives the counting circuit.

5. Quadrature Interferometers

In these systems, signal outputs which are proportional to the sine and the cosine of

the phase angle are generated simultaneously. Each signal can be digitized and a computer

program used to calculate the phase as a function of time. The digitization rate should be

high enough to prevent a phase change due to the plasma in excess of 7r between samples. If

this is the case the program can evaluate the phase uniquely at each point and assume the

smallest change in phase between adjacent time points in order to determine the direction

in which the phase is changing.

In practice, such a system has been implemented by Kaiser et al. (1962). In their

system the reference leg of the interferometer contains two mixer networks one of which

is phase shifted by 900 with respect to the other. Brenning (1984) uses a similar method

and describes in detail the initial setup required. A detailed analysis of the calculations

needed to obtain the phase is presented in this reference.

An alternate method is used by Lister et al. (1982) in which a fast phase shifter (FPS)

is used in the reference leg to provide a phase shift of 90* in a time much faster than
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the time rate of change of the density. A single detector is used whose output signal is

proportional to the sine of the phase during one time period, for example when the FPS

is off, and then to the cosine during the next period when it is on. In practice, a four

port circulator is used since at the frequency used (140 GHz) fast phase shifters are not

available. The whole system is controlled by a microprocessor which also calculates the

phase as a function of time. The time response of the system is limited by the number

of computer cycles needed to evaluate the phase and the clock rate of the processor itself

to 24 psec. As in any quadrature method changes in phase should be less than ir in each

cycle which gives the upper limit in the line density changes measurable with this system.

6. Other Interferometers

When the time rate of change of the plasma is slow and the density is low, so that

fringe shifts do not exceed 27r, commercially available lock-in amplifiers can be employed

to obtain the phase (Levine et al., 1965; Brown et al., 1970).

A variant of the frequency swept systems (Sec. IV.B.1) can be used in which the

waveguide path difference between the two legs can be substituted by a fast phase shifter

(FPS) in one of the arms (Ernst, 1967). The microwave source is not swept in this case.

After a directional coupler, the plasma or reference leg contains a y-junction circulator

that routes the microwaves through the FPS, and a sawtooth is used to modulate the

phase in the FPS. A double balanced mixer can be used as the detector. The IF output is

identical to that previously described in Sec. IV.B.1. A similar system was used by Uckan

(1984) to obtain a direct readout phase system. In his setup the voltage to the FPS is

continuously adjusted using a feedback loop to keep the arms nulled. The output from the

phase detector serves as the input to a current driver to the FPS. The voltage produced

by this current across a resistor is therefore proportional to the phase change due to the

plasma.

Another variant of the serrodyne system is obtained using a phase locked loop which

changes the frequency of the microwave source (Strawitch et al., 1986) such that the change

due to the plasma is cancelled. In this case a measurement of the voltage at the source is
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required to infer the phase. Some systems have used a Gunn oscillator simultaneously as

source and detector (Bartlett and Brand, 1973).

C. Abel Inversion and Multi-Chord Interferometers

Interferometry provides only a line-integrated density measurement, therefore several

radial chords need to be measured in order to obtain the density profile. Consider a

cylindrical plasma of radius R which is azimuthally symmetric, and a phase measurement

along a chord located at a distance h from the axis. The phase shift at each chord location

is given by

A(h) = 2 n(r)rdr (99)
|R r 2 -_h2

The inversion of this integral equation for ne(r), known as the Abel inversion formula is:

n,(r) = - . (100)
r ,r dh Wh2 - r 2 (

Even in the case of azimuthal symmetry considered here, it becomes immediately apparent

that since the value of the derivative of the phase shift is required, a large number of chord

measurements is needed to infer the density. In practice, it is useless to increase the number

of channels too much since the accuracy of the measurement is limited by the accuracy in

AO, which is typically 5 to 10 %. In addition, the complexity of the system and its cost

increase usually limit the number of channels to the range of 5 to 10. When the number of

available channels is small (< 5), there is often not enough information to infer the profile

using Abel inversion. For these cases the line density is calculated using assumed density

profiles (Demas et al., 1985) with several fitting parameters. Alternatively, a constant

density, trapezoidal, parabolic or Gaussian density profiles can be used to calculate the

line density. These profiles involve only a few parameters which can be determined using

least squares fitting techniques. In this manner, the profile and plasma parameters which

best fit the experimental data can be obtained. Another useful technique involves the use

of a derivative free inversion formula (Deutsch and Beniaminy, 1982) which can decrease

the errors incurred in the differentiation of experimental data. When the assumptions of

azimuthal symmetry cannot be made it becomes necessary to use more than one view of

the plasma (Sauthoff and von Goeler, 1979; Wetzer, 1983). This is the same technique
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used in tomographic reconstruction for which inversion algorithms are readily available

(Huesman et al., 1977).

Experimentally, in cases where the plasma is in steady state or it is highly reproducible,
a movable single channel system can be sufficient (Uckan, 1983). In this system, a horn-

lens (Uckan, 1981) arrangement with 450 mirrors is used to eliminate attenuation problems

caused by material wall flaking. In transient discharges however, multi-chord systems are

often required to obtain density profiles for each discharge. Such information is needed

to understand the plasma properties and transport in each experiment. In a frequency

swept multi-chord system using a single source (Lisitano, 1975), there can be crosstalk

between adjacent channels. In this case, it is possible to use different values of AL for each

chord. With this method, several harmonics of the sawtooth frequency are obtained and

a tunable amplifier for each channel is used to eliminate crosstalk. Waveguide attenuation

as AL increases may become important, especially at higher microwave frequencies. In

these cases it becomes necessary to use overmoded waveguide to reduce the power losses.

When several channels are fed from a single microwave source, there should be enough

power available for each channel. Alternatively, each channel can be fed using individual

sources (Sevillano et al., 1984). The power requirements depend on the detection method

and the components chosen, which we discuss in more detail in Sec. IV.D.2.

A horn-lens arrangement is used by Casper et al. (1986) to generate a microwave beam

that scans the plasma. In this system, two perpendicular views are used to obtain tomo-

graphic reconstruction information. An array of closely spaced horns is used as receivers

in this system.

D. Interferometer Design

A practical and simple approach to interferometer design is given which should be

useful to the novice in microwave interferometry and techniques. A basic knowledge or

expectation of the plasma density and dimensions is required at the outset. There is also a

need to specify the requirements we would like to be met by our system which vary in each

application. These may include the time response needed, accuracy of the measurements,
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stability of the system with respect to long time drifts, etc. The issues that need to be

considered when designing an interferometric system can be divided into:

(a) Physics issues related to the properties of the plasma under investigation, such as

wave propagation properties, plasma size and its relation to probing wavelength, refraction

effects, cutoff and plasma lifetime.

(b) Practical issues such as phase sensitivity, unambiguous density tracking, microwave

source power, electrical noise immunity, maintenance, ease of operation, cost, convenient

data acquisition and display.

(c) Specific issues that may be unique to the application, such as vacuum needs,

elimination of reflections, access to the plasma chamber, etc. The large variety of such

specific requirements exceeds the scope of this chapter and must be addressed on a case-

by-case basis. Therefore, meeting them is left to the ingenuity of the experimentalist.

1. Choice of Microwave Frequency

This is the most basic yet most important step in the design. The microwave frequency

required is determined by the physical properties of the plasma under investigation. In

addition, its value has important implications on a variety of other issues such as phase

sensitivity, system cost, availability of power sources, etc. We first consider the physics of

the microwave propagation and then some of the practical issues.

From the physics standpoint, we need to consider: a) plasma size, b) cutoff and c)

refraction.

a) Plasma Size. The basic assumptions made in Sec. II.E.1 used in the derivation of

Eq. (56) need to be satisfied. These require a plasma size large compared to the wavelength

of the probing beam. From a practical point of view, the spatial resolution of the system

is limited by the fact that it is not possible to focus a microwave beam to a size smaller

than a few wavelengths (Sec. II.F). In addition, the wavelength in the plasma increases

due to its dispersion properties. Typically, it is required that the characteristic transverse

plasma size d must satisfy d > 5A, (Ernst, 1972).

b) Cutoff. If the plasma density increases such that 2f > W2 , or n. > n, the critical
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density given in Eq. (11), the microwave beam does not propagate through the plasma; it

is cut off. Although a measurement of the transmitted power can be used to determine

when the microwave beam is cut off, and thus the density at that time, this technique

only provides a lower bound on the density. In interferometry, it is useful to determine the

density unambiguously at all times during the discharge. Therefore the frequency chosen

must be high enough to avoid cutoff. It is usually enough to choose n, > 3n,. Note that

near cutoff Eq. (95) needs to be replaced by the exact form Eq. (94).

c) Refraction. Refractive effects usually pose a more stringent condition on the

microwave frequency than cutoff. It is of particular importance for the design of multi-

chord systems where refraction near the edge may deflect the beam out of the receiver. In

the presence of density gradients a microwave beam is refracted according to Snell's law

(Born and Wolf, 1980). The total angle of refraction can be calculated by integration over

the path length. It is given by (Shmoys, 1961)

a=J ndx (101)

To estimate the refraction angle some assumptions about the plasma density profile must

be made. A parabolic density profile given by n, = n,(1 - r 2 /r 2) where n0 is the density

on axis and r, the plasma radius can be solved analytically. In this case, the maximum

refraction angle calculated from Eq. (101) is given by amax = sin- l. This maximum

refraction occurs near the edge. Although because of symmetry, a vanishes for the chord on

axis, refraction effects should be considered even when designing a single channel on axis.

Under some conditions, due for example to the presence of instabilities, density gradients

can move across the beam causing refraction.

When designing a multi-chord system the maximum angle is limited by deviations

from a chord measurement and the possibility of crosstalk between adjacent channels. The

maximum refraction angle may therefore be limited by the total number of channels in

the system M. The maximum refraction angle is in this case inversely proportional to M.

In systems with high gain horns, commonly used to provide beam directivity and because

of power transmission requirements, the refraction angle a should be smaller than the
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acceptance angle of the horn, otherwise no power will be coupled. The acceptance angle

of a horn depends on its gain (Gandhi, 1981; Bhartia and Bahl, 1984).

It is useful to consider a practical example of a plasma with peak density 4 x 1018 m- 3 ,

using 25 dB gain optimum horns. Usually the plasma is uniform along one direction

(otherwise we would also need to measure the density profile in that direction). Therefore,

either the H-plane refraction angle or the E-plane needs to be considered. For a cylindrical

plasma with a magnetic field along the axis of the cylinder, H-plane refraction is the

important one. For an optimal horn of gain G, the half-power beam width is given by

ah = 800/V/G/(27r0.81) (Ghandi, 1981), which translates to a condition on the critical

density of n, > 5.9n,. This is a factor of 2 larger than the required cutoff condition. The

microwave frequency is then f0 > 44 GHz.

Next we consider some of the practical issues. As in most designs, there are conflicting

requirements. Whereas cutoff and refraction indicate the use of higher microwave frequen-

cies, phase sensitivity decreases with frequency as in Eq. (95). Thus selecting a frequency

that is too high may limit the dynamic range of the interferometer. System cost is almost

always an important consideration, and as the microwave frequency increases microwave

components cost increases rapidly. In addition, power sources and levels are more scarce.

If possible, it may be better to select frequencies commonly used commercially, such as for

example 10 GHz or 24 GHz, for which many inexpensive components are readily available.

2. Choice of Interferometer Type

Aside from the practical issues such as cost, maintenance, ease of operation, etc.,

there are also important physical limitations to consider such as phase sensitivity and time

resolution. Of the latter, time resolution may be the most important consideration when

choosing a particular interferometer system.

Bridge interferometers are comparatively inexpensive but require careful initial setup

and adjustments (Hotston and Seidl, 1965). Unless used for low densities, where the fringe

shifts are small N < 1, the evaluation of the phase angle can be ambiguous (Lindberg and

Eriksson, 1982). Their main advantage is a good frequency response, several MHz, limited
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by the detectors used.

The time response of serrodyne systems is limited to the sweep rate of the source fre-

quency and the availability of digital techniques to evaluate the phase shift. As previously

mentioned a 1-MHz system is easily accomplished using commercially available phase dig-

itizers with a fringe resolution of 27r/16. Better fringe resolution can be obtained at lower

sweep frequencies.

Frequency modulated systems can have good frequency response, on the order of the

modulation frequency. One advantage of these systems is that quadrature phase detec-

tion techniques are easy to implement using off-the-shelf components. Commercial phase

digitizers are also available. An important disadvantage is the low conversion efficiency of

the side band modulators in the millimeter range. Heterodyne systems have similar time

response and advantages albeit they can be complicated. Their sensitivity makes them the

natural choice when power levels are not high, usually at high microwave frequencies.

3. Power Requirements

The minimum power that is acceptable at the detector depends among other things

on the experimental noise environment, the type of interferometer chosen and the detector

sensitivity. It is not possible to give a number that applies to all situations. The value of the

signal-to-noise ratio at the detector should be decided upon and working back through the

microwave network the losses caused by the components, waveguide transmission, plasma

and vacuum propagation losses, etc. are calculated to obtain the desired output power at

the source. We discuss some examples.

a) Component Losses. It is important to consider insertion losses, which gives a

measure of the power loss in transmission through a device or network. Single side band

modulators mentioned earlier have a large insertion loss, on the order of 30 dB. Reflection

losses caused by impedance mismatch between components can be calculated using the

voltage standing wave ratio (VSWR) of the device. In this case the voltage reflection

coefficient p, is given by
VSWR - 1

= VSWR+1(

50



Since power goes as the square of the voltage the reflected power is given by p".

b) Transmission Losses. We consider waveguide and vacuum losses. As the mi-

crowave frequency increases, dissipation caused by the finite resistivity of the waveguide

material becomes important. The theoretical attenuation can be calculated in terms of this

resistivity, waveguide dimensions and microwave wavelength. Attenuation in rectangular

waveguide is discussed in detail by Benson (1969). When using the theoretical formula,

it is important to know that the discrepancy between the calculated and measured value

increases with frequency, particularly in the case of copper guides. Measured values of the

attenuation for copper guides at 35 GHz and 70 GHz are respectively 0.65 dB m- 1 and

in the range 3.5-5.3 dB m- 1. Etching of the waveguide followed by hydrogen annealing

gives closer agreement with the theoretical values. This shows the importance of wave-

guide etching and cleaning techniques required when waveguide sections are built rather

than purchased. The number of flanges, elbows, twists, etc. should be minimized to avoid

losses at each connection. Waveguide benders can be fabricated to allow more complicated

waveguide paths with a minimum of breaks in the guide.

The attenuation values given above indicate that waveguide losses in the fundamental

mode become unacceptable at high microwave frequencies. A simple solution for low-

loss transmission over moderate distances up to about 30 m is the use of an overmoded

guide (Robson, 1969). Commercially available tapered transitions are used to connect the

fundamental to the larger, overmoded waveguide. Important considerations when using

overmoded guides are losses, mode conversion in bends, tapers and other discontinuities

and trapped-mode resonances. Experimental data on losses in overmoded guides are not as

extensive as for fundamental guides (Robson, 1969). To avoid mode conversion in bends,

gradual bending is required, with radius of curvature greater than 20 times the wavelength.

Trapped-mode resonances (Robson, 1969; Bhartia and Bahl, 1984) in configurations when

there are transitions to fundamental guide at each end of the transmission line, can reduce

substantially the transmitted power due the excitation of standing cavity modes in the

larger guide.
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Power attenuation caused by the plasma, which can become serious near cutoff, needs

to be estimated. In addition, there will be losses in the transmission through the vacuum.

To obtain plane waves incident upon the plasma, a condition that was assumed in the

derivation of Eq. (56), the distance d from the horn to the plasma should satisfy d>2D 2/A 0 ,

where D is the largest horn dimension. In this case, the received power P, at the antenna

is related to the transmitted power Pt by

167r2R2 Pt (103)

where Gt and G,. the gains of the horns, and R their separation. The gains are usually

given in reference to an isotropic radiator. Open ended waveguides are sometimes used

instead of horns (Efthimion et al., 1985). As for horns, the open ended gain can also be

computed (Gandhi, 1981).

4. Choice of Components

It is outside the scope of this chapter to discuss in detail the great variety of microwave

components available. Microwave technology books which have kept up-to-date (Heald

and Wharton, 1978; Gandhi, 1981; Bhartia and Bahl, 1984; Roddy, 1986) are instead a

valuable source which can help in the understanding of the operation of microwave devices.

Examples of possible applications are also given in such references. We will restrict our

discussion to a few examples.

Ferrite isolators are frequently used in interferometer systems to eliminate reflections

back to the source or in detector assemblies. When working in regions of high magnetic

field, often found in fusion experiments, it is necessary to provide magnetic shielding to

such devices. A high permeability material, soft iron for example, surrounding the device

is commonly used. The material should be thick enough to be below magnetic saturation

(Jackson, 1975).

Power dividers frequently used include side-arm couplers and hybrid tees. Tees are

also employed in detector assemblies.

Attenuators and phase shifters are needed in some of the bridge and quadrature tech-
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niques discussed above in order to balance each of the interferometer arms. Usually, they

are of limited use in serrodyne systems. Phase shifters can simulate the presence of the

plasma and therefore can be used to check and calibrate the system.

When selecting horns, size may be an important consideration because of restricted

access to the plasma chamber. In those cases where a particular design is needed, the prop-

erties of horn antennas can be found in the literature (Love, 1976; Heald and Wharton,

1978; Gandhi, 1981; Bhartia and Bahl, 1984; Roddy, 1986). Microwave component manu-

facturers can usually fabricate them to order although this may be expensive. Generally,

standard gain horns are adequate. They have the advantage that they are commercially

available and their gain and emission patterns are readily available from the manufacturer.

If length is a problem, the commercial horns can be easily cut, which would be cheaper

than ordering a special unit. The gain of the shortened horn should be calculated or

measured.

Mixers are an important component in most systems. There are several kinds (Roddy,

1986) depending on the number of diodes used in the mixing process. Single diode mixers

can be used when the signal levels are relatively high and noise is not a problem. Balanced

mixers use two diodes and provide no isolation between the RF and IF ports. Double

balanced mixers provide isolation between all the ports and are the preferred choice when

signal levels are small. Isolation between the ports, especially between LO and RF, and

LO and IF is an important parameter when specifying a mixer. We recall that the LO

power is typically much higher than the RF power (- 7 dBm), the higher this ratio the

better is the isolation. The noise figure, the required signal-to-noise ratio and the isolation

are used to determine the lowest acceptable input signal.

E. Phase Detection Techniques

Digital, quadrature and FM demodulation techniques can be used to obtain the values

of the phase. In digital techniques, the phase is obtained using comparator circuits or

counters. For frequency swept interferometers, with f.,p < 1 MHz, a system developed

at the Princeton Plasma Physics Laboratory (Greenberger, 1978) can be used. Detailed

53



schematics and an explanation of the operation are given in that reference. Briefly, with

a master clock at 16 MHz, limited by the frequency response of the components used, the

phase sensitivity is 27r/16 at 1 MHz. Improved fringe resolution is obtained at lower sweep

frequencies. Using this technique a phase digitizer for CAMAC is commercially available.

In frequency modulated or heterodyne interferometers the phase information is con-

tained in a higher frequency carrier, typically tens of MHz. A phase comparator circuit

using fast ECL logic has been developed (Coffield et al., 1981). The phase comparison is

made by a pair of flip-flops, one for the LO reference and the other for the signal, clocked

to give an output pulse whose duration is given by the time difference between the input

signals. The outputs from the flip-flops are low-pass filtered and go to a differential ampli-

fier which gives an output voltage proportional to the phase shift. The phase range, given

by the number of total fringes, is adjustable.

At tens of MHz, quadrature phase detectors can also be used. In these, the sine and

cosine of the phase angle are generated and stored in digitizers. The phase is then computed

from the arctangent. The digitization rate should be large enough to avoid phase changes

greater than 7r between time samples. If this is the case the phase can be determined

assuming the smallest phase change between samples. Phase detectors are commercially

available but they can also be built using discrete components. A schematic diagram for

a quadrature phase detector is given in Fig. 8. In this circuit, the phase difference at the

mixer inputs should be carefully adjusted to 900. At these frequencies, proper grounding

techniques are required when building these circuits.

An output proportional to the phase can also be obtained using FM demodulation

techniques (Jacobson, 1982).

V. MICROWAVE SCATTERING AND RADIOMETRY

The measurement of the scattering of electromagnetic radiation by the electrons in

a plasma is a powerful diagnostic used in the determination of the electron temperature

and density, ion temperature and electron density fluctuation spectra. In addition, the

emission of radiation at the electron cyclotron frequency is used in fusion devices in the
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determination of the electron temperature. This is particularly useful in Tokamaks where

the magnetic field depends on the major radius of the device thus providing a radial profile

measurement of the electron temperature.

To cover in detail the theory of scattering of electromagnetic waves or the emission

of radiation in plasmas is outside the scope of this chapter. For details on scattering the

reader is referred to Evans and Katzenstein (1969) or Sheffield (1975). A simple treatment

is also given in Tsukishima (1979) and a review by Cano (1979). Radiation from plasmas

is covered in Bekefi (1966). A recent review of cyclotron radiation measurements is given

in Bornatici et al. (1983). A review of the instrumentation used in both techniques is

given by Luhmann and Peebles, (1984).

A. Microwave Scattering

Electrons accelerated by the electric field of the incident wave re-radiate such that the

resulting scattered signal satisfies energy and momentum conservation given by

w,=w,±w and k,=k±k, (104)

where (w,, ,) are the angular frequency and wave vector of the scattered wave, (w0 , k,)

those of the incident monochromatic wave and (w, k) characterize the fluctuations being

studied. The amplitude of the wave number for the fluctuations is obtained from trigono-

metric relations for the triangle formed by the three wave vectors k, k, and k, which

satisfy (104). It is assumed that the amplitude of the scattered wave vector is the same

as the incident, which implies the momentum tranfer to the electron is negligible. The

resulting relation is known as the Bragg condition

k = 2k, sin(6/2) (105)

where 0 is the scattering angle chosen.

The scattering parameter a determines the scattering regime under investigation. It

is defined as
1 A

A- - * (106)
k AD 47r,\ sin(0/2)
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where AD = (EokT/nee 2 )1 / 2 is the Debye length. There are two regimes of a to consider:

(a) a < 1 which applies for the density range in present day fusion experiments for incident

wavelengths in the visible or near infrared unless 9 ~ 0. For this case the scattering

comes from individual unscreened electrons and the spectrum determines the electron

temperature. (b) a > 1, in this regime scattering can be used to determine the ion

temperature or the level of fluctuations in the plasma. For wavelengths in the microwave

region this condition is satisfied for nearly all of the scattering angles 9 chosen.

The scattering cross section in a plasma can be calculated from classical electrody-

namics. The resulting cross section is proportional to the quantity S(k, w), the dynamic

form factor, defined as

S(k,w)= dre'' '')n(k, t)n*(k, t + r), (107)
2r, _oo

where n, is the electron density, V, the scattering volume, n(k, t) is the Fourier transform

of the electron density, the asterisk denotes the complex conjugate and the bar implies a

time average.

The differential scattered power per unit solid angle dfl and angular frequency can be

written in terms of the form factor as follows

d2 p5

dO = neVPo.oTS(k,w), (108)

where po = (1/2)cE2E, is the power density of the incident radiation, 0 T = (e 2 /mc 2 )2 (1 -

sin 2 6 cos 2 qo) is the Thomson cross section for scattering of electromagnetic radiation by

electrons, 4 is the angle between the electric field vector of the radiation and the plane of

observation (usually one chooses cos 0, = 1) (Sheffield, 1975).

In terms of the density fluctuations the total scattered power is given by

P, = po-TV.2fJn(t) 2 LAQr, (109)

where A0, is the angle subtended by the receiver. An absolute calibration of the scat-

tered power is usually performed using sources at known temperatures. The value of the

56



fluctuations can thus be obtained. Because the Thomson cross section is so small and the

microwave power available is not large (less than 1 kW), it is necessary that the fluctu-

ations are not of thermal origin but instead caused by instabilities or collective plasma

motion to be observable.

1. Measurement Techniques

Some of the techniques already mentioned in interferometry are directly applicable to

scattering. The frequency used for the scattering must be high enough so that refraction

is not significant. In addition, the scattering parameter a > 1 to measure collective

fluctuations and the frequency response of the detector must be in the range of the expected

instability. A spectrum analyzer is commonly used to obtain all the frequency information.

Basically there are two methods of detection: Homodyne and heterodyne. Homodyne

systems are simpler and involve only one microwave source, examples are given in the

literature (Okabayashi and Arunasalam, 1977; Paris and Hollenstein, 1983; Rohatgi et

al., 1985). In heterodyne systems (Doane, 1980; Machuzak et al., 1986) more than one

microwave source is used, leading to more complexity. The sensitivity of these systems

is greatly improved over homodyne and when measuring fluctuations which also involve

plasma rotation they allow the determination of the direction of rotation.

At each scattering angle only a particular value of k is obtained. In many cases it is

necessary to measure the scattering at several scattering angles to properly identify the

mode present in the plasma (Goldston et al., 1976; Paris and Hollenstein, 1983)

B. Radiometry

The measurement of the radiation from a plasma can be used to obtain information

about the electron temperature. For a Maxwellian plasma the radiation intensity is given

by
, 2 kT (1 - e-)

I~w) =(110)87r3 c2 (1 - Ce)'(

where r is the optical depth, and C the chamber reflectivity which depends on the optical

system. Frequently, the frequency is chosen so that the plasma behaves as an optically

thick (,r -* oo) object to the radiation. The temperature of the emitter can then be
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determined. The temperature can also be determined using the ratio of the emission

intensity from successive harmonics (Celata and Boyd, 1977). The density can also be

obtained from optically thin harmonics if the temperature is known (e.g. from an optically

thick harmonic).

2. Measurement Techniques

Conventional millimeter heterodyne receivers are the most commonly used (Taylor

et al., 1985 and 1986). When broadband detectors like InSb are employed a frequency

analyzing element is also needed. Examples are Fourier-transform spectrometers (Costley

et al., 1974; Bartlett et al., 1978), Fabry-Perot interferometers (Walker et al., 1981) or

grating spectrometers (Rutgers and Boyd, 1977).
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FIGURE CAPTIONS

Figure 1. Microwave measurements that characterize a device under test (DUT).

Figure 2. The three independent components of the dielectric tensor for a cold plasma vs.

frequency.

Figure 3. Wave coupling in the boundary: surface waves (a) plasma motion stops at the

boundary. (b) Plasma swings through the boundary.

Figure 4. Geometry for microwave interferometry.

Figure 5. Radial plasma profiles in a cavity or waveguide: (a) parabolic, (b) power-law

(right half), and equivalent rectangular (left half) profile.

Figure 6. Common cavity configurations.

Figure 7. Swept-frequency interferometer schematic.

Figure 8. Quadrature phase detector schematic.
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