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Abstract

We report on the application of a commercially available differential

equation solver library called TWODEPEP for the numerical solution of the

relativistic Fokker-Planck equation. Results obtained by solving the

runaway problem, and on the solution of the R.F. heating problem are

presented.
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The interaction of radio-frequency waves with a plasma is described by a

Fokker-Planck equation with an added quasilinear diffusion term, and the

response of a plasma to a homogeneous ohmic electric field is described by

the same Fokker-Planck equation with an advection term. There has been an

extensive literature on numerical techniques to solve this equation which

is of high importance in the study of lower-hybrid RF-driven currents in

Tokamaks (see, for instance, the review article in Ref. [1]). In this

note, we report on the application of a commercially available differential

equation solver library called TWODEPEP [2] for the numerical solution of

the Fokker-Planck equation.

This differential equation solver has been successfully applied in solving

a wide variety of problems of fluid dynamics, diffusion, heat transfer,

etc. We have previously reported results obtained using thislibrary for

the numerical solution to the non-relativistic Fokker-Planck equation [3,

5]. In this note we report on the application of this differential equa-

tion solver for the numerical solution of the Fortran code used to solve

the relativistic Fokker-Planck equation. It illustrates how convenient is

the library for the problem we are studying, if we notice that the prepro-

cessor Fortran code has no more than a few dozen lines. We note, however,

that a physical quantities of interest plus graphic output, are obtained

from a separate code, which uses TWODEPEP results as input.

In the model Fokker-Planck equation we consider the plasma is assumed homo-

geneous, and azimuthally symmetric about the magnetic field. Relativistic

effects are included. The model is described in sufficient detail in
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Refs. [1], [6], its characteristic feature being a linear collision opera-

tor describing the interaction of fast test electrons with fixed Maxwellian

field electrons and ions. The electron distribution fonction f depends on

time and two momentum variables. In flux form the Fokker-Planck equation

is

bf +

+tI V .S =0()

where f is the test-electron distribution function and S the test electron

flux in the presence of an electric field E and a quasi-linear diffusion
*

coefficient D:

S = e f - D . grad f + Scoll (2)

We use the normalized variables

t + tv v + v/vt PP/Pt (3)

where the thermal velocity unit vt is defined by the following relations

[6]:

vt2 1 V2 f(P)d3P = 5(1 - + 2(t = T- 2 e8(e e
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where fm(P) denotes the relativistic Maxwellian distribution and 0 =

Te/(me c 2). We will restrict ourselves to the case where 0 << 1 (for

Te = 5 kV we have 0 = 0.01) so that the thermal velocity vt =

(Te/me)/2. The thermal momentum is given by

Pt = mv t

and the thermal collision frequency is given by

v = 4un e 4lnA/m2vt3

with

vt (Te/m)1/2

(5)

(6)

(7)

The electric field is normalized to Eo = Ptv/e and the diffusion

coefficient is normalized to Do = vPt 2. Also, for 0 <(1, the

relativistic Maxwellian distribution is given in our normalized units by:

C..P2 /(Y+l)e
(8)f (P) = 132m (2%)

where

Y = (I + P2p2 1/2
Y =(l+Pth) (9)

and
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(10)
Pth = vt/C

In the spherically symmetric coordinates (v, p), where p = Ps/P = cose,

we have:

+

V.S
p

(P2

(P

1 _ 6 (V 1 2 S )

P oR
(11)

S= epf - Dpi (L a + (-

S = (1- 2)i [ - ef + D

P ) ! ) - (A(P) bf + F(P)) f

(p + al)

Here Z is the ion charge and the coefficients A(P), B(P) and F(P) are given

in our normalized units by:

3
A(P) = --T

3 P

B(P) = 21
3 2 P

P , f (P ')
0 2 d P

P'Y'f m(P') dP')

fP 3 p P4
P2f (P')dP' - j -

0 m 2P 3 Y (P') dP' +

f P'y'f (P') dP')

0

where

(12)

(13)

(14)

(15)

+ I(B(P) + Z)a
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2 P
F(P) = f P'f (P') (3v' - v ' th dP' +

3 P 2 m hdp+

2P P'f t dP' (16)
Y m t

The finite element code TWODEPEP [2] solves the 2-D partial differential

equation

U Q Q

P5t = ax- + o-E+ R(17)

Comparing Eq. (17) with Eq. (11) we can identify P + x, pt + y, U + f and

Q = P2s 18)

Q y= - P /(1-p12) (9

The momentum-space domain in which the equation is solved is 0< P ' Pmax

and -1 <L I. The condition S = 0 at pL = ± 1 follows from Eq. (13),

and represents an axisymmetric situation. At P = Pmax we always set

f = 0, although one should impose a runaway flux condition Sp = Epf.

With f = 0, however, the code will maintain required accuracy with consid-

erably less computational effort in terms of required elements and memory.

The f = 0 boundary condition at P = Pmax will distort the solution only

in a narrow boundary layer close to Pmax. To avoid the singularity at
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P = 0, we impose the boundary condition f = fm (fm is defined in Eq.

(8)) at P = Pmin (Pmin could be made very small, say 0.01). The impo-

sition of f at P = Pmin will slightly violate density conservation in the

bulk when e and/or D are non-zero, but this effect is very small since for

the values of e and D considered the number of particles transferred to the

tail is orders of magnitude smaller than the number of particles in the

bulk. Thus when e * 0, an imposed fixed boundary condition in the bulk

represents an equilibrium situation in which electrons are being fed into

the distribution at the same rate at which they run away. Hence we assume

steady-state and solve for the equilibrium:

bQ bQ
b-2E+ --l = 0 (20)

x y

The functions Qx and Qy are defined in Eqs. (18) and (19) (see subrou-

tines FXX and FXY in the Appendix, in which U + f, UX + and UY + ).

tion (20) is a linear equation for f and TWODEPEP requires only one itera-

tion to calculate the solution (parameter TF = 1 in the main, and NOUT = 1

denotes that the output should be given after one iteration). Also in the

main NEQ = 1 indicates we are solving one equation, NTF = 9300 denotes the

number of elements we are using and NDIM = 2 is a memory storage param-

eter. With these parameters the code would require a memory close to 5.5

million bytes on an IBM machine using double precision arithmetic. OXX and

OXY are the functions Qx and Qy (defined in Eqs. (18) and (19)) which

are calculated in the functions FXX and FXY respectively. D3EST is a func-

tion which distributes the elements in such a way as to have more elements

in regions where more precision is required. UPRINT is the output solution
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given by U ~ f. The output solution is given on a grid defined by x = XA +

i * Hx ( i = 0, ... NX) and y = YA + j * HY (j = 0, ... NY). MWR = 8 is

the file number on which the results are stored, and the INTEGRAL function

integrates a function of the solution over the domain where the solution is

calculated. In the Appendix presented, we are calculating the rf power

absorbed defined by:

1 o

P = -2% J d f D (P3/y) dP (21)
d ao

The remaining parameters in the main define the boundary conditions. For

more details see Ref. [2]. Finally, the calculations of the integrals in

Eqs. (14) - (16) has been simplified by noting that for small values of P,

and for the small values of H we are considering, the quantity v = P/Y = v

and the integrals in Eqs. (14) - (16) can be calculated from well-known

error functions integrals [1], while for large P, we have the asymptotic

expressions:

1
A(P) =- (22)

v

B(P) = - (1 - -2-) (23)
2v v

F(P) = -1 (24)
v

We present in the following two sample results obtained using the program

in the Appendix.
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a) The runaway distribution function:

The results presented in this case are with e = 0.04, D = 0 and Pth= 0.0442

(i.e. 1 kV plasmas). In Fig. (1), we plot the perpendicular velocity

moment of the distribution function f, defined by

M

F = 2% f dPOf (25)
0

as a function of PH. The function F is the parallel distribution func-

tion. It shows clearly the formation of a runaway tail. We show in

Fig. (2) perpendicular cuts of f, indicating the presence of a hot tail

population, a result similar to what has been recently presented for the

non-relativistric case [5]. The flux FR of electrons through the surface

of a sphere of radius R is defined by

3f=f 3 +
FR fdPf= d PdivS = 2nP2 f dpS, (26)

For the present case (e = 0.04) the result for FR is 0.14 x 10- . This

is in very good agreement with the value 0.13 x 10-5 obtained from the

expression [7]:

2 1 2 1/2
rR =rNR ex th 2 + -=/2 (l + Z) )}(27)
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where rNR is the runaway production rate for the non-relativistic case

(rNR = 0.196 x 105 for e = 0.04). Table I summarizes some of the

results obtained for different values of e for a 1 kV plasma (@th= 0.0442).

JR denotes the relativistic current (in units of envt)

JR vI fd3P (28)

calculated for different values of the normalized electric field e and Z.

rNR and rR are the runaway production rates calculated for the non-

relativistic case and the relativistic case respectively and in the last

column TR is calculated from Eq. (27), showing a very good agreement with

the value in the previous column. Finally, we show in Fig. (3) contour-

plots for the 2-D solution f obtained for e - 0.04.

b) Lower-Hybrid Current Drive.

We consider the case when e = 0 and the quasilinear diffusion term is given

by:

3 for vj <P /Y < v2 (29)
0 otherwise

D * 0 inside a region bounded by the hyperbolae whose equations are given

by

P2 12 P1
11 2__2 9th th = 1 (30)

vi, 2
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Figure (4) shows a contour plot of f obtained for the case vi = 4, v2 = 7

and @th = 0.1. The region where D * 0 is clearly shown to be bounded by

the hyperbola whose equations is given by Eq. (30). Figure (5) shows a

plot of the parallel distribution function F as defined in Eq. (25). A

plateau formation is apparent in the region where D * 0. The current

associated with this distribution is JR = 0.45 x 10-2 and the power

absorbed as defined in Eq. (21) is 1.57 x 10-4 resulting in a figure of

merit JR/Pd = 28.

To conclude, using TWODEPEP library and a Fortran code of no more than a

few dozen lines, we have obtained results for the numerical solution of the

linearized Fokker-Planck equation which compares favourably with what has

been previously reported in the literature for the numerical solution of

this problem [1, 6]. We are now in the process of extending these results

to higher plasma temperature and to velocity spectra extending to higher

relativistic speeds. In this latter case, however, we have been limited by

the computer memory which for the present runs is close to 5.5 million

bytes. Typical runs would take 30 min CPU time on the IBM 3084. Higher

relativistic speeds will require a larger number of elements and conse-

quently also a larger memory for the library. The use of cubic elements

will require an even larger memory.
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TABLE I

e z 102 NR R R (EQ. 27)

0.005 1 1.9 0.76 x 10-30 0.46 x 10-38 0.3 x 10-36

0.01 1 3.8 0.13 x 10-16 0.18 x 10-18 0.18 x 10-

0.03 1 12.7 0.83 x 10-7 0.5 x 10-7 0.45 x 10-7

0.04 1 18.8 0.196 x 10-5 0.14 x 10. 5  0.13 x 10-5

0.04 4 8.25 0.158 x 10-6 1.02 x 10-7 0.94 x 10-7
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Appendix

0XX
OX Y
03E3T
UPRINT

WXNY
H X
H Y
X A
YA
NOUT

1 9300 2
FX.X (X r Y rU UX iUY 9 FCT)
FXY(XFYPUUXPUY)
WEIGHT(XtY)

U
soo

0.30
0.04

Function Qx in Eq.(48)
- Function Oy in Eq. (49)

-1.
1

TF 1
MWR a
INTEGRALFNCT(XY'UUXUYNOUTFT)
ARC-1
FB1 FB(XPY)
ARC -3
FB1 0.
ARC =Z
GB1 0.
ARC-4
GB1 0.
XGRID 0.1,60.1
YGRID -1.,1.
IX -IF-3
IY 2,4
ADD.

Define boundary
curve and
boundary conditions

DOUBLE PRECISION FUNCTION FXX(XYUUXFUYPFCT)
IMPLICIT REALX8(A-HO-Z)
COMMON/01/ZCPIEPSDOVP1,VPZFACTBTHDENTAU
GAMA=DSQRT(1.+XXNBTHZBTH)
VEL=X/GAMA
S=VEL/DSORT(2.DO)
VPAR=XxY/GAMA
D=DO
IF(VPAR.LT.VP1.OR.VPARGT.VP2) D=0.DO
SD=D(YxUX+(1.-YxY)XUY/X)
SE=EPSzU
FU=(SxDEXP(-SxS)+ZxSxDEXP(-SESRCXC)/C)X2./DSQRT(3.1416D0)
IF(X.LE.3.2)
$BU=DERF(S)-FU+ZxDERF(CXS)/CxxZ
IF(X.GT.3.2) BU-i.
A A-BU/VELxx3
FF=BU/VELxZ2
FXX=XxXxYx(SE-SD)-(AAxUX+FFXU)xXRX - Define Ox in Eq. (48)
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FCT=FXXXX/GAMA
RETURN
END
DOUBLE PRECISION FUNCTION FXY(XYPUPUXPUY)
IMPLICIT REALx8(A-HO-Z)
COMMON/D1/Z.CPIEPSDOVPIVP2,FACTBTHDENTAU
GAMA=DSORT (1.+AX zXBTHxBTH)
VEL=X/GAMA
S=VEL/DSQRT(2.DO)
VPAR=XxY/GAMA
D=DO
IF(VPAR.LTVPI.OR.VPAR.GT.VP2) D=O.DO
SD=Dx(YxUX+(1.-YxY)ZUY/X)
SE=EPS*U
FU=(SxDEXP(-SIS)XFACT

$ +ZRSXDEXP(-SMSXCC)/C)*2./DSRT(3141600)
FU2=14-1./(2.XSXS)
FU2C=l.-./(2,XSXSZCXC)
IF(X.LE.3.2)
$AU=DERF(S)*FU2xFACT+ZROERF(CXS)XFUZC+FU/(2.xSXS)
IF(X.GT.3.2) AU=1.-1./VELxxZ2+Z
BB=AU/(Z.xVEL)
FXY -Xx(1.-YxY)(BBxUY/X-SE+SD) - Define Qy in Eq. (49)
RETURN
END
DOUBLE PRECISION FUNCTION FNCT(XYUUXPUYN~UTPlT)
IMPLICIT REALXS(A-HO-Z)
COMMON/Dl/ZCPI.EPSD0,VP1,VPZFACTBTHDENTAU
FNCT=O.DO
NOU=NOUT+1
NOUM=NOU+1
GAMA=DSQRT(I.+XxXxBTHxBTH)
VPAR=XY/GAMA Function toVELX/TAMA be integrated
FU=(SXDEXP(-SxS)+ZESxDEXP(-S*SxCXC)/C)x2./DSQRT(3.141600) at the end
IF(X.LE.3.2) BU=DERF(S)-FU+ZXDERF(CxS)/Cx*2
IF(X.GT.3.2) BU=1.
AA=BU/VELxx3
FF=BU/VELxx2
D=DO
IF('PARLT,VP1.OR.VPARGT.VP2) D=0.D0
FNCT=-DzXxYx(YxUX+(1,-YxY)xUY/X)x2.x3.14l6xXx/GAMA
RETURN
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END
DOUBLE PRECISION FUNCTION FB(XPY)
IMPLICIT REALX8(A-HPO-Z) Define boundary
COMMON/D1/ZCPIEPS'DOVPIVP2,FACTPBTHYDENTAU condition for
GAMA=DSQRT(i. +XxX*BTHxBTH) ARC= -4
FB=0,0634936xDEXP (-XxX/(1,+GAMA))
RETURN
END
DOUBLE PRECISION FUNCTION WEIGHT(XPY)
IMPLICIT REALXS.(A-HO-Z)
COMMON/Di/ZCPIEPS,DOVPIVP2'FACTBTHDENTAU
Vi=VPi-i.
V2=VP2+1#
IF(EPS.NE.0.) VCRIT=DSQRT(1./EPS)
GAMA=DSORT(1.+XXXZBTHXBTH)
VPAR=XxY/GAMA
WDO=2.
WE0=Z.
W0-0 .
WE=0.
IF(EPS.NE.0..AND.VPAR.GT.VCRIT) WE=WEO
IF(DO.NE.0..AND.(VPAR.GT.Vl.AND.VPAR.LT.VZ)) WD=WDO
WEIGHT=i.+WD+WE
RETURN
END
BLOCK DATA
IMPLICIT REALX'(A-HPO-Z)
COMMON/D1/ZCpPIEPSDOVPiVP2,FACTBTHDEN.TAU
DATA Z/1.DO/,C/42.900/,PI/3.14159265D0/,FACT/1.ODO/
DATA EPS/0.00/,00/3.ODO/,VPI/4.0000/,VP2/16.0D0/,BTH/0.054DO/
DATA DEN/0.5D0/,TAU/15.0D-3/
END

END.
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FIGURE CAPTIONS

Figure 1 The perpendicular velocity moment of the distribution function f,

defined by Eq. (25), for the runaway problem.

Figure 2 Perpendicular cuts of the distribution function f at different

values of P11, for the runaway problem.

Figure 3 Contourplots of the distribution function f, for the runaway

problem.

Figure 4 Contourplots of the distribution function f for the RF problem.

Figure 5 The perpendicular velocity moment of the distribution function f,

defined by Eq. (25), for the RF problem.
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