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ABSTRACT

This paper contains an analysis of pulse shapes produced by a delta-function disturbance
of the equilibrium state of a relativistic electron beam propagating through a constant-
amplitude helical magnetic wiggler field. Pulse shapes are determined by using the rel-
ativistic pinch-point techniques developed by Bers, Ram, and Francis. Two pulses are
produced corresponding to a convective upshifted pulse (representing the production of
the high-frequency radiation desired in a free electron laser) and a downshifted pulse. The
downshifted instability may be convective or absolute, depending upon the beam density
and momentum spread. Parameter regimes in which the downshifted instability is con-
vective are investigated. It is found that momentum spreads sufficiently large to suppress
the absolute instability reduce the growth rate of the upshifted pulse to negligible values.
Pulse shapes computed by using the Raman and Compton approximations are compared
with exact pulse shapes. It is found that the Raman approximation should be applied to
the downshifted regime for most systems of practical interest.



1. INTRODUCTION AND SUMMARY

The free electron laser (FEL) with a fixed magnetic wiggler field supports two un-

stable modes. These are the forward-traveling (upshifted), short-wavelength mode, which

produces the desired high-frequency radiation, and the so-called backward-traveling (down-

shifted), long-wavelength mode. The upshifted mode is convectively unstable; that is, the

effects of a perturbation of the electron beam propagate in the beam direction, away from

the point of origin. On the other hand, the downshifted mode may be absolutely un-

stable; that is, the effects of a perturbation may not propagate away from the point of

origin (Liewer, Lin & Dawson 1981; Cary & Kwan 1981; Kwan & Cary 1981; Liewer, Lin,

Dawson & Zales-Caponi 1981; Steinberg, Gover & Ruschin 1986) . Thus, if the FEL op-

erates in a continuous mode (as opposed to a pulsed mode), there may be sufficient time

for the slow-growing downshifted mode to disrupt the electron beam. The downshifted

instability cannot be supported if the system is sufficiently short (Liewer, Lin & Dawson

1981; Steinberg et al. 1986). In practice, it can be cut off or selectively absorbed in a

waveguide. Nevertheless, it should be considered in the design of an FEL. Consequently,

a study of the relative characteristics of the downshifted and upshifted instabilities is of

practical importance in FEL design. Moreover, such a study is of fundamental importance

in understanding the properties of the FEL dispersion relation.

In this paper, we carry out a relativistic pulse-shape analysis of a one-dimensional,

unbounded electron beam propagating in an ideal helical wiggler field. The dispersion

relation for this system has been extensively analyzed (Kwan, Dawson & Lin 1977; Kroll

& McMullin 1978; Bernstein & Hirshfield 1979; Sprangle & Smith 1980; Davidson & Uhm

1980; Davies, Davidson & Johnston 1985, 1987). Using the methods developed by Bers,

Ram & Francis (1984), we determine the time-asymptotic unstable pulse shapes which

develop from an FEL-equilibrium state as a result of a delta-function disturbance in space

and time. If an instability is convective, then the growing pulse will propagate away from

its source. If the instability is absolute, then the growing pulse will encompass its source.

These methods are briefly reviewed in §2. The asymptotic pulse amplitude G (vt, t) at

z = vt is given by InG(vt,t) = Im(,) -y-jt [equation (10)], and therefore a plot of
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Im (V',) Y71 vs. v or #v = v/c gives the shape of the logarithm of the pulse amplitude. At

the end of §2, we point out a correspondence between extrema in the pulses and extrema in

the laboratory frame growth rate curves [Im(w) vs. real k), which is useful in the analysis

in §6.

The dispersion relation used in this work is that derived by Davidson & Uhm (1980),

generalized to a frame of reference moving in the beam direction with arbitrary axial ve-

locity &3 = v/c. The corresponding dispersion relation is described in §3. We refer to it

as the full dispersion relation (FDR) [equation (17)). By assuming a large frequency mis-

match with the right-hand-polarized radition field, we obtain the simplified full dispersion

relation (SFDR) [equation (31)). We also introduce the full Compton dispersion relation

(CDR) [equation (30)] (which is derived in the same way as the FDR, neglecting the per-

turbed, longitudinal electric field) (Dimos & Davidson 1985; Davies et al. 1985), and the

corresponding simplified Compton dispersion relation (SCDR) [equation (32)). In order

to study the influence of thermal effects on pulse shapes and on the absolute instability,

it is assumed that the momentum spread A is narrow (i.e., A/yomc < 1). Approximate

dispersion relations for a narrow momentum spread are developed in such a way that the

narrow Lorentzian dispersion relations in §5 are covariant.

Pulse shapes for the case of a cold beam are treated in §4. The cold-beam SFDR is

given in (56). To obtain analytical expressions for the pulse shapes, we derive the Raman

(69) and Compton (81) approximations to the cold-beam SFDR. For either the Raman or

Compton approximation, there are two pulses, upshifted and downshifted. The upshifted

pulse is always convective, since (with the beam traveling to the right) its left edge moves

with the beam velocity. The right edge of the downshifted pulse also moves with the beam

velocity. If the beam density is sufficiently large, then the left edge of the downshifted

pulse moves to the right, and the instability is convective. [See (77) for the Raman pulse,

and (87) for the Compton pulse.] Otherwise, the left edge of the pulse moves to the left,

and the instability is absolute. Using (62), we find that plotting the positive imaginary

part of 6,± [as given by (72)] vs. /, gives the Raman cold-beam pulse shape. Plotting

the positive imaginary part of &Y'± [as given by (82)] vs. /, gives the Compton cold-beam

pulse shape.
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In §5 we employ a Lorentzian distribution in order to determine the influence of ther-

mal effects on the results in §4. The Lorentzian SFDR is given in (90), and its Raman

and Compton approximations in (100) and (105), respectively. Raman pulse shapes are

obtained by plotting the positive imaginary part of L' las given in (101), (99), (61) and

(72)] vs. 0,. Compton pulses are obtained by plotting the positive imaginary part of

±' [as given in (101), (104), (61), and (82)] vs. #,,. For sufficiently low beam density, a

sufficiently large momentum spread brings the right edge of the downshifted pulse to the

left of the origin at #, = 0, thus converting the absolute instatility into a convective insta-

bility. Equation (108) determines the minimum momentum spread required to suppress

the absolute instability for the case of the Compton approximation and low density (i.e.,

2 < 1 ). Conditions for validity of the Raman and Compton approximations are derived.

These are stated in (111) and (112), respectively.

Pinch-point parameters obtained from the Raman and Compton approximations are

useful as initial values in obtaining numerically exact pulse shapes for the Lorentzian

SFDR. Numerical results presented in §6 show that pulses obtained from the Raman or

Compton approximation (whichever better obeys the validity conditions developed in §5)

closely approximate the exact pulses. The upshifted pulses are found to degrade much

more rapidly with increasing temperature than the downshifted pulses. As a result, the

momentum spread required to suppress the absolute instability effectively destroy the

upshifted pulse. A result demonstrated in §6 is that the maximum upshifted and down-

shifted pulse heights have the same values as the corresponding maxima of the upshifted

and downshifted growth rate curves [Im (c) vs. real k]. Using this result, we explain

why the numerical computations show that the Raman approximation is applicable to the

downshifted pulse, even in the case of systems which are normally classified as Compton.

4



2. BACKGROUND

In this paper, we analyze the propagation of instabilities in a one-dimensional free

electron laser with an unbounded electron beam. Our work is based upon techniques

developed by Bers, Ram & Francis (1984) for a relativistic pinch-point analysis of the

Green's function. [Also see Bers (1984) and Briggs (1964) for more extensive treatments

in the nonrelativistic case.] These techniques are briefly reviewed in this section. In the

laboratory reference frame, the Green's function G(z,t), representing the response of a

system to a delta function disturbance in space and time [6(z)6(t)], is given by (Bers 1984,

Briggs 1964)

G(z,t)= j -e--wtj ekz (1)
I 2Z IF 27r D(k,w)'

where D(k,w) = 0 is the dispersion relation for the system (relating frequency w and wave

number k), L is the Laplace contour in the complex w-plane [taken above all zeros of

D(k, w)] and F is the Fourier contour taken along the real axis of the complex k-plane.

If the dispersion relation possesses solutions with Im(w) > 0 for any interval of k,

then the system is unstable. If for every fixed z in the laboratory frame, the Green's

function grows without limit with increasing t, then the instability is said to be absolute.

If the Green's function eventually goes to zero with increasing t at each fixed z, then the

instability is said to be convective. In the case of an absolute instability, the unstable

pulse produced by the delta-function disturbance spreads out in both directions about the

origin. In the case of a convective instability, it moves away from the orgin in one direction.

Whether the instability is convective or absolute is determined by lowering the L-contour

in (1) toward the real w-axis and observing the resulting behavior of its images (obtained

from the dispersion relation) in the complex k-plane. For an unstable system, images

from above the real k-axis will cross this axis, representing modes growing spatially in the

positive z-direction; or images from below the real k-axis will cross the axis, representing

modes growing spatially in the negative z-direction. If the preceding is all that happens

to the images as the L-contour is lowered toward the real w-axis, then the instability is

convective, and it can be shown (Bers 1984, Briggs 1964) that limt., G(z, t) = 0 for any

fixed z. However, if an image of the L-contour from above the real k-axis merges with an
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image from below the k-axis to form a saddle point of w(k) (before the L-contour reaches

the real w-axis), then the instability is absolute. In this case it can be shown (Bers 1984,

Briggs 1964) that limt.,,o G(z, t) = oc at any fixed point z in the laboratory reference

frame. Such a saddle point in w(k) is called a pinch point.

The analytical conditions for a pinch point in the laboratory frame of reference are

that the equations D(k, w) = 0 and 9D(k, w)/Ok = 0 have a simultaneous solution (k,, w,).

Furthermore, it is required that Im(w,) > 0. Finally, the saddle point must be formed

by the merging of two solutions to the dispersion relation which were initially on opposite

sides of the real k-axis.

The time-asymptotic Green's function is obtained (Bers et al. 1984) by carrying out

the above analysis in a general reference frame moving with velocity v in the z-direction

relative to the laboratory frame (see figure 1). The quantities (k', w') in the general frame

are related to the corresponding laboratory-frame quantities by the Lorentz transformation

ck' = y,(ck - fw),

(2)

'= Yv(w - #,ck),

where

S= v/c,

(3)

= (1 - f)- .

Using the invariance of G(z, t), D(k, w) and dwdk, we transform (1) to the general reference

frame according to

i dw' __wt / dk' eik''

'(z I, 2 r IF, 27r D'(k', w'fJ)

In the above equation, the quantities z' and t' are given by the Lorentz transformation

Z = 7V(Z - Oct),

(4)

ct' = 'Y(ct - 0, z).
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Moreover,

G'(z', t') = G(z, t), (5)

and

D'(k', w',) = D(k(k',w', /,),w(k', W', 13)). (6)

Pinch points k' , and Lo' in the general frame must satisfy

D'(k',w'o,) = 0, (7)

and

-k' 0, 
(8)

with

Im(w') > 0. (9)

In addition, the saddle point in w'(k') must be formed by the merging of two roots of

the dispersion relation, one which was originally above the real k'-axis and one which was

originally below.

The time-asymptotic pulse as observed in the laboratory reference frame is given by

G(vt, t). It can be shown (Bers et al. 1984) to satisfy the equation

ln G(vt, t) ~ Im(w')7;t. (10)

Consequently, a plot of Im(w')y; 1 vs. v (or #,) gives the shape of the logarithm of the

time-asymptotic pulse that results from the delta-function disturbance. When both axes

are multiplied by t, the plot gives the time evolution of the pulse. For the case of the

convective instability, both edges of the pulse-shape curve will lie on the same side of the

origin of the ,-axis. If the instability is absolute, then the edges will lie on opposite sides

of the origin.

By regarding w' as a function of k' in (7) and (8), one obtains the saddle point

condition
dw'(k')

dk' 0
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for the general reference frame. Applying the Lorentz transformations in (2) to the above

equation, one finds that the corresponding laboratory-frame condition for a saddle point

in the general frame is
dw(k) 

(1dk

If w' is considered to be a function of i, in (7) and (8), it can be shown (Bers et al. 1984)

that

d-72ck',. (12)

There is a useful relation between extrema in the height of the pulse-shape curve

[y; 1Im(w') vs. 3, ] and extrema of the laboratory-frame growth-rate curves [Im(w)

vs. real k]. The relation is that to each extremum in the pulse-shape curve, there cor-

responds an extremum of equal height in the laboratory-frame growth-rate curves [i.e.,

y;'Im(w') = Im(w) at the corresponding extrema.]. This relation is used in the inter-

pretation of numerical results discussed in §6. To prove this relation, we first employ the

Lorentz transformation in (2) in order to rewrite (12) in the form

d(yjl',) - (3dV _ = ck,, (13)

where (k',o ) are the coordinates of the general frame pinch point (k',w') transformed

back to the laboratory frame. Since d[y7'Im(w')]/d#, = 0 at an extemum of the pulse-

shape curve, it follows from (13) that the laboratory-frame k corresponding to the pulse

extremum is real. Combining this result with (11), we see that (in the laboratory frame)

Im(w) as a function of real k has an extremum equal to Im(wt) at k = k. Finally, using

(2) for real k, we find that W7Im(w') = Im(wj).
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3. DISPERSION RELATIONS

3.1 Development of Dispersion Relations

In the present analysis, we employ the FEL dispersion relation derived in the lab-

oratory frame of reference by Davidson & Uhm (1980, henceforth referred to as I). The

dispersion relation is applicable to a collisionless, relativistic electron beam of uniform

cross section, which propagates in the longitudinal (z)-direction through an ideal wiggler

magnetic field, given in the laboratory reference frame by

B =-Bocosko z -Bosink o ze . (14)

Here, ko = 21r/Ao is the wiggler wavenumber in the laboratory frame. The beam is

assumed to be sufficiently tenuous that equilibrium self-electric and -magnetic fields can

be neglected. The beam is also assumed to be cold in the transverse directions with a

laboratory-frame distribution function f (z, pz, t) given by

f (z, p2, t) = no6 (P,)6 (P,) G (z, p, t) , (15)

where no is the average beam density, and P, and Py are the (conserved) components of the

transverse canonical momentum. The quantity G (z, p, t) is the longitudinal distribution

function, which is normalized such that

no JdpG(z,p,t) =n(z,t), (16)

where n (z, t) is the (spatially modulated) beam density. The equilibrium state of the

system is specified by a particle distribution function of the form Go (p,) and the wiggler

field in (14). Perturbations about the equilibrium state are calculated from the linearized

Vlasov-Maxwell equations. The resulting dispersion relation is given in equation (45) of I.

The FEL dispersion relation in I can be transformed to a general frame of reference

moving with velocity v in the longitudinal direction by either of two methods. The first

method is to transform the laboratory-frame dispersion relation directly with the aid of

(6). The second (and simpler) method is to repeat the derivation of I in the general

9



reference frame. (The derivation is omitted, because it is very similar to the laboratory-

frame derivation in I.) We refer to the resulting dispersion relation as the full dispersion

relation (FDR). The FDR in the general reference frame is

D"' (k', w') Dt ' (k' - k', w' + k' v) Dt' (k' + k', w' - kIv)

1 WC2 [D' (k'- k k, w'+ k'v)+D(k'+ , ' v)] (17)
2 c2k'2 [

x x' (k', W') 2 - Del (k', w') a' w/2 + x( 2 )' (k', W')]

In the above equation, k' and w' are the wavenumber and frequency in the general frame.

These are related to k and w in the laboratory frame by the Lorentz transformation in (2).

The quantity k' is the wiggler wavenumber in the general frame, which is related to ko in

the laboratory frame by

k' = yvko, (18)

where -y, is defined in (3). The quantity D" (k', w') is the longitudinal dielectric function

defined by

Del (k', w') = C2k'2 + X(O)' (k', w') . (19)

The transverse dielectric functions Dt (k' - kh,w' + k'v) and Dt (k' + k',w' - k'v) are

defined by

Dt' (k', w') = W- c2k'2  a'wf . (20)

The susceptibilities appearing in (17) and (19) are defined by
MC212 k'OG'IOA/p

x(O) (k', W') = %mc~w dp' -k'G
0 dp' k'G0 89z
1 2 ,fdp, k'iG0Op

' (k', w') = 76 Mc 2 W Yo -- , - ,a , (21)

(2) 2 /2 12 dp' k'OG'1/0p'
x(2 )' (k', w') = -Ymc ' - k'v

In (21), pz is the longitudinal component of the particle momentum, and y'mc2 is the

equilibrium particle energy given by

-'mc2= m2 c4 +P 2'c2 + k2 2 (22)
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where B6 is the magnitude of the wiggler magnetic field in the general frame. The quantities

p' and -y'mc2 are related to their laboratory-frame values by the Lorentz transformation

PZ = Yv (Pz - /3yfMnc),

(23)

7'mC = , (-ymc - /3 Ppz).

Using the well known transformation rules for the electromagnetic field (Jackson 1975),

we find that B' is related to the laboratory-frame wiggler-field amplitude (14) by

B'= Bo. (24)

The term e2 B12 /k 2 in (22) represents the square of the maximum excursion of the trans-

verse particle momentum in the wiggler field. This quantity is unchanged by a Lorentz

transformation in the longitudinal direction, i.e.,

eBo _ eBo (25)
k' ko

The longitudinal component of the equilibrium particle velocity v', which appears in (21),

is related to p. by v' = P1/'M.

Additional quantitites appearing in (17) and (21) are the relativistic cyclotron fre-

quency

C = 76MC, (26)

and the square of the relativistic plasma frequency

S2 m47rn'Oe2 (27)

The quantity 7', which appears in (17), (21), (26), and (27), is a constant scaling energy

whose value is arbitrary, because it can be cancelled out of the FDR (17). It will be defined

explicitly later. The constants a' and a', which appear in (17) and (20), are defined by

' = 7;" I oG' (28)
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Finally, G' (p') [in equation (21)] is the longitudinal, equilibrium distribution function in

the general frame. The distribution function f(x, p, t) (normalized such that f d3 pf = n)

is a scalar (de Groot, van Leeuwen & van Weert 1980). Consequently, it follows from (15)

and (16) that

n',G' (p') = noGo (p2 ). (29)

The full Compton dispersion relation (CDR) is derived in the same way as the FDR,

except that the perturbed longitudinal electric field is neglected (Dimos & Davidison 1985;

Davies et al. 1985). In the general reference frame, the CDR is given by

Dt'(k' - kl,w' + k'v)Dt' (k' + kw' - k'v)

=w- e [D ' (k' - k, w' + k' v) + D ' (k' + k, w' - kv)] (30)2 c2k,2 [tl(

x a'W /2 + x(2)' (k', w')]

Let us assume that the energy in the radiation field is concentrated primarily in the

positive-helicity mode. Thus, the FDR (17) and CDR (30) can be simplified by assuming

that D'" (k' - k', w' + klv) ~ 0 and D"' (k' + k', w' - k'v) i 0. We refer to these approx-

imate dispersion relations as simplified dispersion relations. The simplified full dispersion

relation (SFDR) is given by

D" (k', w') Dt' (k' - k', w' + k' v)

(31)

__ 1c 2 f [x')' (k', W') - Dtl (k', w') a'w'2 + X (k', w') }
and the simplified Compton dispersion relation (SCDR) is given by

D"' (k' - ko,w' + k'v)

(32)

We al~i. aW t2+ X(2)l(k, w I)1
2 c 2k,,2 3p
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3.2 The Beam Frame of Reference

The longitudinal component of the equilibrium particle flux is defined by

r, = n'I dp',v'G' (P').

It is well known that the particle flux together with the particle density transform as a

four-vector (de Groot et al. 1980). That is,

r' = tv (L' - 0,cno),

(33)

cn' = IN (cno - o, r,) .

We define the beam frame of reference as that frame in which the longitudinal com-

ponent of the equilibrium particle flux vanishes. Equivalently, it is that frame in which the

mean value of the longitudinal velocity vanishes. (See figure. 1.) By applying (33) to the

general and beam reference frames, it is readily shown that the velocity v' of the beam

frame relative to the general frame is

Vb= dp'v' G' (p').

That is, the velocity v' is equal to the average longitudinal particle velocity in the general

frame. We define the quantities

(34)

S= (1. - )-/

Using the fact that the longitudinal component of the particle flux vanishes (by definition)

in the beam frame, we find from (33) that

n '/no = -y'/-y. (35)

Combining the above result with (29), we obtain the scalar relation

YG' (p' ) = ybGo (p.). (36)
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Since -ymc2 and 4ymv' represent the energy and longitudinal momentum of a particle in

the beam frame, we may use (23) to obtain the following transformation for yb

= 7VYb (1 - b 0,). (37)

The constant energy "d'mc 2 , which appears in (21) and (26)-(28), has not yet been

defined. For convenience, we now define y6mc 2 to be the equilibrium energy of a beam

electron whose z-component of velocity vanishes in the beam frame. Referring to (22), we

define

I mc = m c4 + '2C 2 + 2K 2 (38)

where

po = yomvb. (39)

Then, according to (23), -y' satisfies the transformation

^t = 7V70 (1 - IO t) - (40)

From (36), (37), and (40), we obtain the scalar relation

yoG' (p') = -yoGo (p.). (41)

With the definition of -y6 in (38), the square of the relativistic plasma frequency (27) is

also a scalar. Referring to (35), (37), and (40), we obtain

W'2  47 -2 4 2rnoe 2. (42)
7m om

3.3. Narrow Distribution Functions

Consider a laboratory-frame equilibrium distribution function Go (pz) with character-

istic width A. We regard the distribution to be narrow if

< 1, (43)

where the dimensionless momentum spread A is defined by

S= -. (44)
Yomc
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For the case of a narrow distribution, the approximate Lorentz transformation of pz - po

is given by

pZ -po =7V (1 - POO (PZ - Po)PI (45)

This result is obtained from (23) by expanding y [equation (22)] to first order in pz - po

and employing (39). Using (45) and (40), we find that the momentum spread satisfies the

transformation

A' = Y, (1 - #,#b) A = YoA. (46)
7o

Note that a is a scalar for narrow distributions, i.e.,

a'- - A =a (47)
76tfmc 7omC

Consequently, if a distribution is narrow in the laboratory frame [i.e., it satisfies (43)], then

it is narrow in the general frame [ i.e., it satisfies 3' < 1]. Furthermore, from (45) and

(46), we obtain
(P'Z - P) _ (Pz - Po) (48)

Therefore, (p, - po) /A is a scalar. Using this result, we obtain a simple prescription for

transforming the laboratory-frame distribution function Go (pz) to the general reference

frame. First we express Go (p2) in the form

Go (pz) = F(PAPO)

Then, using (41) and (48), we obtain the transformation

G' (p' 10= F P -(04g)

For narrow distributions, the susceptibilities defined in (21) are evaluated through use

of the approximations

EI _P p' (P - PO)I I b /

c 7 mc 7b 76mc

(50)

't In -t In + nl-4f , (A4,- P1 )
-0 rn
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The procedure for evaluating the susceptibilities from the above approximations is not

unique. The method described below is chosen because it leads to narrow-distribution dis-

persion relations in §5 that are covariant. [See (90) and (102).] Using (50), we approximate

the denominator of the integrand of X(')' defined in (21) by

y' (w' - k'v') = (/w' - ck') 0, -k't4) (p' -p') . (51)
(#wl - ck') mc

The respective factors 1/ (w' - k'v') and 1/7'2 (W' - k'v') appearing in the integrands of

X(O)' and X(2)' in (21) are expressed in the forms y'/y'(w' - k'v') and 7''/7'(w' - k'v').

In each case, the denominator -y'(w' - k'v') is approximated by (51),and the numerators

(y' and y'-1) are approximated by (50). The resulting narrow-distribution susceptibilities

are

x(0)' (k', w') = + Xa') x('

Omc 2 W k' d' G/8'
X *(k' ,')= P , (52)

A (Ow' - ck') (' -C)

X (kl, wo') 0 - 0613C, ) X~''

The quantities appearing in the above equation are

=' (p' p'I)/A',

(53)

(ck' - #Ob') A

Using (48), (47), (2), and (23), it is readily shown that both of the above quantities are

invariants for a narrow distribution (i.e., ' = and C' = ().

Finally with the aid of (50), we approximate the constants defined in (28) [to first

order in (p' - p')] by

aI = a/ = 1. (54)
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4. PULSE SHAPES FOR A COLD BEAM

We use the SFDR (31) and the SCDR (32) to analyse pulse shapes for the cold beam,

with Go (p,) = 6 (po - p,). The transformation rule in (49) can be used to transform this

distribution to the general frame. We temporarily assign to Go (p,) a width A and express

it in the form Go (p,) = 6 [A (p, - po) /A]. Then, it follows from (49) and (46) that

G' (p.') = 6 (p.', - po) . (55)

We substitute (55) into (21). [Alternatively, we may take the limits as i approaches zero

in (52).] With the above substitutions, the SFDR (31) becomes

(56)

2 k P

and the SCDR (32) becomes

(57)
12 ' P2

In the above equations, we have introduced several dimensionless quantities. [Such quanti-

ties simplify the algebra. Moreover, in numerical computations, the dimensionless frequen-

cies and wavenumbers do not become large when | is close to one.] These quantities

are

ck' P ck'

(58)

ck'j k1.

It follows from (18) and the invariance of w, [equation (42)] that

"' = W-P (59)
P ')
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and from (25) and (40) that

'= w . (60)
Yv7 (1 -Pv~b)

From (2) and (18), we obtain the Lorentz transformation

=i k -

(61)

In terms of the dimensionless pinch-point frequency, , = ',/ck', the asymptotic pulse

shape given by (10) reduces to

InG(vt,t) (62)
~~ Im(6',). (2ckot

4.1 Pulse Shapes in the Raman Approximation

We carry out an approximate pulse-shape analysis for the cold-beam SFDR (31) by

using the Raman approximation and assuming that the coupling is weak. [The analysis

presented in this section contains a generalization of a laboratory-frame analysis presented

by Cary and Kwan (1981).) We introduce

(63)

k 0 +±6k,

where L'O± and k'a are the simultaneous solutions of the uncoupled, negative-energy lon-

gitudinal dispersion relation

' = 7P't - ,(64)

and the uncoupled radiation dispersion relation

2 1/2
+ OV = k +' - 1 120 (65)
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which appear as factors in the SFDR. The covariance of (64) and (65) follows from the

Lorentz transformation in (61) and the velocity addition formula

_ 3b (66)
1 - #3o#

Equations (64) and (65) are easily solved in the laboratory frame to give

2=O i - /2]
'o yb, 1 - b) I (#2 COYb) ]

(67)

7Yb

Since (64) and (65) are covariant, the general-frame quantities k$s and 0_a are obtained

from ko0 and cOh by using the Lorentz transformation in (61). We restrict the analysis

to the case where

24/7b < f3l. (68)

Consequently, k$$ and 42'a are real.

We substitute (63) into the cold-beam SFDR (56). Assuming that the coupling is

weak, we retain only lowest order terms in 6k' and &Y on the left-hand side of (56) and

neglect bk' and 6V' in the coupling term to obtain the approximate dispersion relation

D' I (6', 6$') = (6I - Io6') (6$' - I06k') + R'_ = 0. (69)

We refer to (69) as the weak-coupling Raman approximation to the cold-beam SFDR. In

the above equation,

_ 1 Iz~4)y (C,12 _k12~ _ .2/2)
R's = -± ± > 0, (70)

8 (4 0a + #')

where the inequality follows from (64) and (65). The quantity g'±, which appears in (69),

is the group velocity (8O'/8k') obtained from (65) evaluated at C' = V±' and k' = k'oa.

It is given by

('o" = .) (71)
g0 ± = O(Q + 0)
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Saddle points of 6'(6k') are found by solving simultaneously (69) and (8) written

in the form 9D'(6k',V')/86bk' = 0. We find that saddle points occur at 6k'± and bV,±

defined by

,#1 ( -1) (Wo*+#,) R'1

so -1) #s(06 + #V)l

(72)

6k'1 = 6(''s02 #i,6 ) ($ '& - 1)

Because c'Oa is real, a necessary condition that a saddle point be a pinch point is

that Im (& '±) > 0. [ See also equation (9).] Referring to (70) and (72), we see that this

necessary condition is satisfied if either

k'± > 1 [i.e. g'a > 1] and < 0, (73)

or

kl: < 1 [i.e. g'± < 1] and /i > 0. (74)

These results are interesting from a physical standpoint, because they describe conditions

in which the beam velocity and the radiation group velocity of are oppositely directed in

the general reference frame.

The remaining requirement for a pinch point is that the saddle point be formed by

the merging of two roots 6k' (6K') of D(6bk', b'), which lie on opposite sides of the real k'

-axis for sufficiently large values of Im(bV). For large IoZ'I, the solutions to (69) behave

asymptotically as 6' - #bbk' and 6V' - g6bk'. It follows that (73) or (74) is also the

condition that a root from above the real k'-axis merge with a root from below. Thus,

(73) or (74) is a sufficient condition that the saddle point be a pinch point.

Once the pinch point coordinates are determined as a function of #,, the asymptotic

pulse shape is given by (62) with Im (L') = Im (,) [equation (72)]. There are two pulses,

one associated with D'(6bk',6V) and one with D' (6', 6V') in (69).

We refer to the pulse associated with the dielectric factor D'(6bk', bc') as the upshifted

pulse. The upshifted pulse has the following properties (derived in Appendix A). Relative
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to the laboratory frame, the left edge of the upshifted pulse moves to the right with velocity

0+1 equal to the beam velocity 3b. The right edge of the pulse moves to the right with

velocity 0+, > 1b given by

o+r = + - 1 , (75)
o6 k0+ - L

7b

where ko+ is defined in (67). Because 0+1 and 0+, have the same sign, the instability

is convective. That is, at any fixed z (in the laboratory frame) the amplitude of the

asymptotic pulse approaches zero as time approaches infinity. A schematic plot of the

upshifted pulse is included in figure 2.

We refer to the pulse associated with the dielectric factor D'_ (6k', 6V) [equation (69)]

as the downshifted pulse. Properties of the downshifted pulse (derived in Appendix A) are

the following. The right edge of the downshifted pulse moves to the right with velocity #_,.

equal to the beam velocity 3b. The left edge of the downshifted pulse moves with velocity

,3-e given by

1 _ k0 =.(76)

where ko- is defined in (67). If the condition

is satisfied, then #_j > 0. In this case, the left edge of the downshifted pulse moves to the

right, so that the instability is convective. On the other hand, if CD < (i3 - 1/Yb)/ 1 b, then

0-e < 0. Because 0_t and #-, have opposite signs, the instability is absolute. That is, at

any fixed z (in the laboratory frame), the amplitude of the asymptotic approaches infinity

as time approaches infinity. The behavior of the downshifted pulse is shown schematically

in figure 2 for the case of absolute instability.

4.2 Pulse Shapes in the Compton Approximation

We obtain approximate pulse shapes for the cold-beam SCDR (57) using a procedure

similar to that employed above for the SFDR. We again express ' = cE + 6V and
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' = kOa + 6k' [equation (63)]. However, it is important to note now that c6a and k6 are

simultaneous solutions of the uncoupled free-streaming dispersion relation

v' - N'i=0, (78)

and the uncoupled radiation dispersion relation in (65), which appear as factors on the

left-hand side of the SCDR (57). Solving (65) and (78) simultaneously in the laboratory

frame, we obtain

20  ± 7b 67 [_Y2 +- )

(79)

0*= koafi -

[Cf. equation (67).] The general frame quantities k'± and c6a follow from (79) and the

Lorentz transformation in (61). We restrict the treatment to the case where

2>(1 + 2) .(80)

In this case, it follows from (79) and (61) that k'a and c6a are real and positive.

We substitute (63) into the SCDR (57). Assuming that the coupling is weak, we retain

only lowest order terms in 6Y and 6k' on the left hand side of (57) and neglect &' and

6k' in the coupling term. This results in the approximate dispersion relation

D'" (6k', &Y'

= (0'- /6' ( +0±)62' - 1) 6k' (81)

4 y D2 0-- 0 - 0.
4 Yb7

We refer to (81) as the weak-coupling Compton approximation to the cold-beam

SFDR (56).

Saddle points of 6&'(6W) are obtained by simultaneously solving (81) and (8), ex-

pressed in the form OD(6bk', bY')/86b' = 0. Saddle points occur at bk'a and 6L' deter-
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mined from

(ba = 162 w 2 0 ± O 1) ,
16 12 1 (C a + #" ) - ( -

(82)

[2#b' (ca + ,) + -
6k's = 64'za -

3A- _( k ± - 1)

Because (6',)3 is real, there is exactly one solution of (82) for which 6'a: has a positive

imaginary part, and as a consequence may be a pinch point. We also require that a pinch

point be formed by the merging of roots of the dispersion relation from opposite sides of

the real k'-axis. In the limit of large Im (&'), the solutions of (81) behave asymptotically

as

6k' ~ -- , (2 solutions)

(83)

6k' (1 solution)
904

where ga = (k'± - 1)/(C24, + Pv) is the radiation group velocity defined in (71) except

that here koa and V+ are defined in (67) and (61). The sign of g'± is the same as the

sign of koa - 1. Therefore, a saddle point can be a pinch point only if either

k1j > 1 [i.e. g'ja > 0 and f < 0,

or (84)

koa < 1 [i.e. g± < 0] and #3 > 0.

These conditions are the same as the conditions in (73) and (74), except that now k'± is

defined by (67) and (61). If either of these conditions is obeyed, then the pulse shape is

given by (62) with Im('a) = Im(6&') [equation (82)].

The derivations of properties of the Compton upshifted pulse [obtained from

D'(6 ', &') in (81)] and downshifted pulse [obtained from D' (6k', &0') in (81)] are sim-

ilar to those in Appendix A for Raman pulses. Therefore, we simply state the results
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below, without derivation. Relative to the laboratory frame, the left edge of the Compton

upshifted pulse moves to the right with velocity 3+t equal to the beam velocity #b. The

right edge moves to the right with velocity P+- > / 3b defined by

= + - 1, (85)
,3bko+

where ko+ is defined in (79). Therefore, the upshifted instability is convective. The right

edge of the Compton downshifted pulse moves to the right with velocity #-,. equal to the

beam velocity /3. The left edge moves with velocity #-t given by

k0 - 1
'3- = k , , (86)

#bko-

where ko- is defined in (79). If the condition

c2 > 3b (87)

is satisfied, then 8dt > 0, and the instability is convective. On the other hand, if < ,

then /3 dt < 0, and the instability is absolute.
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5. PULSE SHAPES FOR A WARM BEAM

To determine the influence of thermal effects on the cold-beam results obtained in the

previous section, we introduce a narrow Lorentzian distribution specified in the laboratory

frame by Go (p,) = (A/7r)[(p, -po) 2 +A 2 L-. Recall that a distribution is characterized as

"narrow" if it obeys (43). Using (46) and (49), we obtain the corresponding distribution

in the general reference frame:

G' (p') = -- [(p' -p') 2 +za'2 . (88)0 7r

To obtain the narrow-distribution susceptibilities in (52), appearing in the SFDR (31)

and SCDR (32), we first substitute (88) into the integral in the expression for X()'

in (52). The value of this integral depends on the sign of Im (C') where C'

(w' - k'V,) / (ck' - Ow') A [equation (53)]. We obtain the expression

I' = w2ck' (ck' - fO3') [(w' - k'v') + eia (ck' - Ow') . (89)

In the above equation,
f+1, if Im ((') > 0,

1, if Im ((') < 0.

It follows from (53) that the condition for Im ((') > 0 is Im (w') Re (k')-Re (w') Im (k') >

0. Otherwise, Im((') < 0. The pinch-point analysis in this paper is concerned with

Im (w') > 0. Therefore, we choose e = +1 on the positive, real k'-axis. The cold-beam

analysis of the previous section assumes that the pinch points lie close to k' = k'±, where

ko'± is real and positive (for both the Raman and Compton approximations). Furthermore,

the thermal corrections treated in this section are assumed to be small (i.e., & < 1).

Therefore, we are interested in pinch points of w'(k') which lie close to the positive, real

k'-axis, and we set e = +1 in the remainder of the analysis.

5.1 Pulse Shapes in the Raman Approximation

The SFDR for the Lorentzian distribution in (88) is obtained by substituting (89) and

(52) into the SFDR (31). Reference to (54) shows that a' = a'= 1. After multiplying

both sides of (31) by [(w' - k'V) + iA(ck' - #1L w')]2 /c 2 k'2 , we set a = 0 on the right-hand
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side. That is, we neglect thermal effects in the coupling term. Then the SFDR for a

Lorentzian distribution becomes

(w' - k'v ) + iA ck' - ' - - [(w' + k' v)2 - c2 (k' - kl) 2 _ LO2

(90)
12 2

The covariance of the above equation for small A follows readily from (2), (23), (25),

(37), (40), (42), and (47). Moreover, the uncoupled longitudinal and radiation dielectric

coefficients, which appear as factors on the left-hand side of (90), are also covariant.

Using the dimensionless variables introduced in §4, we rewrite (90) in the form

a2 '- ]'B [(' + &3)2 1 1

(91)

2 cP /

The new constants appearing in (91) are defined by

a' = 1 - ib A,

(92)

B'-

From (66), the complex quantity B' is readily shown to satisfy the velocity addition formula

to first order in . That is,

B= B b - (93)b 1 - 0,Bb

We also introduce the complex quantity IF' defined by

r', = (1 - B 2)~ .' (94)

For small A, the quantity F' satisfys the transformation

r', = FiY,, (1 - BbO8 ), (95)
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which is analogous to (37) for 7b'.

Approximate pinch points for the narrow Lorentzian SFDR in (91) are found by a

procedure similar to that applied to the cold-beam SFDR in §4.1. We express k' and LY as

ki = k,+W

(96)

CY 1, + 6

where k' and C4 are simultaneous solutions to the uncoupled longitudinal and radiation

dielectric coefficients that appear as factors on the left-hand side of (91). That is,

' ='B' - ,(97)

and

(O'++p.)2 =( -1+ V2 (98)

The solutions to (97) and (98) in the laboratory frame are

7Y6a b Yba ]p2 P -2 a2

(99)

7ba

Equations (97) and (98) are covariant to first order in A. Therefore, the solutions o' and

k'. in the general frame are obtained by substituting the laboratory-frame solutions in (99)

into the Lorentz transformation in (61). In contrast with the real, cold-beam quantities

42a and ka, the warm-beam quantities C' and k' are complex.

The weak-coupling Raman approximation to the Lorentzian SFDR is obtained by

substituting (96) into (91). We neglect A5' and 6' in the coupling term. Also, consistent

with the neglect of the dependence on momentum spread on the right-hand side of (91),

we set all quantities appearing in the coupling term equal to their values for A = 0.. Only

lowest-order terms in b' and &2' are retained on the left-hand side of (91). The resulting
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Raman approximation to the Lorentzian SFDR is

= a12 (bV~ - B,'bk') ( + ib) -z(k, - i) bk'] (100)

2 8 (± 0±

where kos and V±a are the Raman cold-beam values defined in (67) and (61).

The saddle points are determined by solving (8) and (100) simultaneously. We obtain

C2 C~gf B (% 2 c;1 + L2412)

2(B' - g') 2 (L27 + #) (i -iS )

bk' = BSt-2g'B' Bt

where g± = (k' - 1)/(.4 + 0,) is the radiation group velocity evaluated at the complex

values k' = 1 and ' = c2'. None of the factors appearing in the above saddle-point

coordinates is very sensitive to the value of a < 1. Thus, consistency with earlier ap-

proximations [i.e., the neglect of thermal corrections in the coupling term of (91)] requires

that we set a = 0 in the above expressions. Consequently, (&Z'1±) 2 and bk' reduce to the

cold-beam Raman values given by (72). That is, (bV,) 2 = 4g' /3Rl/ (#, - g, ) 2 , where

'a = 0'7b (ki, - a1 + 2) /8 (V a + f,,), and bk' = (fl' + g'±) 6',/2g'p#'. In

summary, the saddle points are given by

(101)

These expressions differ from the corresponding Raman cold-beam expressions only in the

replacement of the real quantities 40' and P± [equation (67)] by the complex quantities

c' and k' [equation (99)].

If the saddle point is to be a pinch point, then it must be formed by the merging

of two images of the Laplace-contour from opposite sides of the real k'-axis. As Im(&Y')
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approaches infinity in (91), the asymptotic behavior of Im(6k') is given by

Im(8b'l) ~ B1

Re (g') Im(bv')
Im(6b') ~ g'1

Therefore, the pinch-point condition is either that I > 0 and Re (g') < 0, or that /'a < 0

and Re (gs) > 0, where g' = (k' - 1)/(L.Z + 0,,). From (92), (99), and (61), we find

that the thermal corrections to k' and o' occur only in the combination ia. It follows

that corrections to Re (g') are second order in . Consequently, to first order in A, the

pinch-point condition reduces either to #b > 0 and k'± < 0, or to ' < 0 and k'± > 0.

This condition is the same as the cold-beam condition in (73) and (74).

Finally, we require that Im (',) > 0. First-order thermal corrections to Im (',a)
arise only from the term C' in (101). In numerical examples, we find that Im (L's) < 0

over those intervals of 0, [given by (73) and (74)] where the cold-beam saddle points are

pinch points. Therefore, increasing the momentum spread reduces both the height and

width of the pulse.

5.2 Pulse Shapes in the Compton Approximation

The SCDR for the Lorentzian distribution in (88) is obtained by substituting into

the general expression for the SCDR (32) the approximate expressions for j(2 )' (k',w'),

a' and a'. The Lorentzian form of j( 2 )' (k',w') is obtained from (52) with kn'(k',w')

given by (89). From (54), it is found that a' = a' = 1. We multiply both sides of the

resulting equation by [(w' - k'v') + ia(ck' - #,W')] 2 , and then set a = 0 on the right-hand

side. Thus, as with the Lorentzian SFDR, we neglect momentum spread corrections in the

coupling term. The resulting Lorentzian SCDR is given by

[(w' - k'v') + i& ck' - b' [(w' + k'v) 2 - c2 (k' - k' )2 _ 2]

(102)

= -- t2O2 (w' 2
- C2 k'2)
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An analysis similar to that applied to the Lorentzian SFDR (90) shows that (102) is

covariant for small a. Rewriting the Lorentzian SCDR in terms of the dimensionless

quantities in §5.1, we obtain

t:2 (C.' - B' k' ( 2[' + #, )2 _(i 2 1

(103)
1 C 12- 1 [ 1 k/2}

where B' and a' are defined in (92).

An approximate Lorentzian SCDR (which we refer to as the weak-coupling Compton

approximation to the Lorentzian SFDR) is obtained by a procedure similar to that used

in §5.1 to obtain the weak-coupling Raman approximation to the Lorentzian SFDR. We

write k' = k + 6k'a, and ' = ck + &c4 [equation (96)]. However, now k' and o' are

simultaneous solutions to the uncoupled, damped, free-streaming dielectric coefficient and

the uncoupled radiation dielectric coefficient that appear as factors on the left-hand side

of (103). In the laboratory frame, the solutions are given by

k± = I' i ±rb -( + ( 2)1

(104)

c = Bbki..

[Cf. equation (99).] The general-frame solutions k' and '4 follow from the Lorentz trans-

formations in (61). The weak-coupling Compton approximation to the Lorentzian SFDR

is obtained by making approximations in (103) similar to those made in (91) to obtain

the weak-coupling Raman approximation. The weak coupling Compton approximation is

given by

D I (6k', &' = t'2 ' - Bbkl') [(' + fl") b&:' - (kc - 1) A']

(105)

- we 1, 1 = 0,

where ko± is given by (79).
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Saddle points of bV'(6k') are determined by combining (105) and the saddle point

condition in (8). As in the case of the Raman approximation, the saddle point coordinates

6k'a and ' are found to be only weakly dependent on n, and are replaced with the

Compton cold-beam values in (82).. A necessary condition for the saddle point to be a pinch

point is that it be formed by the merging of images of the L'-contour from opposite sides

of the real k'-axis. An analysis similar to that used in §5.1 (for the Raman approximation)

shows that this condition is only weakly dependent on A, for small A. To first order in

A, the conditions are the same as for the cold beam SCDR (§4.2). That is, it is necessary

either that koa > 1 and #I < 0, or that k'± < 1 and #b' > 0. [See equation (84).] Here,

koa is defined in (67) and (61).

The final requirement for the saddle point to be a pinch point is that the imaginary

part of L' = c' + ' be greater than zero. The momentum-spread dependence in

this expression is carried in C's , because &,a has been approximated by its Compton

cold-beam value. It is not difficult to derive a simple expression which gives the small-

A behavior of Im(V') for the special (but realistic) case where 4 < 1. To derive this

expression, we first expand k± and ci [in (104)] to first order in A, for the case where

w < 1. Then, with the aid of (61), we obtain

Im (b') =-Y { + 3b a + )]+ 4b [-2 T ba (1 + 1 )] A, (106)

where

a = (1- 2/y2#2) .

Using (106), it is not difficult to prove that Im(c') < 0 everywhere within the cold-beam

pulse intervals #-I < P, < Pb and Pb < f, < #+r [where #+r and P_, are defined in (85)

and (86), respectively]. This proof is given in Appendix B. Consequently, the Compton

pulses are reduced both in height and width by an increase in the momentum spread.

A simple expression (linear in A) for the temporal growth rate of the absolute insta-

bility [i.e., the laboratory-frame Im(,_) = Im(_) + Im(&2,_)] can be derived using

(106) with O3 = 0. The result is

)= -y 1 + p2 - (a + A + (107)
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where j6L,_ I is given in (82). Setting Im(Z-) = 0 in (107), we determine the minimum

momentum spread z&O required to suppress the absolute instability in a system with C2' <

1. The result is

3/3- GiL 2 (1 -#)
Ao = 1 [+(#] -] (a)+]- (108)

4 2a

For large Yb (i.e. 7b >> 1 ),the above equation simplifies to give

S3Vd
S  -/3 (2 $y ) C . (109)

In numerical examples presented in §6, we will show that if A > Ao, and CO 2 is small, then

the right edge of the Compton downshifted pulse lies to the left of I3 = 0 (i.e., the pulse

propagates to the left). In §4.2, it was shown that the instability is convective when A = 0

and Gj is large (i.e., Zj > 02). In §6, it will be shown that in the latter case the left edge

of the Compton downshifted pulse lies to the right of fl = 0 (i.e., the pulse propagates to

the right).

5.3 Validity Conditions for the Raman and Compton Approximations

In this section, we derive conditions for the validity of the Raman approximation and

the Compton approximation at the pinch points.

The uncoupled, longitudinal dielectric coefficients, which appears as a factor on the

left-hand side of the Lorentzian SFDR (91), has two solutions. These are the negative-

energy, longitudinal frequency s4 = ek' B' - '/y'a' [equation (97)], and the positive-

energy solution

' = k'aB1 + ^I'/yta'. (110)

To obtain the Raman approximation in (100) from the Lorentzian SFDR, we assumed

that the saddle point frequency c' is much closer to c24 than to Co'±.[See (96) and (97).]

Therefore, validity of the Raman approximation in (100) requires that |'IV - ' >

|c4 - Co'±1. Using (97), (101), and (110), we find that this requirement is satisfied if

20'
R+ () = ' ±', - B'6/'aI-'>1, (111)

t lil |
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where 6V',a and 6 k'+ are given in (72). We adopt the inequality in (111) as the validity

condition for the Raman approximation in (100) at the saddle point.

Comparing the SFDR (91) with the SCDR (103), we find that the Lorentzian SCDR

adequately approximates the SFDR if Ic' - B'k'l > c/'yja'j. Evaluating the left-hand

side of this inequality at the pinch point, ,+± = V4 + 6', and P', =' + bk'k, we

obtain the validity condition for the Compton approximation in (105) at the pinch point.

The validity condition is

C± (,) = _1 ,&a. - Bbk'a I > 1, (112)

where now 6,a and bka are given in (82). Except for the somewhat different definitions

of the quantities &0', and bk,± in (111) and (112), the condition in (111) is the converse

of the condition in (112).

The conditions for validity of the Raman and Compton approximations depend on

and therefore vary over the intervals of the pulses. [See figure 2.] Because pulse widths are

reduced when the value of a is increased, the pulses are situated in the cold-beam pulse

intervals, f-e < , < Ob and fb < fl < +r, where 0_1 and 0+, are given in (75) and

(76) for the Raman approximation, and in (85) and (86) for the Compton approximation.

Therefore, we plot C+ and R+ over their respective cold-beam upshifted pulse intervals,

and C_ and R_ over their respective cold-beam downshifted pulse intervals. Numerically

computed examples appear in figure 3 (for & = 0) and in figure 4 (for a > 0). In these

examples, #b = 0.5938. For the Raman pulses, f-1 = -0.9833 and +r = 0.9989. In the

case of the Compton pulses, #_1 = -0.9860 and #+r = 0.9991. From the figures, it is

evident that the Compton approximation is most valid when fl, is close to f_. or #+r.

It is least valid when P,, is close to fb, except in a narrow interval about fl = fi when

a > 0. The reverse holds true for the Raman approximation.

Comparing figures 3 and 4, we note that (except in a narrow interval about f, = fib)

the plots are very insensitive to the value of A. Nevertheless, the validity of the Compton

approximation improves with increasing momentum spread. Numerical examples presented

in §6 show that increasing the value ofA causes the maximum of the upshifted pulse to shift

to the right into regions where C+ is large, and causes the maximum of the downshifted
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pulse to shift to the left into regions where C_ is large.
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6. DISCUSSION OF NUMERICAL RESULTS

In this section, we discuss plots of Im (V'±) vs. 3, for a variety of system parameters

yo, wc, c2, and A. Referring to (10) and (62), we note that such plots are equivalent to

asymptotic plots of InG (z, t) vs z by multiplying the vertical axis by ckot and the horzontal

axis by ct. Therefore, we may regard such plots as representing asymptotic pulse shapes,

or alternatively, as representing the temporal growth rates of these pulses. In particular,

the growth rate of an absolute instability is proportional to the height of the downshifted

pulse at P, = 0.

In addition to pulse shapes obtained from the weak-coupling Raman (100) and Comp-

ton (105) approximations, we also present exact pulse shapes obtained from the Lorentzian

SFDR (91). Such plots are obtained by solving (7) and (8) numerically for the case of the

SFDR using Newton's method. Pinch-point parameters (kI' and c's) obtained from the

Raman or Compton approximation are essential as initial values for these computations,

because the Lorentzian SFDR has other saddle points of '(k') that are not pinch points.

As a numerical example illustrating the results in §§4 and 5, we consider the system

parameters Yo = 1.3, Lc = 0.236, and c2 = 0.0039. [These values correspond to pa-p

rameters quoted by Fajans and Bekefi (1986).] Raman-upshifted and -downshifted pulses

[Im ( vs. #,,, obtained from (99), (61), (72), (67), and (101)] and Compton-upshifted

and -downshifted pulses [Im (V',a) vs. P,,, obtained from (104), (61), (82), (79), and

(101)) are shown in figure 5 for a = 0 and A = 0.08. There is a significant discrepancy

between properties of corresponding Compton and Raman pulses. Figures 3 and 4 present

plots of C± [equation (111)] and R± [equation (112)] over the /, intervals characteristic

of the Compton and Raman upshifted and downshifted pulses, for the cases of A = 0 and

= 0.08. A comparison of figures 3 and 4 with the pulse maxima in figure 5 indicates

that the Raman approximation should be used to calculate the downshifted pulses and the

cold-beam upshifted pulse. The comparison indicates that the Compton approximation is

applicable to the upshifted pulse when A = 0.08. Results of computations of exact pulses

for the Lorentzian SFDR are presented in figure 6. Comparing figures 5 and 6, we find

that the approximate pulses (obtained from the Raman or Compton approximations with
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the aid of figures 3 and 4) provide good approximations of the pulses obtained from the

Lorentzian SFDR.

Referring to either figure 5 or figure 6, we further note that the upshifted pulses are

convective, because both their left and right edges lie to the right of the orgin (0, = 0).

For a cold beam, the left and right edges of the downshifted pulse encompass the origin,

showing that the instability is absolute. The growth rate of the maximum of the cold-beam

upshifted pulse exceeds that of the downshifted pulse by a factor of 1.7. It also exceeds the

growth rate of the absolute instability (i.e., the growth rate of the downshifted pulse at

f, = 0) by a factor of 1.7 (because the cold-beam downshifted pulse maximum is close to

= 0). From figure 5 or figure 6, we find that the downshifted pulse becomes convective

when the momentum spread is increased beyond A = 0.08, because such an increase brings

the right edge of downshifted pulse to the left of the origin. Using (108), we find (according

to the Compton approximation) that the minimum thermal spread required to suppress

the absolute instability is AO = 0.11. Thus, the actual minimum thermal spread required

is somewhat less than that given by the simple condition in (108). Nevertheless, a thermal

spread of A = 0.08 is very large. From figure 6, we note for A = 0.08 that the upshifted

pulse is effectively destroyed (i.e., the ratio of the maximum growth rate of the cold-beam

upshifted pulse to that of the upshifted pulse when A = 0.08 is greater than seven).

As a second example, we consider a system with parameters yo = 50, Zc = 0.015, and

wi = 0.000036. These parameters approximate those of the Stanford beam experiment

(Elias et al. 1976). Upshifted and downshifted pulses for this system (for momentum

spreads of A = 0 and a = 0.002) are presented in figures 7 and 8, respectively. Curves of

Ca and R± vs. & over the upshifted and downshifted Compton and Raman pulse intervals

are presented in figures 9 and 10. [These curves are presented only for A = 0. The curves

for A = 0.002 differ significantly from the A = 0 case only in a very small interval

about &h = 3b = 0.99957.] Figures 9 and 10 indicate that the Compton approximation

is applicable to the upshifted pulses and that the Raman approximation is applicable

to the downshifted pulses. Therefore, in figure 7 we present upshifted pulses obtained

from the Compton approximation (105) and from the Lorentzian SFDR (91). Shown in

figure 8 are downshifted pulses obtained from the Raman approximation (100) and from the
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Lorentzian SFDR. The pulses obtained from the Compton or Raman approximations are

found to provide excellent approximations to the SFDR pulses. Notice that the maximum

growth rate of the cold-beam upshifted pulse exceeds that of the cold-beam downshifted

pulse by the large factor of 20. It also exceeds the growth rate of the absolute instability

by the same factor of 20, because the maximum of the cold-beam downshifted pulse is

situated close to /3 = 0. On the other hand, the upshifted pulse is much more sensitive

to an increase in the momentum spread than the downshifted pulse. When A = 0.002,

the maximum growth rate of the upshifted pulse exceeds that of the downshifted pulse

by a factor of only 2.3. No tendency for the right edge of the downshifted pulse to shift

to the left of the origin (i.e., 0, = 0) with increasing A is evident from figure 8. Use of

(108) shows that (according to the Compton approximation) the minimum thermal spread

required to produce this shift (and thus to suppress the absolute instability) is the very

large value of A0 = 0.45.

As a final example, we consider a system with parameters Yo = 10, Co = 0.03 and

L2 = 1. [These values correspond to parameters given by Kwan et al. (1977) for an

Astron beam.] Upshifted Raman and Lorentzian pulses for = 0 and A = 0.04 are

presented in figure 11, and the corresponding downshifted pulses are plotted in figure 12.

The Compton pulses are not presented because plots of C± and R± vs. P, (not shown)

indicate that the Raman approximation is at least marginally valid for all of the pulses.

In fact, figures 11 and 12 show that the Raman pulses provide good approximations to

the corresponding SFDR pulses. There is, however, one point of disagreement between

the Raman and SFDR results. According to the Raman approximation, the downshifted

pulse is convective, because both of its edges lie to the right of P, = 0 in figure 12. In fact,

the density is sufficiently large that both the Raman condition in (77) and the Compton

condition in (87) for a cold-beam convective instability are satisfied. However, the left edge

of the Lorentzian SFDR pulse is slightly to the left of &3 = 0 for both A = 0 and A = 0.04,

indicating that the instability is absolute with a very small growth rate. Notice that the

position of the left edge of this pulse is insensitive to a small increase in the value of A.

However, computations show that increasing t2 slightly to a value of 1.1 moves the left

edge of the SFDR pulse to the right of the origin, causing the pulse to become convective.
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From the preceding and other numerical examples, we conclude that moderate in-

creases in the momentum spread will not suppress the absolute instability in an unbounded

system. The upshifted pulse degrades much more rapidly with increasing temperature than

than the downshifted pulse. Thus, momentum spreads sufficient to bring the right edge of

the downshifted pulse to the left of the origin (0, = 0) are also sufficient to effectively sup-

press the upshifted pulse. In the example of the Astron beam, the density is almost high

enough that the absolute instability is suppressed by bringing the left edge of the down-

shifted pulse to the right of the origin. From figures 11 and 12, we see that an increase

in momentum spread, sufficient to reduce significantly the height of the upshifted pulse,

has a negligible affect on the position of the left edge of the downshifted pulse. Therefore,

a moderate increase in momentum spread will not suppress the absolute instability even

though a very small increase in density (from o' = 1 to c2 = 1.1) will suppress it.

At the end of §2, we demonstrated that each extremum of a pulse-shape curve [Im (Y)

vs. &I) corresponds to an extremum in the laboratory-frame, temporal growth-rate curve

[Im(cZ) vs. real k] such that Im(') = Im(c,) at the extrema . (Here, we have restated this

result from §2 in terms of the dimensionless quantities k, L and V'.) For a cold beam, the

laboratory-frame FDR (and SFDR) has, at each real k, at most one branch which exhibits

growth [i.e., ImC(k) > 03 (Davies., et al. 1985). In a typical case, an SFDR growth rate

curve will have two peaks (upshifted and downshifted), each with a single maximum. In

such cases, each of the two maxima of the pulse-shape curves must be equal to a maximum

of the growth rate curves. In the numerical analysis, even when A 5 0, we find that

the maximum of the downshifted pulse equals the maximum of the downshifted temporal

growth-rate curve, and that the maximum of the upshifted pulse equals the maximum of

the upshifted temporal growth-rate curve. As an example, in figure 13 we present growth

rate curves calculated for the system with pulse-shape curves illustrated in figure 6 (i.e.,

-o = 1.3, OC,, = 0.236, and ' = 0.0039 with A = 0 and 0.04). Comparing figures 6 and 13,

it is evident that the corresponding growth-rate curves and pulse-shape curves have the

same maximum values.

In all of the examples presented in this section, the Raman approximation was found

to be valid at the downshifted pulse maximum. In particular, the Raman approximation
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must be used to treat the downshifted pulse for high-energy systems such as the Stanford

beam, which are normally thought of as Compton systems. That this should be the case is

evident from the correlation between the pulse maxima and the growth rate curve maxima

discussed in the previous paragraph. In earlier work, we obtained the following condition

for the validity of the Compton approximation at the growth rate curve maxima of cold-

beam systems:

>>b W. (113)
4/3b > 2

[See equation (62) of Davies et al. (1985).] The condition for validity of the Compton

approximation at the maximum of the upshifted growth-rate curve (and therefore at the

maximum of the upshifted pulse) is obtained by substituting into (113) the approximate

value k = 1/(1 - /b) (Davidson & Uhm 1980). We also introduce the nonrelativistic

cyclotron frequency wco = eBo/mc = Yowc and the nonrelativistic plasma frequency W2 0 =

4rnoe2 /m = yow2. Then, with the aid of the relation _-2 = _-2 + L2 [obtained from

(34), (38), (26), and (60)), we obtain the following validity condition for the Compton

approximation at the upshifted growth-rate curve maximum (and at the upshifted-pulse

maximum):

(1+ Ob) A ckowo (1 OC0  2
4 3  

2 >> + --- ~ .(114)4#a ~ C woC2 k o~

The corresponding condition for validity of the Compton approximation at the downshifted

growth-rate-curve maximum (and at the downshifted-pulse maximum) is obtained by sub-

stituting into (113) the approximate value k = 1/(1 + Pb) (Davidson & Uhm 1980). The

resulting condition is given by

1i (1, + 5"y > ckow o 1+ . (1151 2 > __ 2 (115)
'(1 +Pb)~~ 70 W ck~ i u

From (114), we find that increasing -yo, while holding the density and wiggler field ampli-

tude fixed, causes the Compton approximation to become valid at the upshifted growth-rate

curve maximum (and therefore at the upshifted pulse maximum). However, from (115),

we note that such an increase in -o causes the Compton approximation to become invalid

at the downshifted growth-rate curve maximum (and therefore at the downshifted pulse
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maximum). From this result and from additional numerical results similar to those pre-

sented earlier in this section, we conclude that the Raman approximation is applicable to

the downshifted region for most systems of practical interest. This is a very useful result.

For example, using the Raman approximation, Liewer, Lin & Dawson (1981) obtain mini-

mum lengths required to support the absolute instability in finite systems. Evidently, their

results should be applicable to most systems including those which are normally thought of

as Compton systems. This should be compared with the results of Steinberg et al. (1986).

In addition to the correlation between pulse-shape curves and temporal growth-rate

curves discussed above, there is also a correlation between pulse-shape curves and spatial

growth-rate curves [-Im(k) vs. real cZ]. Bers (1983) shows that the maximum spatial

growth rate of a convective instability is given by the slope of the straight line passing

through the origin (#, = 0) and tangent to the convective pulse. In terms of the dimen-

sionless variables employed in this paper, this slope is equal to the maximum value of

-Im(k) for real c (for that branch of i(O) whose L-contour image crosses the real k-axis

as the L-contour is lowered to the real c-axis). The plausibility of this result can be seen

by setting vt = z in (62) and expressing (62) in the form In G(z, t) - skoz, where s is

the slope Im(6',)/f3. To illustrate, we have included the tangent line to the cold-beam

upshifted pulse in figure 6. Its slope is given by its intercept with the right margin of

the graph. In figure 14, we present cold-beam spatial growth-rate curves [-Im(k) vs. real

c] over the upshifted growth region for the system parameters in figure 6. These were

obtained numerically from the Lorentzian SFDR (91). The spatial growth-rate maximum

(~ 0.049) in figure 14 is equal to the slope in figure 6. The beam velocities for the system

parameters with upshifted pulses appearing in figures 7 and 11 are very close to the speed

of light. It is evident that the maximum -Im(k) [for real C] and the maximum Im(c)

[for real k] are effectively the same for such systems. The maximum temporal growth

rate of the upshifted pulse ordinarily exceeds that of the downshifted pulse. Even so, the

maximum spatial growth rate of a convective downshifted pulse usually exceeds that of

the upshifted pulse (Cary & Kwan 1981). From a comparison of figures 11 and 12, it is

evident that such a relationship holds for the temporal and spatial growth rates in the

example of the Astron beam.
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7. CONCLUSIONS

We have carried out a pulse-shape analysis of the free-electron-laser instability for the

case of a warm, one-dimensional electron beam propagating through an ideal, helical wig-

gler field (14). The pulse shapes give the time-asymptotic response of the system (initially

in an equilibrium state) to a delta function disturbance in space and time. Analytical

results were obtained by employing the weak-coupling Raman (100) and Compton (105)

approximations to the FEL dispersion relation for the case of a Lorentzian distribution (91).

Numerical analysis shows that pulse shapes obtained from these approximate dispersion

relations provide [with the aid of the validity conditions in (111) and (112)] very good

approximations to the exact pulses.

Two pulses are produced by the delta-function disturbance, the upshifted and the

downshifted pulses. The upshifted pulse represents the growth of the high-frequency ra-

dition field desired in the FEL. It is always convective. In a cold beam, its trailing edge

moves with the beam velocity away from the source of the disturbance. Increasing the

momentum spread increases the speed of the trailing edge away from the source. The

downshifted instability can be either absolute or convective. In a cold beam traveling to

the right, the right edge of the downshifted pulse moves to the right with the beam velocity.

For sufficiently large equilibrium beam densities [given in (77) for the cold-beam Raman

approximation and in (87) for the cold-beam Compton approximation], the left edge of the

downshifted pulse also moves to the right, so that the instability is convective. At lower

densities, the left edge moves to the left, so that the pulse encompasses the origin and the

instability is absolute. Increasing the momentum spread reduces the speed of the right

edge of the downshifted pulse. At sufficiently large momentum spreads [given in (108) for

the Compton approximation], the right edge reverses direction and the downshifted pulse

moves away (to the left) from the source. Consequently, the downshifted pulse becomes

convective. However, increasing the momentum spread is not a practical way of suppress-

ing the absolute instability. The upshifted instability is much more sensitive to increases

in the momentum spread than the downshifted instability. Momentum spreads required

to suppress the absolute instability effectively destroy the upshifted pulse. (See §6.)
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Numerical results discussed in §6 indicate that the Raman approximation is applicable

to the downshifted pulse for most FEL systems, including systems normally classified as

Compton. Thus, conclusions concerning the downshifted region based on the Raman

approximation should be valid for most systems. One result of the analysis in §§1 and

6 is that there is a simple correspondence between pulse maxima (Im(C') vs. ,} and

laboratory-frame, temporal growth rate curve maxima [Im( ) vs. real k]. Namely, the

maximum of the upshifted [downshifted] pulse is equal to the maximum of the upshifted

[downshifted] growth rate curve. Therefore, results obtained for the growth-rate maxima

(e.g., Compton- or Raman-approximation validity conditions) can be applied directly to

the pulse maxima.
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APPENDIX A. VELOCITIES OF THE

COLD-BEAM RAMAN-PULSE EDGES

In this Appendix, we derive properties of the edges of the cold-beam upshifted and

downshifted Raman pulses stated in §4.1. We first prove that the left edge of the upshifted

pulse moves with the beam velocity Ob, and that the right edge of this pulse moves with

the velocity 0+r = (ko+ - 1)/(Obk 0 + - p/yb) [equation (75)]. Necessary and sufficient

conditions for a pinch point are either kos > 1 and 0' < 0 [equation (73)], or kos < 1 and

b0' > 0 [equation (74)]. From (67) and (61), it is evident that

ko+ = (1 - #6i3,)ko+ + f /0,/Yb. (1A)

Figure 15 is a schematic plot of the linear function kO+ [equation (1A)] versus . Making

use of (66), and (68), it is straightforward to show that ko+ > 1, both for f, = 0 and

for 0, = Ob (as illustrated in figure 15). Moreover, if c,, > 0, then ko+ < 1 for fi =1.

Referring to figure 15, we note that k01 attains the value of unity at Ah = f+,, which

lies between Ih = #b and fi = 1. Using (66), we obtain fl' > 0 if #, < [b, and fi < 0

if , > Ob. The figure shows that the pinch-point conditions in (74) cannot be satisfied,

because ko+ > 1 wherever fl' > 0 (i.e., wherever , < fb). However, the figure also shows

that the pinch-point conditions in (73) [that is, ko+ > 1 and i < 0 (i.e. &i > fit)] are

satisfied between f b = fi (the left edge of the pulse) and # , = fr (the right edge of the

pulse). The value of #+r in (75) is obtained by setting ko = 1 in (1A), and solving for

the transformation velocity #, = #+r.

In §4.1, it is also stated that the right edge of the cold-beam, Raman downshifted

pulse moves with the beam velocity and that the left edge moves with velocity fif =

(1 - ko-)/(2,/ 1 - ko-Sfi) [equation (76)]. To prove these results, we first note from (67)

and (61) that

ko_ = (1 - fii)ko- + fc0,/y6 . (2A)

Figure 16 is a schematic plot of the linear function k'_ verses ,. Using (66) and (2A),

it is straightforward to prove that k'- < 1 for /, = fi, and k'_ > 1 for /, = -1 (as

illustrated in figure 16). Reference to the figure shows that k_ attains the value of unity
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at fl, = 3-, where fl_ lies between fl = fb and f, = -1. Therefore, the conditions in

(73) [k'0 > 1 and 03 < 0 (i.e. A, > 0b)] cannot be satisfied. However, the figure shows

that the conditions in (74) ['_ < 1 and 0' > 0 (i.e. i, < ib)] are satisfied between

= fe (the left edge of the pulse) and 0, = fb (the right edge of the pulse). The value

of _ in (76) is obtained by setting k_ = 1 in (2A) and solving for the transformation

velocity #, = fe.

In §4.1, it is also stated that if c,, > (1 - 1/Yb)/fib [equation (77)], then /- > 0,

and the pulse is convective. The condition in (77) is obtained by noting from figure 16

that f-I > 0 when kco- > 1. Making use of (67), it is readily shown that kIo- > 1 when

L, > (1 - 1/yb)/#b [equation (77)].
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APPENDIX B. PROPERTIES OF THE

COMPTON PULSE FOR INCREASING a

Using the expression for Im(G4) in (106), it is readily shown that increasing the value

of a reduces both the height and width of the Compton pulses. The upshifted pulse is

restricted to lie between &3 = /#6 and P, = #+r. [See (85).] From (106), it is clear that

Im(c.') is a monotonically increasing function of 0,,. By setting Im (L2') = 0 and solving

for ,, we obtain that value of 0, above which Im ( ') is positive. The result is

# a +/ , (1B)

where a = (1 - G/y#3)i. It is easily shown that (1B) is the same condition as /v =

3+r [equation (85)]. Therefore, Im (C;') is negative for all values of , in the upshifted

pulse. Because the term 6O's in (101) is independent of momentum spread, the effect of

increasing A is to reduce both the height and width of the upshifted pulse. The width

of the downshifted pulse is restricted to lie between between 3, = #.- [equation (86))

and v, = Ob. From (106), it is readily shown that Im (V'_) is a monotonically decreasing

function of #,. Setting Im (V'_) = 0 in (106) and solving for l,, we obtain

# = Ob -a (2B)
1 - a#b

It is readily shown that the equality in (2B) is the same as #,, = /3, [equation (86)].

Therefore, Im (V'_) is negative for all values of #, in the downshifted pulse. The effect of

increasing A is to reduce both the width and height of this pulse.
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FIGURE CAPTIONS

1. Frames of reference used in the present analysis. Laboratory frame velocities are noted

in the figure.

2. Schematic plot of cold-beam upshifted and downshifted pulse-shape curves [Im(V4j)

vs. &J]. For Raman pulses, the pulse edges 0+, and 0-e are defined in (75) and (76).

For Compton pulses, the pulse edges are defined in (85) and (86).

3. Plots of R± [equation (111)] and C± [equation (112)] vs. fl, for system parameters

yo = 1.3, Oc = 0.236, Gj = 0.0039, and = 0. The Compton approximation is valid

when Ca > 1, and the Raman approximation is valid when R+ > 1.

4. Plots of R± [equation (111)] and C± [equation (112)] vs. i, for system parameters

-o = 1.3, 4cZ = 0.236, G0 = 0.0039, and = 0.08. The Compton approximation is

valid when C± > 1, and the Raman approximation is valid when R± > 1.

5. Plots of upshifted and downshifted pulse-shape curves [Im(V±a) vs. /3,] for system

parameters Yo = 1.3, c = 0.236, and 2 = 0.0039. The two momentum spreads
P

correspond to A = 0 and A = 0.08. Raman pulses (100) are represented by solid

curves, and Compton pulses (105) by dashed curves.

6. Pulse-shape curves [Im(c 'a) vs. #,] obtained from the SFDR (91) for system param-

eters Yo = 1.3, Oc = 0.236, and cZ7 = 0.0039. The two momentum spreads correspond

to A = 0 and A = 0.08. The straight line passing through the origin and tangent to

the cold-beam upshifted pulse is also presented.

7. Upshifted pulse-shape curves [Im(L.Z'+) vs. 0,] for system parameters yo = 50, wc =

0.015, and Co = 0.000036. The two momentum spreads correspond to a = 0 and

0.002. Results obtained from the Compton approximation (105) are represented by

solid lines. The small squares and crosses correspond to results obtained from the

SFDR (91) for A = 0 and 0.002, respectively.

8. Downshifted pulse-shape curves [Im(V,_) vs. Pj] for system parameters 7o = 50,

Lc = 0.015, and '.2 = 0.000036. The two momentum spreads are A = 0 and A =

0.002. Pulses obtained from the Raman approximation (100) are represented by solid

curves. Results obtained from the SFDR (91) are represented by small squares for
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A = 0, and by crosses for A = 0.002.

9. Plots of R+ [equation (111)] and C+ [equation (112)] vs. /, over the upshifted pulse

intervals. System parameters are Yo = 50, Oc = 0.015, cQ = 0.000036, and A = 0.

The Compton approximation is valid when C+ > 1, and the Raman approximation

is valid when R+ > 1.

10. Plots of R_ [equation (111)] and C_ [equation (112)] vs. 3, over the downshifted pulse

intervals. System parameters are 7o = 50, Oc = 0.015, 42' = 0.000036, and A = 0.

The Compton approximation is valid when C_ > 1, and the Raman approximation

is valid when R_ > 1.

11. Upshifted pulse-shape curves for system parameters yo = 10, c, = 0.03, and Z 2= 1,

and for the two momentum spreads, A = 0 and A = 0.04. The solid curves are

obtained from the Raman approximation (100). Results obtained from the SFDR (91)

are represented by small squares for A = 0, and by crosses for A 0.04.

12. Downshifted pulse-shape curves [Im(') vs. /,] for system parameters 7o = 10,

C = 0.03, and C2' = 1, and for the two momentum spreads A = 0 and A = 0.04.

The solid curves are obtained from the Raman approximation (100). Results obtained

from the SFDR (91) are represented by small squares for A = 0, and by crosses for

A = 0.04.

13. Temporal growth-rate curves [Im($,) vs. real k] for system parameters 7o = 1.3,

C = 0.236, and -2 = 0.0039. The two momentum spreads are A = 0 and a = 0.08.

The maxima of these curves have values equal to the corresponding pulse maxima in

figure 6.

14. Upshifted spatial growth-rate curve [-Im(k) vs. real k] for a cold-beam system with

yo = 1.3, se = 0.236, and Z2 = 0.0039. The maximum of this curve has a value equal

to the slope of the tangent line in figure 6.

15. Plot of k6+ [equation (1A)] vs. #,. The upshifted, cold-beam Raman-pulse interval is

that interval of , for which , > /b (i.e. 0' <0) and k' > 1.

16. Plot of k'- [equation (2A)] vs. /,. The downshifted, cold-beam Raman-pulse interval

is that interval of , for which /, < 3 (i.e. /3b > 0) and k'_ < 1.
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