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Abstract

A second-order differential equation for the fast wave propagating in a

hot, two ion species plasma is obtained. This second-order approximation

is obtained unambiguously and allows the wave amplitude to be identified

with one of the electric field components. The approximation, is based on

replacing the coupling to the ion Bernstein wave by a localized

perturbation of the fast wave. For the case of perpendicular propagation,

the second order equation reduces to Budden's equation giving the well

known transmission coefficient for both two ion hybrid and second harmonic

resonance. The equatiohincludes the effect of simultaneous minority

fundamental and majority second harmonic cyclotron damping. The solutions

of the second order equation as a function of n11 give absorption

transmission and reflection coefficients which agree well with the results

based on models giving higher order differential equations and solved by

means of much more complex numerical codes.
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I. INTRODUCTION

Plasma heating in tokamaks by means of RF power coupled to the fast-wave

in the ion cyclotron range of frequencies is now a well established

method. (1-3) In spite of the success of this method the physics,

underlying the absorption, transmission and reflection of the incident

(i.e. fast) wave in this frequency range is probably more involved than

for any other RF method. These phenomena, which occur in the core of the

plasma, involve both mode-conversion by coupling to ion-Bernstein waves

and dissipation through cyclotron damping on the various ion species and

Landau as well as transit time damping on electrons: in general these

effects occur simultaneously.

In a global sense (i.e. over the cross.section of the plasma core the

incident fast-wave power is partially reflected (for low field side

incidence) and partially transmitted; the remaining power goes to

mode-conversion and dissipation (ion cyclotron and electron Landau

damping). On either side of the central core of the plasma the fast-wave

has a simple description given, approximately, by a cold-plasma model. On

the other hand, inside the central core of the plasma, where mode

conversiorT-and dissipation take place, the dynamics must be described by

the much more complex Vlasov kinetic plasma model. A first simplification

is therefore obtained by seeking a description of the fast wave

transmission and reflection in the presence of the combined effects of

mode-conversion and dissipation. As far as the fast-wave is concerned, at

the boundaries of the central core where its incident, reflected and

transmitted power flows are well defined, the combined effects of

mode-conversion and dissipation appear as power "absorbed" within these

boundaries. In this manner the description of the fast-wave entails

establishing a second order ordinary differential equation which contains

an appropriate representation of this power "absorbed" inside its

boundaries and which matches asymptotically to fast-wave propagation

outside these boundaries. Such a simplification, in addition to reducing

the order of the wave-propagation equations would also benefit

considerations of scaling.
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In this paper we shall attempt to construct such a global description of

fast wave heating in a two ion species plasma. The physical effects we

must include in this analysis are of course coupling to ion-Bernstein

waves and the collisionless damping at the fundamental resonance of the

minority species and at the second harmonic resonance of the majority

species. We shall ignore the rotational transform (poloidal magnetic

field) and electron Landau damping. These two effects are related and we

shall comment further on their neglect later.

The plan of the paper is as follows. In Section II we discuss the

reduction of the general electromagnetic Vlasov-Maxwell dispersion

relation to the approximate form on which our theory will be based.

Section III gives an account of the manipulation of the approximate

dispersion relation for the case of pure second harmonic into coupled mode

form which explicitly exhibits the coupling of the fast wave to the ion

Bernstein wave and the presence of ion cyclotron damping. The desired

second order approximation is then obtained which we call the fast-wave

approximation. In Section IV we generalize the fast-wave approximation to

the case of a two ion species plasma and by considering the resulting

fast-wave refractive index show how it includes the effects of coupling to

the ion Bernstein wave as well as ion cyclotron damping. In Section V,

with the aid of this fast-wave approximation, we generate a second order

full wave equation for the fast-wave. We show that in the limit of k + 0

this reduces to Budden's equation giving the correct transmission

coefficient for both second harmonic and ion-ion hybrid cases. In Section

VI we obtain a conservation relation from the wave equation and show how

this enables us to identify the power 'absorbed' (i.e. the combined

effects of mode-conversion and dissipation). In Section VII we give some

results of our theory, comparing with other more involved codes, for

various situations of current experimental interest. Finally the details

of the numerical scheme for solving the second order ordinary differential

equation are given in an appendix.
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II. THE APPROXIMATE DISPERSION RELATION.

For the central regions of the plasma we content ourselves with a slab

model and consider only one direction of inhomogeneity into which the

fast-wave is launched i.e. across the magnetic field direction. We start

from the local electromagnetic dispersion relation. Assuming a wave

vector k = (ki, 0, k 1 ) where i and I are, respectively, perpendicular and

parallel to the applied magnetic field B 0, Maxwell's equations give

[n2 I - nn - E(,k)] E(w,k) = 0 (1)

Here, n E ck/w, c is the (Vlasov) permittivity tensor of the plasma and E
- - M -

is the electric field vector.

The full electromagnetic dispersion relation resulting from Eq.(1) is

C n4 - { c (E - n 2 ) + E (e - n 2 ) + C2 1n2
yy i Ii yy xx xy i

+ e ( - n 2) ( - n 2 ) + E2
1xx I yy 11 xy

-2 n C n 3  C 2 n 2 + 2 n { E (e - n 2 ) + e n
II yz ± yz ± II yz xx I xz xy I

+ E2 (F - n 2 ) . 2 (c - n 2 ) + 2 e £ C , (2)
yz xx 11 xz yy 11 xz yz xy

where c.. are the elements of e(w,k).

The dispersion relation has been written in the above form since in the

limit of a cold plasma the right-hand side vanishes. For wave frequencies

in the ion cyclotron range we have compared the order of magnitude of the

majority ion terms on the right-hand side with the corresponding cold

terms on the left-hand side. The right-hand side is negligible if

(v Tn /c)2<<1, a condition which is very well satisfied for existing

tokamaks.

Let us now expand e , e and C to first order in k 2 v2 /W2. which from
xx yy xy i Ti ci

Ai



here on we call the FLR ("finite Larmor radius") correction term. We then

find

C =c - a n2  (3)xx I

E = F - a n 2  (4)
yy i i

E ~ ig - i P n2 (5)

where only the FLR terms coming from the majority second harmonic have

been retained. The quantities e, g, a and $ are:

W2.

E { Z (z .) + Z (z )} (6)
j=1,2 2/7Tk 1 v .j

II Tj

2 e2
g Z + (z )- Z (z) (7)

e j=1,2 2V7~k v .j
Il Tj

2 2  2
a i -2 v Z (z_ )j + z (Z )2j (8)

j=1,2 2/"2 V. w2 . c 2  -2j
11 Tj C3

W2 ---- 2 y
$i =2 - (z (Z- ) -Z (z ) ,(9)

j = 1,2 2/v2~ak v . 02. C2 -2j 2j
11 Tj C]

where

z .= (w + nw .i)/v'2 k Wv .j , and n = ±1, ±2. (10)

The summation over j=1,2 gives the contribution of the two ion species

where j=1 corresponds to the majority ions and j=2 to the minority

species; w . = eZ,B /m. are the ion cyclotron frequencies and 9 = eB /m
C] 1 0 3 e o e

is the electron cyclotron frequency, with e positive. In expressions

(6) through (9) we can neglect the non-resonant terms Z(z..) and Z(z . ) so
lJ Z3

that, in particular, a =p
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We now substitute Eqs.(3) - (5) into Eq.(2) giving the sixth order

dispersion relation

(- a + p2 - a2 ) n 6

+ { ci + C + a(2 e - n2) - 2gs + c (a2  p p2) n 4

(11)

+ - C(c - n 2 ) - E C - n2 ) + g2

+ E (-2 c a + 2 a n + 2gp) n

+ C E2 - 2 E n 2 + n4 - g 2 ) = 0

The above equation can be reduced to fourth order by neglecting electron

inertia (i.e. keeping only terms in c ). This is a good approximation for

II (4-6)
the ion cyclotron range of frequencies and has been widely used

Using this approximation we obtain the approximate dispersion relation

a n - c - n + 2 a (CE -n2) - 2pg I n

(12)

+ (c + g - n2) (CE - g - n2 ) = 0

This form of the ion cyclotron dispersion relation was obtained earlier by

(6)
Brambilla He noted that the neglected root in going from Eq.(11) to

(12) is not important in the central regions of a hot plasma where it

corresonds to an evanescent wave. (In the cold plasma approximation this

corresponds to neglecting the slow wave).

The dispersion relation (12) contains the fast magnetosonic (or

compressional Alfv4n) wave and the ion Bernstein wave. It is this

dispersion relation that can be used as a basis for obtaining a full wave

description of the fast wave in order to gain insight into the dependence

of absorption, reflection and mode conversion on the various parameters.

Equation (12) is also similar to the approximate dispersion relation used

by Jacquinot, McVey and Scharer to describe mode conversion in a two
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ion species plasma. The difference is that Eq.(12) includes the effect of

ion cyclotron damping whereas these previous authors specifically avoided

this but included the effect of electron dissipation. However, this only

gave a small correction to the behaviour which was dominated by mode

conversion in the vicinity of the two-ion hybrid resonance.

III. COUPLED MODE FORM OF SINGLE-SPECIES SECOND-HARMONIC DISPERSION

RELATION

We wish to obtain a second order differential equation description of the

fast-wave in the two-ion and second harmonic resonance regions. We shall

consider the case of a degenerate resonance, e.g. D(H) where the majority

second harmonic resonance coincides with the minority fundamental.

First, we show how to re-write Eq.(12) in a more appropriate form which

specifically displays the coupling between the fast wave and the ion

Bernstein wave. We note that it is far easier to manipulate the local

dispersion relation into a form having the desired structure and then

generate the required full wave equation than to look for transformations

and reductions of a more complicated (fourth or sixth order) full wave

equation.

The key to this problem is the method of description of the second

harmonic terms. We therefore consider first the special case of pure

second harmonic heating. Once we see how to do this case it will become

clear how the method can be extended to the degenerate two-ion species

case and the hybrid resonance. We are guided by the fact that as a wave

approaches resonance the electrostatic component of the electric field

increases. This corresponds to the coupling of the fast wave to the

electrostatic ion Bernstein wave. In order to exhibit this behaviour we

retain the thermal terms on the left hand side of the equation which

describe the propagation of the electrostatic ion Bernstein wave. The

remaining thermal terms are responsible for the coupling. Thus, for

w = 2w ., 0 = a and we may write Eq.(12) in the form
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a n - ( - n 2 ) n 2 + ( n 2) (E - g - n2)

(13)

= 2 a (c - g - n 2 ) n2

Assuming n 2 << c2/c2 we have
ii A

+ g (14)
i~ C2

A

C2
-g= - (15)

3 c2
A

and

5i=- (16)
3c 2

A

where these quantities are local values referring to the central regions

of the plasma and c2  B2/n m. 4
A 0 0 10

Substituting (14) - (16) into Eq.(13) and dividing throughout by e we

obtain

2 2 2 1
c -+ _- 3 a c2 c2

W2 c2 A -2
A A

Multiplying Eq.(17) by c 2/c 2 and
A

k 2  k2

(1 + 3 ac2 ) (1 - c2  iA A2 A n2

If we now consider the limit n 1

k2 k

= _ 2 a c 2 _
2 W2

re-arranging, we have

k2
= a c2 .

A Wr

=0 we may write a as

(17)

(18)



2 v 2

a _ _ _ T, (19)
(W2 - 4 w2.) c 2

ci A

and recast (18) in a form showing explicitly the coupling of modes

(W2 _ 4 w2. + 3 k 2 v 2 ) (W2 
- c2 k 2 ) = W2 k 2 V 2  . (20)

ci i Ti A 1 j Ti

Equation (20) is now in the desired form since the first bracket on the

left-hand side is the electrostatic ion Bernstein wave and the second

bracket is the fast Alfv4n wave; the right-hand side of (20) gives their

coupling by finite temperature.

Now return to Eq.(18). Equation (20) was obtained from (18) by taking

n 11 = 0. However, Eq.(13) may still be written in the form given by (18)

when n # 0. Under these conditions

W2. 2 v 2
pi W Tia 2 - 2 w I 7 .C Z (z ) . (21)

2i/2 *k v w2  c2  -2i
ITi ci

Since we are interested in the fast wave solution we now write (18) as

- k2 a c2 k2/W2

1 - c2 1  - - (22)
A W2  1 + 3 a c2 k 2/w 2

AlI

Treating the right-hand side of Eq.(22) as a thermal perturbation to the

fast wave we put (c k /w) 2 = 1 on the right-hand side and thus find the

approximate fast wave solution in the region of second harmonic resonance

k2
1 - c 2  a (23)

A W2  1 + 3 a

where we emphasize that a is now given by Eq.(21). Equation (23) is the

desired second order approximation for the fast wave. The idea behind

this approximation, namely, that the coupling to the ion Bernstein wave

can be replaced by a localized perturbation to the fast-wave has
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previously been used by Kay, Cairns and Lashmore-Davies 8). It should be

noted, however, that in this reference all the second order terms appear

on the left hand side of the equation whereas in equation (22) the thermal

perturbation also contains second order terms. Kay et al(9) have

independently obtained the result given in Eq.(23) in another context.

We shall say more on the physical significance of Eq.(23) in section IV.

Let us now generalize this result to a two species plasma and consider a

more direct way of obtaining it.

IV. THE FAST WAVE APPROXIMATION

Neglecting electron inertia at the outset, Eq.(1) then takes the much

simpler form

(n 2 - e ) E - e E = 0 (24)
11 xx x xy y

E E + (n 2 - e ) E = 0 . (25)xy x yy y

The dispersion relation resulting from Eqs.(24) and (25) is

(E - n2 ) (E - n 2 ) + E2
n2 xx yy II xy (26)

E n2
xx 1

Substituting Eqs.(3) - (5) into Eq.(26) we again obtain the fourth order

dispersion relation given in Eq.(12). We also note that the denominator

in Eq.(26) represents the electrostatic ion Bernstein wave. However, we

now keep the dispersion relation in the form shown in Eq.(26). We first

observe that in the limit of a cold plasma Eq.(26) is the well known

approximate fast wave solution of the dispersion relation. From the

analysis in Section III we see that we can continue to use Eq.(26) as the

approximate fast wave solution, even in the case of a hot plasma, simply

by substituting the zero Larmor radius value

I -



2- n2) 2 . g2

n2 = 2 (n )A (27)

into the FLR correction terms in Eq.(26). Equation (27) is the

generalisation of the approximation c2 k 2/W 2 = 1 to the case of
A i

arbitrary n 1. Thus, substituting (27) into the FLR corrections in

Eq.(26) we obtain the fast wave approximation appropriate to a hot,

two-ion resonance case [as in a D(H) plasma]:

2 - g - n 2 ) [E + g - n 2 - 2 a (n 2)

n = I I ,(28)

n - n 2 - a (n 2 )
i LA

where for n 2 in the FLR terms we have taken its zero Larmor radius value
i

(n2 ) , given by Eq.(27).
I A

Equation (28) is the generalization of Eq.(23) to the case of a two

species plasma for arbitrary n 11. The interpretation of Eq.(28) is again

similar to the one given for Eq.(23). The coupling of the fast-wave to a

propagating ion Bernstein wave has been represented as a coupling to a
(12)

localized perturbation of the fast-wave . By ensuring that the

approximate dispersion relation retained the correct structure we have

preserved the most important characteristics of this coupling, i.e. the

coupling region occurs on the high field side of the degenerate minority

fundamental and second harmonic majority resonances and not at the

resonance itself.

This feature arises from the ion Bernstein wave which only propagates on

the high field side of the second harmonic resonance. Although the

propagation of the ion Bernstein wave has been neglected in the fast-wave

approximation its effect is still included as a non-propagating i.e.

localized response which can become resonant as n 11 + 0. It will be shown

below that the fast wave approximation can give rise to two critical

points. One of these is clearly a wave resonance and is associated with

mode conversion and the other is a particle resonance which can give rise

to strong cyclotron damping. These two critical points correspond to the
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two coupling points which occur in the more accurate model when the

propagation of the slow wave is included. The localized perturbation to

the fast-wave can thus be interpreted as a non-propagating wave which can

be strongly or weakly damped depending on the value of n 11. It has been
(11, 12)

shown previously that the energy lost by a fast wave in the

coupling region does not depend on whether the slow mode is treated as

propagating or non-propagating. We emphasize that the approximate

fast-wave solution given by Eq.(28) contains the full effects of

fundamental (minority) and second harmonic (majority) cyclotron damping.

Let us now write out the approximation to the fast wave refractive index

in a more explicit form. Using Eqs.(6) - (9) we have

C2 W2
E + g = - -c. + P2 Z (z )12 (29)

C2 /2 w k v

C2
E - g = - (30)

3 c2
A

C2 
2

E p2 Z (z- 12 (31)

3cA 2,/2 w k vT2

2 I v21

p ' Tia -- -- Z (z-21) (32)
2/2 w k v w2 c

9 I ci

where c 2 = B2/n m 4± now refers to the majority species. Only the
A 0 11 0

resonant minority and second harmonic majority terms have been included

with the cold plasma terms in Eqs.(29) - (32). Substituting (29) - (32)

into Eq.(28) we obtain
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S cA f v
(1 - 3 ) + N - - Z(a 2 ,)- - - Z(a 1

N2  2 /2~N v /T~N cA (33)

1 + 3 N2 - .T.- A _fZ(a 3) - T1 Z(a[ 4 IN 11 VT2  2a2V N 11 cA A

where, given B = B 0(1 - x/R ), with R the tokamak major radius,

A 1
a 1 2 = -(34)

1 2 N v R
II T1 ,2 A

R A R0 A (35)

W x/c (36)

N c k /W (37)
III A tIII l

E n2 /n 1  (38)

and

T1 - 3 N 2 )(1 +--N 2)
f = __ 11(39)

(1 + 3 N2 )

In order to amplify our remarks concerning the representation of the ion

Bernstein wave as a non-propagating wave we now consider the resonance

behaviour of the fast wave refractive index given by Eq.(33).

In general N 2 will be complex due to the effect of cyclotron damping.

The refractive index will however, display resonance properties when the

real part of the denominator in Eq.(33) vanishes and simultaneously the

imaginary part is very small. The condition for the real part of the

denominator to be zero is
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1 + 3N2 - 3 CA Re Z(a) -3f Ti Re Z(a) = 0 (40)
4/2 N1v 2/2 N c(A

The first point to notice is that Eq.(40) can only be satisfied on the

high field side of the resonance, as illustrated in Fig.1. Furthermore

there will be two roots C1,2 which, for large enough n or small enough

N11 will satisfy the conditions a1,2 1& 1< 1, a 1, 21 2  " 1.

Clearly, for a1,21C 2 1 > 1 the imaginary terms will be exponentially

small and we may interpret the resulting resonance in the fast wave

refractive index as mode conversion to a weakly damped, non-propagating

mode. Using the asymptotic form of Z(a 1,2) we obtain

2 = -(3n/4)RA which is the position of the hybrid resonance. This

result applies to minority concentrations such that n > v 2 /c 2. In the
Ti A

case of pure second harmonic heating ( - 3v 2 /2c 2 . To ensure that
2 T1 A

these solutions for 2 satisfy the condition a1,21 2 >> 1 we require

T >> 4/2 N v T2/3cA in the two species case or N1 << 3v T1/2/2 cA for

second harmonic heating. Under these conditions the fast-wave refractive

index will exhibit strongly resonant behaviour indicating mode conversion

in the region C = 2.

The second-root of Eq.(-40) satisfying a1,211 << 1 occurs in the region

of minority fundamental and majority second harmonic cyclotron damping.

This point is therefore associated with a particle resonance and can

result in strong damping of the fast wave depending on the values of r

N and the temperatures of the ion species. The damping in this region

is evidently responsible for the reduction in the reflection coefficient

for a wave incident from the low field side as N is increased.

Now suppose that q is gradually reduced (for given N ) from values

producing strongly resonant behaviour of the fast wave refractive index

or, for a single ion species plasma N 11 is gradually increased. As a

result the separation of the roots C and C2 gradually decreases,

until, for some critical value n = c , 2 = . The physical
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significance of this condition is that the region of strong cyclotron

damping overlaps the region of mode conversion. The critical value of T)
is given by noting that it occurs when ReZ takes its maximum value which

we approximate by unity giving

4/2 N1vT2 T vT
4/= --- (1 + 3N) - 2 f T1T2 (41)
3 cA 2

AA

For a single species plasma the corresponding critical condition for

second harmonic heating is given by putting r = 0 in Eq.(41) giving

3/2 vT
Nc =- (42)

4 c
A

For 1 < 1c (or N > N c) there are no solutions of Eq.(40) and the fast-

wave refractive index will no longer exhibit resonant behaviour. The

resonance is 'smeared out' due to the effects of cyclotron damping and any

mode conversion will result in rapid dissipation.

Thus, only for l >> )c (or N << N c) would the ion Bernstein wave be able

to carry energy away from the coupling region. As we have already

emphasise&r the propagation of the ion Bernstein wave is not included in

the present fast wave approximation. What we have shown above is that

most of the remaining features of the coupling to the ion Bernstein wave

are preserved within the fast-wave approximation.

V. FULL WAVE DESCRIPTION OF THE FAST WAVE

We will now transform the fast-wave approximation represented by Eq.(33)

into a differential equation by the usual device of replacing k by

-id/dc. Since k only appears on the left-hand side of Eq.(33) there is

no problem with regard to uniqueness of the resulting differential

equation. The full wave equation in the D(H) resonance region is

15



(1 - 3N) [1 + N2 - T CA ) T1
0 Z(a 2 ) - TiZa

d 2/2nqv2 /2 NcA--- + c n T2 V A= 0 (43)
d&2 371 c 3f v

[1 + 3N -- A Z(a) T- Z(a 1
4/2 N v 2/2 N c A

where $ represents the normalized amplitude of the fast-wave. On

inspection of Eqs.(24) and (25) we see that once we have made the fast

wave approximation by substituting n 2 = (n2 ) (Eq.(22)) in the thermal
i i A

corrections we can identify the wave amplitude $ as a E As already
y

noted, the wave equation for E is then obtained unambiguously. Once E
y Y

has been obtained as the solution of Eq.(43), E can be calculated fromx
either of Eqs.(24) or (25). Hence the field polarization across the

resonance region can be found. Equation (43) is the central result of

this paper and is the second order full wave description we have been

seeking.

Equation (43) has been obtained for the case of D(H), i.e. a degenerate

resonance minority. For a non-degenerate resonance minority the second

harmonic resonance will be well separated from the hybrid resonance with

the result that the fast-wave approximation will give a wave equation of

the same ftrm as Eq.(434-but with the last terms in the numerator and

denominator missing i.e. those proportional to v

Ti

We will conclude this section by considering Eq.(43) in the limit N + 0.

Equation (43) then reduces to

v 2

TiS+ _ R + -.. R
A 2 A

S+ =0 , (44)
d 2 3 r 3 v2

....RA + TRA
4 2 C2A

which will be recognized as Budden's(13) equation. We may, therefore,

immediately write down the power transmission coefficient(13)



T = exp [- (- + T1) R (45)
4 2 c2 A

which agrees with the well known results for the ion-ion hybrid resonance
(14)

or the second harmonic in a pure plasma . The reduction of the fourth

order problem to Budden's equation has also been obtained by Chiu( 15 ) for

the pure second harmonic for perpendicular propagation. Before describing

the numerical solutions of Eq.(43) for arbitrary values of N we first

use Eq.(43) to obtain a conservation relation.

VI. CONSERVATION RELATION FOR THE FAST-WAVE

Let us write Eq.(43) in the form

d2 - + )$ = 0 (46)

d 2

where the complex potential Q(C) is defined by the coefficient of $ in

Eq.(43). By the usual procedure of multiplying Eq.(46) by $* and

subtracting the complex conjugate of Eq.(46) multiplied by $ we obtain

the following conservation relation

d d$,
- (Im $*--) = - $$* ImdQ (47)

d dC

Now assuming

i$ -i$p
e + p e (48)

Q 1/4 91/4

in the asymptotic region on the incidence side and

- e (49)
Q1/4

in the asymptotic region on the transmitted side, where p = Q d&, we

may integrate Eq.(47) from C = Cl to = C2 where C1,2 are on the

incidence and transmitted sides respectively. We obtain
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T + R + * Im (Q)d =1 , (50)

where T = TT* and R = pp* are respectively the power transmission and

reflection coefficients.

If we now integrate the real part of the complex Poynting theorem over the

region j to C2, at whose boundaries there are only fast-wave

electromagnetic power flows, the integral in (51) is clearly the power

"absorbed" from the incident fast wave; in detail, this power "absorbed"

is in general made up of power dissipated and power mode-converted to the

ion-Bernstein wave but, on the basis of only our global perturbation model

of the fast wave, this distinction cannot be made explicit. The density

of this power "absorbed" is given by the usual expression:

1 1 (h)
P = Re (E*.J) =- E*ea E (51)abs 2

2 2

where a(h) is the hermitian part of the conductivity tensor. For the

zero electron inertia approximation this gives

Pbs= [1E1 2 Im c + 1E1 2 Im F + 2(Re e )(Im(E*E ))] (52)
2t ~ ''- xx y yy xy

As we have already noted the fast-wave amplitude is identified with E .
y

We therefore substitute for E from Eq.(24) into (52) and, after some

algebra, obtain

Pabs = 2 EY1 2 Im (n 1
2) (53)

2

We now rewrite (53) in terms of the variables , N and $ defined by

(36), (37) and (43). $ is the normalised electric field given by

$ = E /(E ). (54)
y y inc.
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The x-component of the Poynting flux is S= IEyI2/2 PcA. Choosing unit

incident Poynting flux we express Pabs. in terms of $ from (53)

giving

Pabs. _ 1__ 2 Im(N2) (55)
cA

so that the total power absorbed is given by

Pabs. dx = f 1 2Im(N2)d (56)

xl

which is the form appearing in the conservation law (50).

For N = 0, Eq.(46) becomes (44) with a back-to-back cutoff - resonance

combination. In order to integrate through the resonance we add a small

amount of damping to resolve the singularity and subsequently take the

limit of vanishing dissipation. This limiting process is done under

integral sign, so that we make use of

Im (tim ) = 'n 6(x) (57)
E-0 x-iE

We thus obtain

C2 TI J2
S $*Im (Q) dC = R RA (_ + - ) $ ((- r ) (58)

C, 4 2 c2
A

with C = - C the resonance point where Q(-, ) + w. It is clear from

the discussion in section IV, concerning the replacement of the

ion-Bernstein wave coupling by a localised perturbation on the fast-wave,

that the resulting description of the fast-wave (Eqs.(28),(43)) combines

the effects of mode conversion and cyclotron damping. For N = 0 there

is no cyclotron damping and the only contribution to the integral term in

Eq.(50) comes from mode conversion. In this case, Eqs.(50) and (58)
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clarify Budden's observation that R + T * 1 even in the limit of zero

dissipation (Budden's "paradox"). Clearly, the missing power is to be

interpreted as being mode converted.

VII. NUMERICAL RESULTS

The numerical method we employ to determine the transmission properties of

the fast wave is now described, and results are presented for PLT and JET

conditions, previously calculated(16, 1 7 ,18) by means of much more

elaborate methods (i.e. numerical integration of fourth and sixth-order

differential equations).

Consider the second-order equation

y" + Q(x)y = 0 , (59)

with a generally complex potential Q(x), which satisfies the following

asymptotic conditions. Far away from the coupling region (situated, say,

around x = 0) Q(x) satisfies conditions for the validity(19) of

Liouville-Green-type solutions (48), (49), which, as x + t -, smoothly

become-plAne waves exp_(+ ikx). This characterizes the nature of the fast

wave far away from regions of mode-conversion, cyclotron damping, and

cut-off (generically termed coupling).

In contrast to its slowly-varying character in the asymptotic region, the

potential Q(x) can vary rapidly in the coupling region due to the presence

of cut-offs, resonances, damping and mode conversion. Under very limited

conditions, WKBJ or phase-integral solutions can be constructed, but

for complex potentials described by transcendental functions, such as in

(43), the only reliable solution of Eq.(59) would be numerical. The

problem then is to construct the transmission and reflection

coefficients, which consists in matching boundary conditions of the type

(48) and (49) to the numerical solution. This is described in detail in

the Appendix.

As a first example, shown in Figs. 2a and 2b, we have considered heating



at 2w i in pure hydrogen for PLT parameters taken from Colestock
(16)

and Kashuba (their Figs. 13 and 14).

The variation of the transmitted and reflected powers for low field

incidence as a function of k11 agree very well with the results of

Colestock and Kashuba as does the variation of the power absorbed. The

variation of the transmitted power as a function of electron density also

shows a similar variation although the value we obtain at the highest

(16)densities is somewhat lower than that of Colestock and Kashuba

In Figs. 3a and 3b we compare our results for minority D(H) heating with

Figs. 5 and 9 of Colestock and Kashuba(16) for PLT parameters. Again the

variation and magnitude of the reflected and transmitted powers as a

function of k are in very good agreement with Colestock and Kashuba.

Similarly, the power absorbed also agrees well, our second order analysis

yielding both the position of the peak absorption and its magnitude. The

variation of the transmitted and reflected powers for low field incidence

and the power absorbed (by the protons) as a function of the minority to

majority density ratio is also very well predicted by our second order

model.

In Figs. 4W! and 4b we compare our results with the fourth order model of
(18)

Romero and Scharer applied to the JET plasma, again for D(H). We

find excellent agreement in the variation and magnitude of the

transmitted, reflected and absorbed powers as functions of k and the

minority to majority density ratio. We note in particular, that in both

calculations the power absorbed peaks around r = 0.03.

Thus, as a final example we present a table of results obtained from our

second order theory for the PLT "benchmark" problem selected at the ICRF

workshop held in Madison, Wisconsin, May 1985. The results are given in

Table I and show the transmission T and reflection coefficients R as a

function of k for D(H). Included for comparison are the results

obtained by Imre et al. 17 ) from a fourth order analysis. There is good

quantitative agreement although the second order theory gives a

consistently higher value for the reflection coefficient particularly at
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the smallest values of k .
II

We have verified for a number of cases of practical interest that the

simple second-order ordinary differential equation representation (43) for

the fast-wave in a two-ion species plasma, produces absorption,

transmission and reflection coefficients compatible with results

previously obtained from numerical integration of fourth and sixth-order

ordinary differential equations.(16-18) The coupling of the fast-wave to

the ion-Bernstein wave was treated here as a localized perturbation to the

fast-wave. The localized perturbation retained the resonance properties

characteristic of the coupling of the fast wave to the ion-Bernstein wave

as well as the effects of cyclotron damping of both minority and majority

ion species. As a result, the power "absorbed" which appears in the

conservation law (47), is clearly a combination of mode-conversion and ion

cyclotron damping. The second order equation (43) which we have derived

in this paper is a generalized Budden equation which includes the effect

of localized dissipation.

We note that although we have neglected the effect of electron Landau

damping the power "absorbed" obtained from our second order model

should give an upper limit to the power lost by the fast-wave in crossing

the coupling region. This is because electron Landau damping is only

expected to be significant for the ion-Bernstein wave. Since we have

shown that the effect of mode conversion is included in our second order

model it is immaterial to the fast wave how the mode converted energy is

dissipated. Within the second-order model discussed in this paper we are

unable to separate the effects of mode conversion and dissipation except

for the case of perpendicular propagation. We have also obtained a

criterion for the disappearance of mode conversion due to the overlapping

of the region of strong cyclotron damping with that of mode coupling.

Under these conditions the energy lost by the fast wave is dissipated

locally due to cyclotron damping. The effect of the poloidal magnetic

field, which we have neglected, will be of significance for electron

dissipation. (16,23) For small values of N in the coupling region ion
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cyclotron damping will be weak and mode conversion strong. However, away

from the coupling region the mode converted ion-Bernstein wave may undergo

electron Landau damping as N increases due to the effect of the

rotational transform.

Thus, the neglect of electron-Landau damping and rotational transform is

not expected to alter the total power absorbed but only the spatial

location of the power dissipated by the electrons which could be quite far

from the mode conversion region. Clearly, having replaced the propagating

ion-Bernstein wave by a localised response we have lost some information

on the power deposition profile and this is evidently the most significant

deficiency of our second order model.
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APPENDIX

It is well known that the solution of a system of linear ordinary

differential equations can be written as a linear combination of the

boundary conditions. In matrix form

jy(x)j = [T(x)] y i (A. 1)

where jyOj is the given solution vector at x = x , and the transfer

matrix [T] depends on the system. While for most.cases of interest [T]

cannot be determined analytically, the transfer between two particular

points x = x, and x = x 2 is easily determined numerically. For

example, in the case of interest here, we first write Eq.(59) in the form

Y' = p P' = - Qy (A.2)

then select two points xI and x 2 away from and on opposite sides of

the coupling region where individual waves of the form (48) and (49) can

be identified, and integrate (A.2) generally twice with independent

boundar'y c-nditions ini-rder to obtain the transfer matrix. The solution

at x = x 2 is then related to that at x = x, by the equation

(A.3)
2[T] 1)

into which we substitute for y the asymptotic wave forms (48) and (49),

and solve for T and p.

In order to obtain [TI one may integrate from either side. If we choose

to integrate from the incidence side where there are two independent

(I) (II)
waves, we have to produce two independent solutions y and y

These can be generated respectively from the simple linearly independent,

boundary conditions
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(I)
(Y)p 1 = (I )

(II)
and ()

p1
(A.4)

The transfer matrix is then obviously given in terms of the solutions at

x = x 2, in the form

(II) (I)
[T] = (T11 T12) = ( Y )

T21 T 22  p() p ()2

In Eq.(A.3) we now substitute

(A.5)

yi =w+1 + p w-1 ,

p1 = iki (w+ 1 - p w. 1)

y2 = 'wC+2

(A.6)

I p 2 = ik 2 T w+ 1
I

where

w+ = k2 exp (±i f kdx) , k = Q

and we have agreed that w+ propagates to the right.

p immediately gives

(-i k 2 T1 1 + ilk 2 T 1 2 + T 2 1 + i k 1 T 2 2 ) w+1

Solving for

(i k 2 T 1 1 + ki k 2 T 1 2 - T 2 1 + i kI T 2 2 )

(A.8)

2i k1 (T1 1 T 2 2 - T 1 2 T 2 1 )

(i k 2 T 1 1 + k, k 2 T 1 2 - T 2 1 + i k1 T 2 2 ) w+2

and, by definition, the power transmission and reflection coefficients

are

T = T* , R = PP* (A-9)

The general solution y satisfying the boundary conditions (A.6) can be
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written in terms of the numerical solutions y and y as

y = A y + B y

where the constants A and B satisfy

(A.11)

Much simpler expressions for T, p, and y can be obtained if we

integrate from the transmission side, where only one wave propagates and

so only one integration is needed. This can be seen as follows. With x

on the transmission side we now have y1 = T wj., so that from

(A-12)()2 = T( ) = (T y + T12 P1)p )2 p 1 T21 Y1 + T 2 2 PI

we get

w-2 + p w+ 2 = T w. 1 (TI, - iki T 1 2 )

- ik 2 (w- 2 - p w+ 2 ) = T w-,I (T 2 1 - ikI T 2 2)

The unknown coefficients

TI, - iki T 1 2 E a,
(A. 14)

T21 - ikI T 22 E a 2

(A. 10)

(A.13)

are numerically obtained by integrating (A.2) with the boundary condition

-i = (-,

obviously giving

(A.15)

= [T ( 1 ) = (TI - ik1 T12)(P )2 -ik I T21 - ik I T22
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Then, from (A.13),

2ik2 W-2
i= --- (A. 17)

(ik 2 a, - a 2 ) w-l

(ik 2 a, + a 2 ) w-2
P = -- (A. 18)

(ik 2 a, - a 2 ) w+2

and the solution y satisfying the given boundary conditions is

(III)
y.= w- 1 y , (A.19)

where y is the numerical solution of the boundary value problem

(A.15).

In order to test the outlined schemes numerical integrations were

performed, using the IMSL library routine DREBS, based on the

Bulirsch-Stoer (19 extrapolation method. Accuracy was tested for a number

of potentials, whose T and R are known analytically, such as, for

.(20)example, special cases of the complex parabolic barrier . Typically,

the numerical and analytic results agreed to within five significant

digits.- Fr complex potentials the conservation law (47), involving a

domain integral of the solution itself, was equally well satisfied. This

high degree of accuracy was verified to hold in cases of evanescent

solutions, for which numerical difficulties were previously(
16 ,18 ,2 1 )

reported.

The integrations are, however, not always free of difficulties, and these

occur when the coupling potential Q becomes singular on (or very close

to) the real axis. Such a singular point arises, as illustrated in Fig. 1

and discussed in section IV, for negligible Im Z(a 2 ) and small k

and/or large enough minority concentration, and is identified with strong

mode- conversion. The integration then fails as a result of exceedingly

large Idy/dxI. To avoid this happening, we use the same device as

27



described at the end of Section VI for the integration of the Budden

Eq.(44), which is to integrate along a contour bypassing the singularity

under the real axis.
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FIGURE CAPTIONS

Fig. 1: Illustration of how the roots &1,2 of Eq.(40) depend on T) and

N .

Fig. 2: Hydrogen second harmonic heating. Power transport coefficients

T, R and P for PLT parameters R = 1.32 m, B = 2.9 T,

n = 4 x 1019 m- 3, T = 2 keV, f = 42 MHz. a) Parallel
e

wave-number scaling. b) Density scaling.

Fig. 3: Minority D(H) heating for parameters of Fig. 3. a) Parallel

wave-number scaling for minority (Hydrogen) concentration

= 0.1. b) Minority concentration scaling for k = 10 m-1.

Fig. 4: Minority D(H) heating for JET parameters (c.f. Ref. 18) R = 3 m,

B = 3.45 T, n = 3.3 x 109 M 3 , T = 5 keV, f = 53 MHz.
0 e

a) Parallel wave-number scaling for minority concentration

a = 0.05. b) Minority concentration scaling for k = 6 m-1.
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Table I. PLT minority heating "benchmark" case [D(H),

Comparison of our results with

those of Ref. 17 (last two rows)

k m 1 2 3 4 5 6 7 8 9 10

T 16.3 18.3 18.3 20.2 22.3 26.0 29.8 34.5 40.0 46.0

R 69.1 65.2 59.3 52.1 44.2 36.3 28.8 22.1 16.5 11.9

(present results)

T 15.4 16.2 17.5 19.5 22.1 25.4 29.5 34.4 40.0 46.4

R 61.2 57.9 52.9 46.7 39.8 32.9 26.4 20.4 15.3 11.1

(Imre and Weitzner 17))
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