
PFC/JA-87-31

Theory of Global Interchange Modes in
Shaped Tokamaks with Small Central Shear

J. J. Ramos

Plasma Fusion Center
Massachusetts Institute of Technology

Cambridge, MA 02139

August 1987

Submitted to: Physical Review Letters

This work was supported by the U. S. Department of Energy Contract No. DE-AC02-
78ET51013. Reproduction, translation, publication, use and disposal, in whole or in part
by or for the United States government is permitted.

By acceptance of this article, the publisher and/or recipient acknowledges the U. S. Govern-
ment's right to retain a non-exclusive, royalty-free license in and to any copyright covering
this paper.



Theory of Global Interchange Modes in

Shaped Tokamaks with Small Central Shear

J. J. Ramos

Plasma Fusion Center

Massachusetts Institute of Technology

Cambridge, MA 02139 USA

August 1987



Abstract

The ideal MHD linear stability theory of arbitrary-n (including n = 1) interchange

modes in shaped tokamaks with flat central rotational transform is developed. The unsta-

ble modes have very long parallel wavelength everywhere, but their perpendicular wave-

length is assumed to be comparable to the plasma minor radius. It is shown that the

stability condition against these radially extended modes is independent of their toroidal

wavenumber n, and identical to the shearless limit of the n > 1 Mercier criterion.

PACS numbers: 52.30.Gz, 52.35.Py
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Sawtooth oscillations are one of the crucial phenomena that dominate the confinement

dynamics of tokamak plasmas. The sawtooth phenomena have recently sparked much in-

terest in the ideal MHD stability of tokamak configurations having a rather flat rotational

transform profile over a sizable central portion of the plasma domain. The motivation for

this is the experimental evidence that the sawtooth crash processes in the JET tokamak

are consistent with the onset of an ideal MHD internal instability." 2 This unstable mode

has a toroidal wavenumber n = 1 and its poloidal structure is dominated by the m = 1

harmonic. Since the values of the poloidal beta at JET are very low, much theoretical

work 2-6 is being devoted to proving that such an ideal MHD instability can be excited at

arbitrarily low values of Pp. An internally flat rotational transform profile, such that q is

approximately equal to 1 over a sizable central core of the plasma, has been proposed23 in

order to explain the sawtooth crash features observed at JET. In this case an interchange

instability is possible, and this is the subject of the present work. Previous work on inter-

change instabilities in tokamak plasmas (e.g. Refs. 7 and 8) has relied on the assumption

of short perpendicular wavelengths, by considering modes with large toroidal and poloidal

wavenumbers, and/or a sharp radial localization about a magnetic surface. This leads to a

fine scale instability, likely to be subject to finite-Larmor-radius stabilization, and with lit-

tle chance of having macroscopic consequences. In a new development we prove here that,

for configurations with small central shear, the short perpendicular wavelength constraint

can be relaxed, and we work out a theory of large scale interchange instabilities which

are capable of accounting for the sawtooth crashes in an elongated tokamak like JET. To

carry out our analysis we make the fundamental assumption that, within the central core

of interest whose inverse aspect ratio r0 /R is ordered as e, q deviates from 1 (or more

generally from a rational number m/n) by only an amount of order e2 . For our purposes

it does not matter whether q stays above m/n or crosses this rational value one or several

times: our result is independent of the details of the function q - m/n ~ E2 . We consider

a macroscopic plasma perturbation, radially confined to the flat-q region, and having an

interchange character, namely very long parallel wavelength (k11 R0 ~ e) everywhere. How-

ever, we do not assume short perpendicular wavelengths, and kjr is taken to be of order

unity. Because of the generally low toroidal and poloidal wavenumbers and broad radial
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extent of the mode, we refer to it as a "global interchange". We prove that the stabil-

ity condition against these arbitrary-n global interchanges is independent of their toroidal

wavenumber n, and identical to the near magnetic axis limit' of the Mercier criterion7

against large-n, radially localized interchange modes:

1 3(n2 - 1)(i - 2r,) _ 4po(Ko - 1)2
, 1 - > 0) (1)f3 P. q0  (KO + 1)(3ro +1) Ko(Ko + 1)(3 + 1)]

where %o represents the elongation of the flux surfaces and ro is a measure of their trian-

gularity. Thus, for qo = m/n = 1, ro> 1, ,0 > 27o and 3p,, > 0, we show the existence of

a robust instability, independent of the details of q - 1, and with a significant growth rate

(proportional to 32) in the low-,3po regime. Only in the circular case (no = 1) where our

interchange modes become marginally stable, more elaborate analyses are needed to prove

the existence of an instability. These must take into account either the contribution of a

nonvanishing fluid displacement in the finite-shear region 23 or (numerically) higher order

effects sensitive to the details of the q - 1 function' 5 .

We begin by studying the plasma equilibrium in the flat-q region. We work in a flux

coordinate system r, W, 0 defined as follows: r(,) is the magnetic surface function defined

by rdr = Roq(0)T(4')-'d0, where Ro is the radius of the magnetic axis, 27ro is the

poloidal magnetic flux and 27rT is the poloidal current (T = RBt); W is the geometrical

toroidal angle, i.e. IVWI = R-'; 0 is the poloidal coordinate that makes the magnetic

field lines appear straight in the W - 0 space, and is defined by B - VW = q(,)B - VO.

Then we formulate the fundamental hypothesis that within a central core (r < ro) of large

aspect ratio [r./R. = O(e)], the inverse rotational number q is approximately constant and

rational [q(r) = m/n + q2(r), q2(r) = O(e2 )]. This implies that, up until first non-trivial

order, 0(e), all the equilibrium functions can be represented by polynomials of r/R for

r < r0 . Since for our stability analysis we only need equilibrium information accurate

to first non-trivial order, we can use the following general representation of the magnetic

surface geometry in the flat-q region of interest:
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R(r, 6) = R0 {1 + p cosO + p2 [-(2o,, + -r/2 + 1/2) + (a. + ro/2 + 1/2)cos2] + O(e3 )},

Z(r, 6) = Rono {p sinO + p2 (ao + 1/2)sin2B + O(E3 )},

where p(r) = rRo 'o 1/2 and Ko, co and ro are constants of order unity. The constants

no, 0o and ro can be easily recognized to measure the elongation, shift and triangularity

of the magnetic surfaces. The elongation and triangularity parameters no and -ro are free

integration constants that are taken to be of order unity, as is the difference no - 1. The

shift parameter ao is determined by equilibrium conditions. By balancing the equilibrium

equation to the required accuracy of 0(e), we obtain the following set of equilibrium

relations that are needed in the stability analysis:

R 'r dp -r 2 [ p (no + r0-1) + O 2]
T2 dr RL q2

RoRj_ Ri (R 2r dp r dT (rO + n-1) 2por cos6 O(E2)
qT r2  T2 dr T drq 1/2R

2(t + 1), 3po + ,r - 2r0

Here p(r) is the plasma pressure, jt is the toroidal current density, qo = m/n and these

relations serve to define the central poloidal beta parameter )po. The latter is assumed to

be of order unity so that our theory applies to the conventional low-beta regime, 3 = O(e 2 ).

Notice the essentially flat jt profile that reflects our flat-q assumption.

We base our stability analysis on the ideal MHD energy principle and derive a sta-

bility criterion by minimizing the potential energy functional' 0 W[ J. The fluid displace-

ment vector ( is assumed to vanish for r > ro, i.e. outside the flat-q region. It can
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also be shown that a minimizing parallel component of f that makes the mode incom-

pressible, V - = 0, can be found. The minimization with respect to its components
perpendicular to the magnetic field is carried out perturbatively in powers of e2. Nor-
malizing W to B2RorjI-/Ro12, its leading order term is O(C-2) and involves only the

stable fast magnetosonic wave. Due to our low-3 and flat-q assumptions, the instability
driving terms associated with the pressure gradient and the parallel current gradient do
not appear until 0( 2 ), and the next order term, 0(1), again involves only the stable

fast magnetosonic and Alfven waves. The fast magnetosonic wave is suppressed by in-
troducing a stream function 4' such that ± - Vr = 84/89, and ordering the remainder

R 0T~±.- (B x Vr) - Vr- V(rc) x as x =(E 2 ). To suppress the Alfv'n wave

to leading order, we must assume a long parallel wavelength, interchange-like mode. This

is achieved by taking 4P = [-i(r) + -1(r,0)] exp(imr - inV) with 4'1/4o = O(C). The
O(C2) piece involves the instability drive for the first time. In this order a minimization of

W with respect to x can be carried out algebraically, thus resulting in a functional of 4D

alone. All the terms involving the function q2(r) = 0(62) can be combined into a perfect

differential and eliminated by partial integration, so that the stability condition does not

depend on the details of q(r) - m/n. After substituting for the equilibrium functions given

above and carrying out some partial integrations, the potential energy functional reduces

to:

rBin2 jrf. fD2 8C1 1 82 " 2 +1 1 2(4) +( & 8 4'i 2W = rd d6 Dm + - + +M +- 02R f _D irn 8r80 K80 im 802

(sb, + i- 1)2 /3r 2  2 2(ro + x- 1 )#, 0 r sinG 8(r$,)+ /CK | o014. 12o + 4) +c.C.],R2 1,/2R im or

where K, 1 - - 3(K! - 1)(0j - 2r0)(i + 1)1(3,i + 1)-i + 8fR(3 ± 1)-'

(Kecos 2 0 + K 0~srn 2 0)- and u -D 2(r -')sinO cosO.
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In the short perpendicular wavelength limit, namely m >> 1 and/or O4/&r ~ ik,I

with kr >> 1, W reduces to the familiar form encountered in the theory of large-n in-

terchange and ballooning modes. Its minimization is then performed independently on

each magnetic surface, where an ordinary differential equation in the poloidal variable 0

results. The solution of this local Euler equation yields the Mercier criterion (1). How-

ever we are here interested in global, finite perpendicular wavelength modes for which W

retains its full two-dimensional character. We shall be able to carry out the complete min-

imization of W in this general case. To this end we make first the change of variables: 1'

f2(r) = R;/r2 4, f,(r,0) = 2-,4/2(rO + K-')-' ,r8,41/80. Then, after some partial

integrations, we can cast W in the following form:

2______ 2__r, 1 eaf,
W = nrB 2 2 ( 0 + -1)2 I dr r d6jKo Lfo2 + 4 D -m8 2

2Ro Korj_ O im ao

4p r 8f, 1 9f, 2 4 p cos 0 r cose 8f*
+ +jei+) fo (sinO f* + - R*+ )+c.c..

r.OD2 im &r im ao n m m o

Now all the coefficient functions in W can be made independent of the radial variable

by changing to x(r) = ln(r/ro). Moreover, as functions of x, fo(x) and f,(x,0) are fast

decaying when x -+ ±oo. Therefore, we can express W in terms of their Fourier transforms

f0 (k,,) and f,((k, 6). Then, minimization of W with respect to f,(k", 0) yields the following

ordinary differential equation in 0, with k,, as a parameter:

+ { K * cos2] 1 + 11) fij

k m 49 -2- 1 2 0 01i M _O

k- * * 1 + ) (sin20 fj) +sin20 ( + (2)
+ 2 [) ( i imo9 0

+ k. + r,- + -K"* cos20 f1 + sinO + COO- k~coso f" 0.
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Taking Eq. (2) back to W and integrating by parts we get:

_2B_22(r. +-_2 cosO _ k,,cosO f1(k,0)1
W= flp dk.|fo(k.)| Ko+ 3p -do sine -.

Ro ±O 0 *0-o f 0r Tm m fo(kx)
(3)

The periodic solution to the Euler equation (2) is given by the following double series:

2m01 2j+1

fi~kO +) = m_1 fo(k.) * c(t. e- 1
1O + j=0 K0 + ___a0

t odd

with

c,,t = - k, - i(m + e+ 2) +Cj-1,-2 k + i(m + -2)
ce-2 c_, k. + i(m+) + )1,- k - i(m+ ) '

and the first two coefficients 2 co,_ 1 = [kg, + i(m - 1)]-' and 2 co,1 = [k - i(m + 1)]-1.

This solution is taken to Eq. (3) with the remarkable result that the value of the 9-integral

is equal to -27r/(Ko + 1) independent of both m and k.. Hence the stability condition is

)3po[Ko - 43p,§o-1(Ko + 1)-1] > 0, i.e. the Mercier criterion (1), for any m = nqo and any

fo(r).

The specific radial structure of the mode given by the function fo(r) is determined by

the solution of the MHD equations over the whole plasma domain, including the finite-shear

region. Since the low-P interchange modes under consideration are strongly stabilized by

the magnetic shear, the finite shear acts as a potential barrier that confines the mode to the

flat-q region. This potential barrier quantizes the permissible fo (r)'s, normally resulting in

an infinite set of discrete radial eigenfunctions, and determines their specific form. In any

case, only the flat-q region contributes to the incremental MHD potential energy W, due

to the mode localization. Therefore the stability condition is given by the Mercier criterion

(1) as evaluated before, for any toroidal number n and any radial eigenmode. This means

that the marginal stability point w2 = 0 is an accumulation point of the MHD frequency

spectrum. These features have already been verified numerically.6
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Finally we stress that, because of their finite perpendicular wavelength, our global

interchange modes are not affected by finite-Larmor-radius stabilization provided the ion

Larmor radius is much smaller than r0 . This is in marked contrast with the original,

large-n Mercier interchanges, 7 and provides the first opportunity for the Mercier stability

criterion to have an observable, macroscopic effect on the behavior of tokamak plasmas. In

summary, under rather general conditions we have obtained a robust, large scale instability

which is likely to play an important role in elongated tokamaks if the prevalent transport

processes produce flat central q-profiles. A possible scenario has this instability triggering

the sawtooth internal disruption which in turn results in a flattened q-profile, thus a self-

sustaining mechanism is established.

The author is thankful to J. P. Freidberg for very helpful discussions and hints. This

work was supported by the U. S. Department of Energy under Contract No. DE-AC02-

78ET51013.A002.
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