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Three-dimensional equilibria in DRAKONs
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October 1987

An analytic formula of the second-order equilibrium beta limit for triangular-CREL DRAKONs

with arbitrary pressure profile is derived. Its predictions for a parabolic pressure profile are com-

pared with the full third-order numerical results, leading to a semi-analytic formula. The beta

limits obtained here are much lower than those obtained previously; for example, for a DRAKON

with straight sections and CRELs equal in length and with triangular CRELs of aspect ratio 2,

the peak beta limit is 2.2%, compared to the previous result 12%. Pressure profiles with sharper

boundaries have lower beta limits. The equilibrium is governed by the predominant quadrupole

Pfirsch-Schliiter current. Small deviations from the CREL condition have almost no effects on the

equilibrium, and thus the beta limit. Possible ways of raising the beta limit are also discussed.
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1. INTRODUCTION

A DRAKON [1,2] (a Russian acronym for long equilibrium configuration) is a closed-end mag-

netic confinement system that contains two long straight sections (s.s.) of low magnetic field,

joined at the ends by two special connectors of high magnetic field. These special connectors are

called "CRELs" (Connector of Rectilinear ELements). They satisfy the so called CREL condition

and in general have three-dimensional curvilinear configurations. A conceptual coil set design of a

DRAKON with triangular CRELs is shown in Fig. 1.

Ideally, the CREL condition guarantees that no parallel plasma currents flow out of the CRELs,

thereby keeping the equilibrium in the straight sections autonomous. In a realistic CREL, however,

only the lowest-order CREL condition can be satisfied. It prevents the dipole Pfirsch-Schliiter

current from flowing out of the CRELs and therefore the first-order (in plasma beta) shift is

independent of the lengths of the straight sections. Different designs of this type of CRELs have

been presented in Ref. [1,3]. Among them, the simplest one is the triangular CREL, which is made

up of three semitori twisted at the joints by 1200. Based only on the first-order shift, the peak

equilibrium beta limit 3* was estimated to be about 12% in the triangular CRELs [1]. (Note that

the beta limit given there was the average one, which was half the peak beta for a parabolic pressure

profile.) Since the beta in the straight sections is scaled up by the square of the mirror ratio, this

estimate can lead to a favorably high beta in the straight sections. This may be overoptimistic: the

higher-order distortions, which do depend on the straight section length, may dominate over the

first-order shift, resulting in lower beta limits. Observing this, Makurin and Mikhailovskii carried

out the calculation to third order in beta [4]. Nevertheless, the beta limit for a specific CREL was

not evaluated. Only some rough estimates were given. The conclusion was that if the straight

sections did not exceed the CRELs in length, the first-order beta limit remained true.

Here we follow the same line as Makurin and Mikhailovskii did, but generalize their calculation

to systems that do not necessary satisfy the CREL condition. This allows us to investigatethe effects

of deviations from the CREL condition (imperfect CRELs). Besides, the formulas to second-order

are valid for arbitrary pressure profiles. Thus the effects of different pressure profiles can be studied

easily. (A parabolic pressure profile were used in Ref. [4].) For the special case of a DRAKON with

triangular CRELs, an analytic formula of the second-order (including the dominant terms in the

elliptical distortion) beta limit is derived. The predictions of this formula are compared with the

numerical evaluations of the full expressions to third order. Through this a semi-analytic formula

for the beta limit in DRAKONs with triangular CRELs is obtained.

The coordinate systems, various expansions, and some basic equations are given in Sec. 2. The
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boundary conditions at the throats--the joints between straight sections and CRELs-are discussed

in Sec. 3. The shift and elliptical distortion are then solved in Sec. 4, the results being applicable

to DRAKONs with arbitrary connectors and arbitrary pressure profiles. For the special case of a

DRAKON with triangular CRELs, an analytic formula of the second-order beta limit is derived

in Sec. 5. The full expressions to third order for DRAKONs with imperfect CRELs are given in

Sec. 6. In Sec. 7, numerical evaluations of these expressions for a triangular-CREL DRAKON with

parabolic pressure profile yield the flux surface plots. The effects of deviations from the CREL

condition are investigated. The numerical beta limits are compared with the analytic ones, leading

to a semi-analytic formula. Finally, conclusions and discussion are given in Sec. 8.

2. COORDINATES AND BASIC EQUATIONS

In this section the derivation of the equations for the Pfirsch-Schlfiter current and distortion

functions is outlined in four steps: (1) set up a coordinate system along the system, (2) introduce

the flux coordinates, Fourier expansions, and distortions, (3) find the metric coefficients g93 , (4)

obtain equations for the distortions and Pfirsch-Schliiter currents. The mathematical expressions in

steps (3) and (4) are quite lengthy. We will only give the outline and some lowest-order expressions

here. Details can be found in Ref. [4,5].

The system axis (vacuum magnetic axis) of an arbitrary system is a spatial curve described by

the Frenet-Serret equations

- kii, (1 a)
ds

_ kf+ , (1b)
ds

_ ei, (1c)
ds

where s is the arc length of the system axis measured from some reference point. The normal,

binormal, and tangential unit vectors (fi, , t) form an orthonormal base along this axis (Fig. 2).

The curvature of the axis k(s) ;> 0 by definition. The torsion of the axis is K(s). We will use

an angle-like variable C = sIR to specify the longitudinal position (R = Lwt/21r is the effective

radius). A polar coordinate system (r, 0) is then set up based on (ii, /). The length element in

these coordinates is

d12 = dr2 + r2 d02 - 2Kr 2RdOdC + (h2 + .2 r2)R 2 d(2 , (2a)

with

h = 1 - kr cos 0. (2b)
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Next we introduce the flux coordinates (I , X2 , z3 ) = (a,w,(), where a is the radial coordinate

and w the poloidal angle. The magnetic field in these coordinates is

B = X'V( X Va + O'Va X Vw. (3a)

Here x and 7 are the poloidal and longitudinal magnetic fluxes divided by 27r. A prime denotes

derivative with respect to a. Field lines are straight in the flux coordinates

x'w = -( + const = p(+ const, (3b)

where p= x'/' is the rotation number. The current is

i= I'VCX Va + J'VaXVw + VaX Vv, (4)

where I and J are flux functions related to the poloidal and longitudinal currents, and v is the

Pfirsch-Schliiter current-a current whose average over w is zero. Amp6re's law and the MHD force

balance equation in these flux coordinates can be found in Ref. [6].

The magnetic axis, in general, is not the same as the system axis. At a fixed C, the origin of

the polar coordinates is shifted by x exp i9_. Here the ii direction is treated as the real axis and /I
as imaginary. A new polar coordinates (ro, Go) is now set up with reference to this shifted origin.

Thus we have

r exp(iO) = x exp(iO,,) + ro exp(iOo). (5)

Figure 3 shows the relation between these coordinates. (Note that the notations here are different

from those in Ref. [4]: our r, ro ----+ p, po there and w <-- 9, wo 4-* Oo.)

The new polar coordinates are now related to the flux coordinates through Fourier expansions,

Oo =a + H(a, () + Im(Aeiw + Me i2w + Nei3 w +-

- wo + H(a,C), (6a)

and

ro a + Re (Ae i2"o + re i3w +

Sa + Re (Ae i2 - AA*ew + (AA + r)e ia +---). (6b)

(The function H is called h in Ref. [4].) The form of Eq. (6a) is justified if we considered the

limiting case of a vacuum field, in which the rectification functions A(a, C), M(a, C), N(a,C) are

zero while H = HO depends only on the torsion of the system axis. In this case, HO rectifies the

angle wo = w such that field lines are straight in (wo, (). Equation (6b) states that the circular

cross-sections (ro = a) are deformed by the elliptical distortion A(a,C), the triangular distortion
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r(a.(), etc. Assuming that the plasma is enclosed by a conducting wall of radius b, ellipticity Ao(C),

and triangularity ro(C), we have

ro(b) = b + Re (Ao()ei2wo + ro(C)ei3wo + -) . (7)

When the plasma pressure is very low, the flux surfaces are shaped solely by the wall.

The shift function (a,() is defined by

* exp(iH) = x exp(iO1,). (8)

Since the axis of the wall (system axis) has zero shift by definition, we have, together with Eq. (7),

(b, () = 0, A(b, C) = Ao(C), r(b, C) = ro(C), . (9a)

Near the magnetic axis, flux surfaces should degenerate to circular tubes surrounding the magnetic

axis. Thus,

(0,C) is finite, A(O,C) = r(0,() ... = 0. (9b)

Further, any physical function f should obey the natural periodic boundary condition

f(C + 27r) = f((). (9c)

Equations (9) are the boundary conditions of the distortion functions.

The third step is to express the metric coefficients in terms of the rectification and distortion

functions. This can be done simply be plugging Eqs. (5), (6a), and (6b) into Eq. (2a) and then use

d12 = gj3daidx. (10)

Results are lengthy and can be found in Ref. [5]. It turns out that g33 is a dominant element and

Ampdre's law in flux coordinates leads to [61

S9 0. (11)

Different Fourier components of this equation can then be used to express A, M, and N in terms

of H, , A, and r.

Finally, to obtain the equations for the distortions, we Fourier decompose the Pfirsch-Schliter

current

v = Re (vC1)ei+ v(2)ei2w + v(3)ei3w + -.. ) . (12)

Then different harmonics of Amp6re's law yield (all the formulas are in cgs units)

p - // + 3( = i2R 47r (1, (13a)
(0 61 a 1 aV '
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2, - i A"+ -A' i8R47r (2) (13b)8(a a2 a@p' c V

where the subscripts of v and denote the order in #. Note that those terms proportional to
(2)

on the right hand side of Eq. (13b) are left out. They are small compared to vi , as will be shown

later by comparison of the analytic and numerical results. Furthermore, it is sufficient to use the

zeroth-order rotation number p , which is

4o = , - roR (14)
c 0 a

with

o = K. (15)

Similarly, the equations for v(') are found from different harmonics of the force balance equation.

The first two are

( - ( ) - = i cPRk (16a)

(2 0) (2) =.a'2 c k' (16b)

As before. we can use po and Ho in these equations. The zeroth-order H is

Ho = R C (o - K)dC. (17)

All the harmonics of the Pfirsch-Schliiter current v(") should obey the natural periodic boundary

condition Eq. (9c).

3. BOUNDARY CONDITIONS AT THE THROATS

In Makurin and Mikhailovskii's paper [41, the boundary conditions at the throats were not

given. Here from current continuity, we derive those boundary conditions necessary for obtaining

v and the distortion functions.

For a given flux surface, its radius in the straight sections is not the same as in the CRELs if

the mirror ratio RM > 1. They are related by

a,- vrRM. 
(18)

aCR

For simplicity, we will ignore any transition regions between the straight sections and the CRELs.

Thus B increases suddenly by a factor of R when entering the CRELs from the straight sections.

The differential equations for v(") and the distortions derived in Sec. 2 will be solved piecewise and

then jointed together through boundary conditions at the throats.

6



First is the Pfirsch-Schhiter current. In the flux coordinates (a, w, C), v has the dimension of

a surface current. We set up a closed surface with two adjacent flux surfaces and two constant-(

annuli, one in the straight section, the other in the CREL (Fig. 4). Then we apply the integral form

of the current continuity equation on this surface. Since f does not flow out of the flux surfaces,

the only requirement from continuity is that JC27rada be the same on the two annuli. Noting that

the longitudinal current J' = 0 in a DRAKON, we have from Eq. (4)

1 Ov
1 -27rada = const (19a)
a 8w

across the throat. After Fourier expansion, it becomes

v(")da = const. (19b)

Thus v(") is decreased by a factor of %R- as it enters the straight section.

Next we turn to the shift equation (13a). The jump in vl also generates a jump in 1.

Observing that ao/ and aui4') remain the same on both sides of the throat, we find that E' is also

the same on both sides. Hence , is enlarged by a factor of v/Ru~ as we go into the straight section

from the CREL. For the special case of RM = 1, , should be continuous at the throat. This fact

is used to determine the integral constant from solving Eq. (13a) with respect to C. The same

argument apply to other distortions as well. Thus we arrive at the conclusion: all distortions are

scaled up by a factor of /RA~ when entering the straight section from the CREL. In practice, we

will solve the equations for the special case Rf = I and then use these boundary conditions to

obtain the solutions in the straight section.

4. SOLUTIONS OF THE SHIFT AND ELLIPTICAL DISTORTION

Unless otherwise specified, the plasma beta (and beta limit) is the peak beta in the CRELs

87rP(O) _ 8rP(0)aCR (20)
B2

As explained in Sec. 3, we first deal with RM = 1, in which case all V(n) and distortions are con-

tinuous functions of C. Besides the 27r-periodicity [Eq. (9c)], all physical functions (,(n), H, , A,r,

etc.) actually possess ir-periodicity

f(C+ r) = f((). (21)

This is because we choose the two CRELs on both sides to be identical. It also implies that the

curvature and torsion of the DRAKON satisfy

k(+ 7r) = k(C), and r.((+ r) = (C). (22)
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Other geometric functions appearing in Eq. (7), such as b, Ao, etc., all have the same ir-periodicity.

This ir-periodicity is quite useful for checking the correctness of the solutions and evaluating the

integration constants.

Noticing that J = 0 in a DRAKON (current-free system), we can use Eq. (14) to rewrite Eq. (17)

as
Ho - ao(C), (23)

where

ao = R rdC = rds (24a)

is the twisting angle of the system axis. The zeroth-.order rotational transform is given by

to = -ao(27r) = 27rpo. (24b)

With Eq. (23), it is straightforward to solve Eq. (16a) to obtain

()()AM + D(C)) exp(-iC-, (25)

where

P(a),(_ (26)

and

D(C) = R j dkexp(-iao). (27)

The integration constant is found from the natural periodic boundary condition Eq. (9c) to be

A iexp( -i7rpo) D( 2 r). (28)
2sin(7rpo)

Plugging Eq. (25) into Eq. (13a) and observing that Eq. (13a) is an Euler-typed equation with

respect to a, we solve it by the method of Green's function to obtain

Re,(a)CADF(C)exp(-iLo(). (29)

Here 1 is the length of one CREL. The radial function

Rt, (a) = -2 P(a) - P(b) - 1 j daa2 P(a) + 1 jb daa2P(a)). (30)

And the axial function

CADF(C) 1 + RC(A) + D(()) - P((), (31)

with

F(R) T d((k exp(-iao). (32)
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The integration constant is

iexp(-i7rtpo) P(2 7) _ R 27rD(27r) (33)
2 sin(7ri o) 1 4 sin (7rLo)(

Eqs. (25) and (29) can be shown to have the-correct 7r-periodicity.

To obtain the shift for RM > 1, we simply replace (01/4b) by (01/4bCR) in Eq. (29) with other

b's unchanged. Since

b { bCR in CREL. (34)
b., = VRMbCR in s.s.

The resulting i then has the correct scaling when entering the straight sections from the CRELs.

Now we proceed to the second-order equations. The derivative

daaP) CADF(C)exp(-ipo() (35)

is put into Eq. (16b) to produce

v2) - - daa2P) (2) + *(2)(c)) exp(-i 2 (oC). (36)

Here

E(2)(() = D(C)CADF(C) - R ICd((A(') + D)D, (37)

and

and(2) = ix(irO,(2) (27r). (38)2 2sin(27wlo)

Equation (13b) is then solved as before, resulting in

A ,) R, (a)8CCN(C) exp(-i 2 (o). (39)

Here the radial function

Rx,(a) a da- daa2p - daP' daa2 ' + - da' daa' (40)
4kJ a4 Jo 03  I dn j4 a 1  (40

and the axial function

CCN(C) + R J d((e(2) + N(2)(C) (41)

The integration constant is

i exp(--i27rLo) R (27(2) + j d((2). (42)
2 sinr(2c o) l o 

In addition, we have chosen a circular wall, so that AO = 0.
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So far, our solutions are valid for arbitrary connectors. A CREL satisfies the CREL condition

= 0 at the throats. (43)

Since D(() = D(27r) = D(7r) in the straight sections, the CREL condition requires that

A = 0 or D(2w) = D(7r) = 0. (44)

Thus
iexp(-irjo)p(2 7). (45)

2 sin(vpo)

Once the CREL condition is satisfied, the shift j is independent of the length L of the straight

sections. The same statement, however, does not hold for the elliptical distortion A. A beta limit

to second order (including the elliptical distortion) will therefore depend on L, as we shall see in

Sec. 5.

5. AN ANALYTIC FORMULA FOR THE SECOND-ORDER
EQUILIBRIUM BETA LIMIT

In the original paper [1] that proposed the DRAKON, a formula based only on the first-order

shift j was used to estimate the peak beta limit 3*, leading to the favorable result of 0* - 12%

in the CREL. (Note that the beta limit given there was the average one, which was half the peak

beta for a parabolic pressure profile.) This was overoptimistic. It is the elliptical distortion A,

which is driven by the quadrupole Pfirsch-Schliiter current, that plays a more important role than

1. A beta limit that includes A will therefore be much lower than that without. In this section,

we will derive an analytic formula for the second-order equilibrium beta limit in DRAKONs with

triangular CRELs. The formula is good for arbitrary radial pressure profile. Thus the effects of

different pressure profiles can be investigated easily. In Sec. 7, the prediction of this formula will

also be used to cross-check the numerical results.

The DRAKON we consider here is perfect, in the sense that its curvature k is made up of step

functions

ko 0<s<l

k(s)= IL<s< +L (46)
k1 ±L<s<21+L

0 21+ L < s < 2(1 + L)

(ko = I/Ro = 3r/l, 1 being the length of one CREL, L that of one straight section), and its torsion

K of 6 functions

K(s) =ase6(s) - acR[6(s - 1/3) + 6(s - 21/3)] + a15[6(s - 1) + 6(s - I - L)]
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QCR[ 6 (S - 41/3 - L) + 6(s - 51/3 - L)] + aMr6(s - 21 - L),(

with

QCR = 120', ass = 19.110. (47b)

The rotational transform of the system axis is

to = - J Kds = 4(QCR - ass) = 403.560. (48)

We first calculate the three integration constants el, e(2), and ex. From Eqs. (45) and (22) it

is not hard to show
= iexp(-i7rpo/2)p() (49)

2 sin(rp /2)

To simplify notations, we will make R(/l -+ s and kI - k. After one integration by parts on F,

Eq. (49) becomes

2sin(ro/2) dsD(s)exp(-irpo/2). (50)

Noting that -rpo/2 = as - aCR, we plot D(s) exp(-irpo/2) and ao + rWpo/2 in Fig. 5. Different

segments of D(s) exp(-irpio/2) are represented by

37rs exp(-i27r/3) 0 < s < 1/3

D(s) exp(-irpo/2) 37r(s - 1/2) - i7rv /5/2 1/3 < s < 2/3 (51)

37r(1 - s) exp(-ir/3) 2/3 < s < 1.

Since it is a linear function of s, its integral over s is just the center of mass of an equilateral

triangular wire with side length 1/3 and uniformly distributed mass 7r on each side. Hence, by

finding the center of mass of the wire, we obtain

1 = 2V=sin(7rM/2) - -0.9235. (52)

This is a real number, as can easily be justified from Fig. 5(a).

Next is the constant e(2). Again, the use of the 7r-periodicity yields

O(2) _exp(-iro)(2)
2 sin(7rAo)

-si fds[D(s)exp(-irpo/2)]2 . (53)2 sin(irpo) Jo

The function [D(s) exp(-iiro/2)]2 is plotted in Fig. 6. Since |D(s)I = ID(1 - s)1, the average of

this function must be real. Thus,

e(2) i Re ds[D(s)exp(-irpo/2)]2 .
sin(7rpo) /o/

11
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Now it is straightforward to use Eq. (51) to obtain

0(2)- -i - = 4.433i. (54)
6 sin(wrpo)

Finally, the constant O, after applying the 7r-periodicity and partial integrations is

iexp(-irpo) (,( 2) L + 1 f As(2))

2 sin(7rpo) 7r1+ U

(Lf+ l) iexP(ir/o) 0(2) + '\O, (55)
2 sin(7rpo)

where = L/l and

e'\= - i exp(- irp) L dsD(CADF + sD)
2sin(7rpo) Jo

- i exp(- i7r/Io) f dsD(O1 + ds'D(s') + sD . (56)
2sin(irpo) Jo /

The three terms in the second expression of Eq. (56) are evaluated as follows. With Eq. (50),

the first term = exp(-irpo/2) 6 12. (57)
2 cos (,7rp/ 2)

Likewise,

the second term = 2 2 2sip(-irjo/2) dsD2

tan(! )Of. (58)2 2

The last term is integrated first by parts and then with Eq. (51).

The last term =s iko ) I dss2 D exp(-i7rpo/2) exp[-i(ao + 7rpo/2)]
2 sin(7rpM) Jo

i2 ip 1 + . (59)
2 sin(7rpo) (6 9 V/

Summing them up and substituting C1 with Eq. (52), we obtain

2 4 2 7r 21 +
24sin 2(7rpo/2) 2 sin(7rpo) \ 9V3 + 6/

= 1.280 - 2.217i. (60)

Thus

O= ( + 1)(5.548 + 2.217i) + (1.280 - 2.217i). (61)

This constant has an imaginary part proportional to L. Since O1 is real, this means that at the

the origin the relative phase between the shift and the elliptical distortion depends on L too.
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The beta limit 3* is defined to be the beta value at which the inner flux surfaces start to cross

the outer ones. Flux surfaces cross each other first at those points where various distortions are

constructive. To second order, this means that at the origin j and A are in phase or have a phase

difference of 7r. The #* to second order can therefore be obtained by considering the shift and

elliptical distortion at such points. It is found that the center of the straight section is a point of

this type. To show this, we shift the origin C = 0 from the throat to the center of the straight

section. Both el and &2) are not affected by this shift because D = 0 in the straight section. For

the same reason, the new eA is

S ) exp (i7rpo) &2) _ L ( 2) +
S +)2sin(7pizo) 2 CA

=7 ( +) 2 cot (rpO) 2 1= (L + 1) 12 sin(-7pYO) (24sin 2 (7rpo/2) 18v' sin(rpo)

= (L + 1)5.548 + 1.280, (62)

which is a real number!

At the new origin (' 0, Ei is in the -ii direction. A bulges out in the same direction too.

Thus in this direction,

r(a, 0) = a - Ei(a, 0) + A(a, 0). (63)

A schematic of r(a) is plotted in Fig. 7. At 3 = 0, it is simply r = a. When 0 is raised, distortions

make r bigger, while r(b) = b is fixed. Since the gradient of the radial pressure profile is in general

higher in the outer region than in the inner one, the r in the outer region will be driven to a bigger

value faster than that in the inner one. When 0 > 8', part of the outer region has r > b, which

means that the flux surfaces there have already crossed the wall. Thus the first sign for this to

happen is when

r'(b) = 1 - E'(b) + A'(b) = 0, (64)

where the prime denotes d/da. Equation (64) as a quadratic algebraic equation for 3 yields the

beta limit 0*.

Using Eq. (35) and the a derivative of Eq. (39) with a = b, C - ' = 0, and OA -. Oj in Eq. (64)

gives

1- daa2 P' + ( 2CbR',(b) = 0, (65)
\bca/ 2 o \bcR/

where from Eq. (40),

bR' (b) 1 - daP' daa 2 P

2b p 2 (b) P(b) (

b2 0 daa 2 + 262 daa. (65b)
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For the special case of a parabolic pressure profile

P(a) 1 - 2 (66)

Eq. (65) becomes

b]1 +0. (67)bCR 2 bCR 3

The old beta limit [1] is obtained by ignoring the 32 term in this equation, yielding

* - = 11.5% (for kob = 0.5), (68)
C"

which is independent of L. Now the #* to second order obtained from Eq. (67) is

bCR [29.59(i + 1) + 7.67811/2 - 0.9235
1 7.398(i+ 1) + 1.706

This 0* is considerably lower than the first-order one [Eq. (68)]. For example, 8* = 2.33% for

L = 1 and kob = 0.5. This is because the quadrupole Pfirsch-Schliiter current is much larger than

the dipole one (1I >> 10, j). The equilibrium and therefore the beta limit is determined mainly

by the elliptical distortion.

The effects of the pressure profile can also be investigate easily from Eq. (65). Two pressure

profiles are used: P = (1 - &9) and P = tanh((1 - &)/g)/tanh(1/g), where a = a/b. Scanning

the free parameter g, we plot #3* versus -dP/da at i = 1 in Fig. 8. The beta limit for the second

profile is slightly lower because its gradient is slightly bigger in the interior. Also, beta limits for

sharp boundary profiles (large gradients at the wall) are about half of those for smooth profiles.

Finally, although the center of a straight section is found to be a point where the effects of

j and A are constructive, it is possible that other points in the CRELs are of this type too. If

such points exist, it remains to be answered whether they give a more stringent beta limit or

not. Besides, are the second-order driving terms that are proportional to 62 and the third-order

distortions important? Instead of pursuing the formidable analytic calculations, we will tackle these

problems in a combined analytic and numerical way in the following Sections.

6. COMPLETE SOLUTIONS TO THIRD ORDER

In Sec. 4 we discussed in detail how to solve the shift and elliptical distortion. Other distortions

can be solved in exactly the same way. Relevant differential equations were given in Ref. [4]. Since

they are quite long we will only list the results here. The results here are valid for arbitrary

connectors-not necessary CRELs. This makes it possible to investigate the effects of deviations

from the CREL condition.
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The solutions up to second order are valid for arbitrary pressure profiles. The shift is

6 - ( bC) RC,(a)CADF(()exp(-ipo(), (70a)

where the functions RC, and CADF are defined in Eqs. (30) and (31). For the special case of a

parabolic profile [Eq. (66)],

6 _ a ' _- I CADF(C)exp(-ipoC). (70b)
b \.4bCR / 2

We mentioned in Sec. 2 that driving terms proportional to 1 were left out of Eq. (13b). Had we

included these terms and the Ao term, Eq. (39) would become

)2 [8RA1,(a)(CCN(() - CADF2) + 3RACCADF2] exp(-i2Co) + aA, (71)

with

R(5 = ( daa2-' da a2pda+4R,,. (72)ay~faa) 3b 3J f63  a4 Jo

For the parabolic profile,

(I\)
2 a(I - a) 8CCN(() - 5CADF2) exp(-i2po() + . (73)

The second order of the function H is

H2 = ( 'R)2 Rh(a) (j(0)C - j dC) . (74a)

Here the radial function

Rh (a) daa 2 P

a2/b2 for the parabolic profile, (74b)

and the function

M(C) = Im[(A') + D)*(0 1 - f)] , (74c)

with its average

f(0) =dC. (74d)

When calculations are carried out to third order, the expressions become considerably more

lengthy. Thus we will only deal with the parabolic pressure profile. The corresponding beta limits

to third order are found numerically in Sec. 7, and then compared with the second-order analytic

results of Sec. 5. If they agree well, then the results for different pressure profiles obtained in Sec. 5

are good approximations even to third order.
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The third-order shift is

exp(-io() (a/b)2 - 1 CADF* (5CADF2 - 8CCN) + R(p1 + Op)

(a/b)4 - 1 34C - 2 R

24 -1 4CCN - CADF CADF* 1 (P2 + Op2 )

+ CADF k()( - dC)] } - *. (75)

Here

( d( (A(') + D)*(5CADF 2 - 8CCN) - (01 + CQi)], (76a)

P2(( C d( [(A(') + D)* (CADF2 - 8CCN + 2iCADF(()(O)

S2iR ()( - C d( (A(') + D) - (02 + 6Q 2 )], (76b)

and

Oi = -exp(- irplo) .77
2 sin(7rpo)

The Q functions are defined by

( d( - exp(iao)(5CADF2 - 8CCN)] , (78a)

Q2(() ( d( [(A(') + D) 2 CADF* + 2kl exp(iao) 1CADF2 - CCN), (78b)

with

OYi - iexp(-igrpo) j( 2 7r). (78c)
2 sin(7rpo)

The triangular distortion is

1 (O(+(T(C))exp(-i3po()t+a., (79)
b 16 \2bCR} b2 VV

where

T(C) 2 CADF3 + 20CADF(C)CCN(C)

- Rj dC Ii(-8CCN - 4CADF 2)klexp(-iao) - 12CCN(C)(A(') + D)]. (80a)

The integration constant is

O = R d- f27r i exp(-i37rpo) (80b)
1 J dC[* 2 sin(37r yo )

with i- . standing for the terms in the square bracket of Eq. (80a).
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7. NUMERICAL EVALUATION OF EQUILIBRIUM FLUX SURFACES AND
BETA LIMITS

Based on the expressions given in Sec. 6, a computer code is developed to evaluate the distortions

and plot the flux surfaces. By varying the beta interactively and judging from the plots, we can also

find the beta limit. Although the code can work with arbitrary input geometric functions (k and

ao), we will only deal with DRAKONs with triangular CRELs here. The origin C = 0 is chosen to

be the center of a straight section, so that the integration constants from the code can be compared

with those from analytic calculation. This also avoids the problem of having functions with sharp

transitions, like k and ao, at the start and the end of the grid mesh. The number of grids around

each CREL is six to ten times more than that in each straight section, so as to circumvent the

sharp transitions. Integrals are computed with cubic spline quadratures. To test the code, we first

check the integration constants. As shown in Table I, the numerical and the analytic results agree

to within a relative error of 2%, which is reasonable. Note that this does not necessarily mean the

same for the numerical beta limits and the analytic ones [Eq. (69)]. Since the second-order driving

terms that are proportional to 2 and the third-order distortions had been neglected in Eq. (69).

The first case is a perfect DRAKON with triangular CRELs--one that is made up of step

functions (Fig. 9). At four locations along the axis (Fig. 10), the flux surfaces at the beta limit

0* = 2.2% for kobcR = 0.5 and L = 1 are plotted in Fig. 11. All three types of distortions-shift,

elliptical and triangular distortions-can be identified clearly. At the origin [Fig. 11(a)], the shift

and the elliptical distortion are constructive in the -ii direction, as was discussed in Sec. 5. Next we

consider a more realistic DRAKON in which all the step functions are smoothed out [Fig. 12(a)]. As

is shown in Fig. 12(b), the smoothed D function no longer satisfies the CREL condition exactly-the

dipole Pfirsch-Schlfiter current not vanishing in the straight sections. However, the flux surfaces and

the beta limit turn out to be the same. This is not unexpected: according to the finding in Sec. 5

that the quadrupole Pfirsch-Schliiter current dominates over the dipole Pfirsch-Schhiter current,

slight changes in the dipole Pfirsch-Schliiter current will have little effects on the equilibrium. When

L increases, 3* goes down because of larger quadrupole Pfirsch-Schliter current. The flux surfaces

at * = 1.3% for L = 5 are shown in Fig. 13, showing basically the same structure. Figure 14

summarizes the beta limits for different aspect ratios RO/bcR = 1/kobcR and 1.

To compare these results with the analytic formula Eq. (69), #* is plotted against i in Fig. 14.

The dots showing the numerical results are slightly lower than the dashed line resulting from

Eq. (69). This confirms that our second-order solutions make the main contribution to 0*. Fur-

thermore, noticing that their difference is almost a constant, we subtract from Eq. (69) a mean
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value to obtain the semi-analytic formula

bcR [29.6(i + 1) + 7.681 1/2 - 0.924
1 7.40(i + 1) + 1.71

The beta limits from this formula are shown by the solid line in Fig. 15.

8. CONCLUSION AND DISCUSSION

An analytic formula of the second-order equilibrium beta limit for triangular-CREL DRAKONs

with arbitrary pressure profile has been derived. For a parabolic pressure profile, its predictions

are compared with the full third-order numerical results, leading to a semi-analytic formula that

gives the beta limits accurately (Fig. 15). The peak beta limit 0* for different Ro/bcR and L = L/1

are summarized in Fig. 14. Besides depending on the straight section lengths, these beta limits

are considerably lower than the first-order ones; for example, for Ro/bcR = 2 and L = 1, 0* =

2.2%. Pressure profiles with sharper boundaries enhance the Pfirsch-Schhiter current and therefore

suppress 3* (Fig. 8). The equilibrium is governed by the predominant quadrupole Pfirsch-Schliter

current. Small deviations from the CREL condition (which is better termed the dipole CREL

condition now, since it eliminates only the dipole Pfirsch-Schlfiter current outflow from the CRELs)

therefore have almost no effects on the equilibrium, and thus the beta limit.

To raise the equilibrium beta limit, we must suppress the quadrupole Pfirsch-Schliiter current

V2. A crude way is to alter the twisting angle between the semitori in the CRELs; for instance,

when this angle is changed from 1200 to 130', /* is found numerically to be 3.6% (Ro/bCR = 2 and

L = 1). Nonetheless, this change totally destroys the dipole CREL condition. A better way is to

eliminate v( in the straight sections while keeping the dipole CREL condition satisfied. This can

be achieved by imposing the additional condition-the quadrupole CREL condition

0(2) = 0, or 1 ( 2)(2r) = (2) (r) = 0 (82)

on the CREL. Such a CREL that satisfies both the dipole and quadrupole CREL condition can

be called a second-order CREL. Both the shift and elliptical distortion will then be independent

of the straight section length. In view of Eq. (37) and the dipole CREL condition, the quadrupole

CREL condition can also be written as

d(D2( =0. (83)

The beta limit can be estimated from Eq. (81) by ignoring the L + 1 terms, resulting in 3* = 5.62%

(Ro/bcR = 2). Whether and how the quadrupole CREL condition can be satisfied by a realistic

CREL remain to be answered and will be the subject of future research.
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TABLE I. Integration constants from numerical and analytic calculations.

Constants L Numerical results Analytic results

01  independent of L -0.928 + 0.002i -0.924

O2  independent of L 0.07 + 4.48i 4.43i

Cx 1.0 12.5 - 0.1i 12.4

2.5 20.9 + 0.1i 20.7

5.0 34.5 + 0.1i 34.6

10.0 62.2 - 0.li 62.3

20.0 117.8 - 1.3i 117.8
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Figures

Fig. 1. A conceptual coil set design of a DRAKON with triangular CRELs. The slot antenna

gnerates plasma and the magnetic divertor provides stability.

Fig. 2. Three unit vectors: normal ii, binormal )Y, and tangential .

Fig. 3. Polar coordinates based on the system and the magnetic axes.

Fig. 4. A closed surface made up of two adjacent flux surfaces and two constant-C annuli (shaded)

is used for applying current continuity. The length of the transition region 6( is considered to

be zero.

Fig. 5. The functions (a) D(s) exp(-irpo/2) and (b) ao + 7rpo/2 for a triangular CREL. Note that

all lengths are normalized by 1.

Fig. 6. The function [D(s) exp(-i7rpo/2)]2 for a triangular CREL.

Fig. 7. Schematic of the function r(a,C' 0). The beta limit 6* is reached when its derivative at

b is zero.

Fig. 8. Beta limits as functions of pressure gradient at the wall for different pressure profiles.

Fig. 9. (a) The curvature and twisting angle of a perfect DRAKON with triangular CRELs. (b)

The corresponding function D, which is zero in the straight sections.

Fig. 10. Locations and orientations of the flux surface plots in Fig. 11 and 13. Point a to d

correspond to plot (a) to (d) in those figures.

Fig. 11. Flux surfaces at the beta limit 0* = 2.2% for a DRAKON with kobcR = 0.5 and , 1.

The surfaces are evenly spaced in the parabolic pressure. See Fig. 10 for their locations and

orientations.

Fig. 12. (a) The curvature and twisting angle of a smooth DRAKON with triangular CRELs. (b)

The corresponding function D, which is not zero in the straight sections.

Fig. 13. Flux surfaces at the beta limit 0* = 1.3% for a DRAKON with kobcR = 0.5 and L = 5.

The surfaces are evenly spaced in the parabolic pressure. See Fig. 10 for their locations and

orientations.

Fig. 14. The beta limits for a DRAKON with triangular CRELs.
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Fig. 15. Beta limits as a function of L. The dots are numerical results. The dashed line is from the

analytic formula Eq. (69). The solid line corresponds to the semi-analytic formula Eq. (81).
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