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Abstract

A non-destructive method for measuring the mass of high speed, frozen hydro-

gen pellets is described. The measurement of pellet mass is based on the perturba-

tion to a resonant cavity caused by a dielectric pellet passing through the cavity.

An oscillator circuit is formed with a resonant cavity in the positive feedback loop

of a microwave power amplifier. An injected pellet perturbs the resonance char-

acteristics of the cavity causing a shift in the operating frequency of the oscillator

proportional to the ratio of the pellet volume to the volume of the cavity. Through

digital measurement of the frequency shift the size of the pellet is determined au-

tomatically.
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Introduction

One of the currently researched methods of plasma fueling is the injection

of frozen hydrogen pellets into- the hot plasma'. Pellet fueling results in tokamak

plasma discharges that have better particle and energy confinement than discharges

fueled by gas puffing2 . The pellets of cryogenic (~ 10K") hydrogen, weighing

100 pigms, are manufactured inside a pellet injector and then injected into the

plasma with velocities between 800 and 1000 m/sec. An accurate knowledge of the

pellet mass is essential for quantitative study of pellet fueling. Because the pellets

manufactured within the injector are often non-uniform, it is necessary to develop

an accurate and non-destructive method for determining the size of the pellets on

shot-to-shot basis.

Two methods of measuring the pellet size have been previously investigated 2*

The mass of larger pellets was determined by shooting the pellets through a plate

capacitor. Measuring the backscatter from a tuned microwave cavity perturbed

by the pellet was investigated as a method for determining the mass of smaller

pellets. In this article, the proposed scheme for determining the size of the pellets

also involves measurement of the perturbation by the dielectric pellet to a resonant

cavity. The pellet size is determined by measuring the shift in the resonant frequency

caused by the dielectric perturbation.

The advantage of measuring the frequency shift as opposed to measuring the

if
backscatter from a perturbed cavity is that the former method is more readily
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automated. The frequency shift measurement, unlike the backscatter measurement,

does not require frequent calibration and is not affected by the drift in the resonance

characteristics of the cavity.

Exper4iMental Procedure

Overview of the Experimental Set-Up

The instrument for measuring the mass of frozen hydrogen pellets consists of

a resonant microwave cavity, a microwave amplifier, a directional coupler, a local

oscillator, a mixer, an IF amplifier, a TTL driver, and a frequency counter (Fig. 1).

The microwave amplifier, with a resonant cavity in its positive feedback loop, forms

an oscillator. The operating frequency of the oscillator is determined by the dynamic

range of the amplifier, the resonance characteristics of the cavity, and the phase shift

introduced by the connecting cables.

wo
27r fo = ()

V/1 + (wo/Q)(l/c) (1)

where fo is the operating frequency of the oscillator, wo is the resonant frequency

of the cavity, Q is the quality factor of the cavity, 1 is the length of the connecting

cables, and c is the speed of light.

A pellet gun is used to inject the hydrogen pellets into the cavity through the

small apertures in the cavity's transverse walls. Introduction of a small dielectric

(e.g. hydrogen pellet) causes perturbations to the cavity's resonant frequency and

If
consequently, changes the frequency of the oscillations. The dielectric perturbation

3



is described by the equation

W wo -fffa dV(e-Eo)EoI 2

2 fffv dVeoEo 2  (2)

where w' is the perturbed resonant frequency of the cavity, bk1,is the unperturbed

electric field inside the cavity, e is the permittivity of the perturbing dielectric, and

AV is the volume of the dielectric. It is evident from (1) that for (w/Q)(l/c) << 1

shift in the frequency of the oscillations is proportional to the ratio of the pellet

volume to the volume of the cavity.

Af E-O AV (3)
f Co V

The detection of a IF-range frequency shift resulting from the dielectric pertur-

bation is accomplished by heterodyning. Part of the signal power from the amplifier

is diverted to the input of a mixer via a directional coupler. The lowest frequency

component of the mixer output is a signal whose frequency is equal to the difference

between the operating frequencies of the local oscillator and that of the feedback

circuit. Clearly, the change in frequency of the IF output is equal to the change in

the resonant frequency of the cavity. A digital frequency counter triggered by the

pellet gun trigger is used to monitor the frequency of the mixer output.

"Proof-of-Principle" Experiment

In a "proof-of-principle" experiment, dielectric polyethylene pellets were used,

rather than pellets made out of frozen hydrogen, since the latter were more difficult
>f

to work with. Pellets with the average volume of ~ 0.26 mm were manufactured
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inside a pellet injector. Pellet velocity was dependent on the pressure level of the

driving gas. At 400 psi the velocities of several pellets were measured using a signal

from two photodiodes, and the average velocity was determined to be ~ 500 m/sec.

The polyethylene pellets werqi ected into a cylindrical copper cavity, inside

which the TMOIO mode of the EM fields was excited. The cavity dimensions were

26 mm diameter, and 15 mm length. Small non-radiating apertures in the centers

of the transverse walls of the cavity allowed for the passing through of a pellet. The

pellet moved along the central axis of the cavity with velocity such that the pellet's

radial deflection as a result of gravitational acceleration was negligible. Therefore,

during its presence in the cavity, a pellet caused a constant maximized shift in the

frequency of the oscillator circuit.

Inductive loop coupling was used to couple the TMOIO mode into the cavity.

The noise produced by the Narda 60164 power amplifier initiated the oscillations.

The frequency limitations of the amplifier and the directional coupler (Narda 3044-

20) guaranteed that the higher frequency modes were not excited in the cavity.

With the aid of the spectrum analyzer it was determined that the maximum energy

of the oscillator circuit was located at a frequency -8.75 GHz. The output from

the directional coupler was mixed with a signal from a local oscillator. T-junction

for BNC cables was connected to the input of an HP 8473B detector in order to

achieve a non-linear combination of the two signals. To select the frequency range

of the shifted down signal, the output of the mixer was connected to a spectrum

analyzer, and the frequency of the local oscillator was adjusted to yield the difference
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frequency of 3 - 4 MHz.

The peak-to-peak value of the IF signal leaving the mixer was measured to be

~1 mV. The signal was amplified to the TTL level, rectified into a square wave, an

additional transistor stage consistpof an emitter-follower was -dded to drive the

50 ohm input impedance of the frequency counter with the square wave signal. The

operation of the frequency counter was based on counting tye number of low-to-

high transitions of the input signal during one cycle of a pre-set clock. Because this

measurement scheme was an integer measurement, there was a ±1 ambiguity in the

number of cycles. A LeCroy 8590 scaler was used as the frequency counter, with

its latch input connected to the output of the LeCroy 8501 programmable clock.

The clock was triggered by the pellet injector trigger; and the LeCroy 8801 memory

module was used to store the data.

Results

The expected frequency shift was calculated as

-fo (- R o)VpeueiE E 1 E- EO Vpeuet
240 =1 -1 =2.-05).c(4)2fo 2,7rdpeo|EoJo(24 5)2 J2(2.405) eo

1 lx .26
Af = -8.75 GHz x 2 = -1.1 MHz, (5).25 8 x 103

the dielectric constant of polyethylene 4 at 9 GHz is equal to 2. A typical shot,

where a pellet can be observed is shown in Fig. 2. The frequency shift of 1 MHz
)f

lasted for - 30-50 psec.
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Extensions and Improvements

Higher operating frequencies may be necessary in order to accurately measure

the size of smaller pellets or pellets travelling with greater velocities. In accordance

with the "uncertainty principle" t9 efrequency resolution is limited by the amount

of time that the pellet spends in the cavity. For a fixed ratio of the pellet volume

to the volume of the cavity, better resolution can be obtained at higher frequencies.

Resolving power, in the case of the TM010 mode is proportional to the cubic power

of the resonant frequency.

An alternative scheme for measuring the frequency shift may also be utilized.

Reciprocal frequency counting involves counting the number of transitions of a fast

clock during one cycle of the input signal, rather then the number of the input signal

transitions during one cycle of an arbitrary clock. Reciprocal frequency counting

provides higher contrast, and the perturbation due to the pellet can be calculated

more easily.

Conclusion

An oscillator circuit consisting of a microwave cavity and a power amplifier

was used to automatically measure the mass of fast-moving dielectric pellets. The

dielectric perturbation caused by the pellet passing through the microwave cavity

resulted in a shift in the operating frequency of the oscillator circuit; the frequency

shift was proportional to the ratio of the pellet and the cavity volumes. In a "proof-
If

of-principle experiment" it was shown that polyethylene pellets, with the average
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volume of .26 mm3 and velocity ~~500 m/sec, caused a a shift in the operating

frequency of the oscillator circuit that was within 10% of the predicted value.

This work supported by th&:U.S. Department of Energy.
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Figure 2. Frequency Counter Data from a Pellet Shot.
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