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ABSTRACT

Tokamak ETR and demo reactor design concepts using high temperature, high

field oxide superconductors are described. Current densities in recently

developed oxide superconductors appear at present to be very low and it is

not clear whether practical magnets for fusion applications can be developed.

However, if this development occurs the potential impact on tokamak design

appears large. Significant reductions in cost, complexity and physics extra-

polation could be possible by the combination of very high fields and

liquid nitrogen operation. Illustrative parameters are given for an ETR

device that has about the same plasma volume as TFTR. Parameters are also

given for a demo device with approximately the same plasma volume as JET. If

practical oxide superconducting magnets cannot be developed, a significant

degree of the improvement due to high field operation might in fact still be

realized using existing superconducting materials such as Nb3Sn (Ta, Ti).
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Introduction

Recent progress in oxide superconductor research opens up the possibility

of magnets with much higher critical fields and temperatures1 ,2. Critical

fields of greater than 20 T at liquid nitrogen temperature appear attainable,

although, at present, only at very low current density. At liquid helium

temperatures critical fields approaching 100 T may be possible. In this paper

we consider tokamak ETR and demo reactor design using superconducting magnets

with combined high critical field and temperature properties. Significant

reduction in size, cost and complexity may be possible.

Potential Advantages

High Field Operation

High field magnet operation has been used to obtain a relatively high

performance to cost ratio in the CIT design, reducing the cost of a short

pulse ignition experiment. This approach should also be effective for devices

with long pulse, high Q or ignited operation. The advantages of high field

operation could be attainable with existing superconducting materials such as

Nb3Sn (Ta, Ti) 3,4,5 but could be extended with the oxides (Nb3Sn and

similar materials could provide fields of about 18 T at the toroidal field

coil).

Both the minor radius and elongation needed to obtain a given value of

nt could be reduced by operation at high fields, resulting in a substantial

decrease of the plasma volume. Operation at low beta could allow the plasma

operating region to be closer to present experience and there could be a greater

margin against the consequences of MHD instabilities. It could also reduce

the complexity of the EF magnet system needed for plasma shaping and control.

At sufficiently high fields it should be possible to use ohmic or ohmic-

dominated heating to ignition. 6 This might result in reduced confinement

degradation and increased confidence in using empirical confinement

scaling laws. Auxiliary heating power requirements for startup could be
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substantially reduced or possibly eliminated.

Operation at high field could also be used to reduce the plasma

current needed to provide a given value of nre. For example, if nT

is assumed to scale as nT- B2a/q-BIA where B is the field, a is the

minor radius, I is the current and A is the aspect ratio 7 then a design

with high B and A could be used to significantly reduce the plasma current.

This reduction would lead to a decrease in current drive requirements and

would be of particular importance for non-inductive current drive (where

power requirements can be very large). The reduced current might also

result in a reduction of the probability and consequences of disruptions.

It may also be possible to use high field operation to improve the

efficiency of current drive. Lower hybrid current drive would be more

efficient through improved wave accessibility. High field operation could

also facilitate use of bootstrap current through operation at relatively

high aspect ratio and lower toroidal beta. 8

Another possibility is operation with advanced fuel mixtures. Use of

high fields might provide the nr and fusion power density needed for

operation with tritium lean deuterium-tritium fuel mixtures, pure deu-

terium fuel or D-He 3. Ohmic or ohmic-dominated heating might be used

to reach ignition in a deuterium-tritium plasma followed by a controlled

thermal runaway to reach the temperatures needed for advanced fuel mixture

operation.

High Temperature Superconductor Operation

Use of high temperature superconductors would result in a decreased

shielding requirement for prevention of heating of the superconductor and

could lead to a reduced shield thickness. Reduced shield thickness on the

inboard side of the plasma would result in better utilization of the

field at coil and a more compact design. For liquid nitrogen operation

of the superconductor, the shielding needed to limit heating of the super-
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conductor could be very modest. Consequently the shield thickness could be

determined by damage to the insulator or the superconductor.

Operation at liquid nitrogen temperature or higher could lead to a

simpler, more robust magnet design with greater thermal stability margins. The

decreased thermodynamic load in transmitting forces from low temperature struc-

tures would allow simpler, stronger structures to be used to support, for

instance, the overturning loads. In addition, it also might be possible to use
demountable coils as in the copper magnet designs.

Liquid nitrogen operation might also allow the use of part of the cold

structure of the toroidal field coil for shielding. The plasma-TF magnet

distance could thus be reduced significantly.

Illustrative Design Concept

A possible magnet design approach using oxide superconductors might employ

plates which combine the ceramic superconductor and normal conducting material

of high strength. We will assume that by using such a combination the toroidal

field magnet could be operated at an equivalent tensile stress of 800 MPA.

It will be assumed that the average current density in the magnet is 20-50

MA/m 2. The assumed current density in the oxide is 100-125 MA/m 2. This is one

order of magnitude higher than has been achieved in the oxides. However, it

may be possible to significantly improve the current carrying capacity of these

materials. The low current carrying capacity may not be intrinsic to the lattice

structure; for instance, it might be associated with an irregular macroscopic

assembly of crystalline constituents separated by insulating constituents.

It will also be assumed that the superconductor can be operated at liquid

nitrogen temperatures and that the thickness of the shielding on the inboard

side is determined by damage to the insulator and/or superconductor. The

insulator will be assumed to withstand a fluence of greater than 1020 neutrons/

cm2 9. Possibilities for the insulator are polyimide alone or in combination
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with glass, mica-based materials or ceramic (for example, sprayed onto the metal

component of the plate).

Illustrative ETR Designs

Illustrative parameters for a high field ETR design are given in Table 1.

The confinement quality parameter B2a is 58 T2m. With these parameters the

projected nT should be sufficient for the high Q operation goal of the ETR.

The magnetic field at the coil is 17 T and the field at the plasma is 10.3 T.

The inboard warm shield thickness is 0.48 m, which should allow for about 1 yr of

integrated fluence. Additional shielding is provided by the TF magnet casing.

The major radius is 2.6 m, the minor radius is 0.55 m, and the elongation is

1.6 resulting in a plasma volume that is comparable to that of TFTR.

The plasma current is 3.9 MA. The combination of the modest current and

the high field could lead to relatively modest current drive power requirements.

The machine would have an OH transformer that could provide 300 seconds of

current should it not be possible to use steady state drive. The elongation of

1.6 would be used to provide a divertor. The machine would be operated at

q:3.9 and 0=4.4%.

More physics margin is possible in this type of design by incorporating

more shielding into the liquid nitrogen cooled magnet structure and reducing

the warm shielding. The thermal loading at liquid nitrogen temperature

increases, however. For example, if the warm shield thickness were reduced in

this way to 0.20 m then the minor radius could be increased to 0.65 m and B2a could

be increased to 76 T2m.

Illustrative parameters for an ETR device operated at higher field are

shown in Table 2. This device would have a large margin for ignition in confine-

ment q and 0. It might be possible to ohmically heat to ignition or at least

to employ ohmic dominated heating. The ohmic heating power requirements are

eased relative to a short pulse ignition device by the long startup time. This

super high field ETR device would still have a relatively modest tokamak size
and moderate cost.

-4-



Illustrative Demo Reactor Concepts

Table 3 gives illustrative parameters for a high field demo reactor concept.

An inboard blanket-thickness of 0.35 m is assumed. The toroidal field magnet

structure provides additional shielding for the insulator and superconductor.

The device has a major radius of 3.5 m and a plasma volume that is comparable

to that of JET. It would be substantially smaller and less expensive than

present demo reactor concepts.

Table 4 gives parameters for a super high field version that might

ohmically heat to ignition.

Conclusions

We have explored some of the possible implications of super high field,
high temperature superconductors for tokamak development. A large range of

other possibilities remains to be examined including hydrogen plasma confinement

devices as well as other ETR and demo reactor design approaches. It is not

clear whether simultaneous high field, temperature and current density oxide

superconductor operation can be obtained and whether practical oxide super-

conducting magnets for fusion applications can be developed. Nevertheless,

there is basis for optimism given the widebased approaches for making these

materials. If such practical oxide magnets can be realized, the cost,
complexity and degree of physics extrapolation of next step devices could be

substantially reduced. If practical oxide superconducting magnets cannot be

developed, a significant degree of the improvement due to high field operation

might in fact still be realized using existing superconducting materials such

as Nb3Sn (Ta, Ti).
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Table 1. Illustrative Paramaters for High Field ETR

Major Radius (m)

Minor Radius (m)

Toroidal Field (T)

Maximum Field @ Coil (T)

Current Density in Oxide (MA/m2 )

Current Density in TF Coil (MA/m2)

Plasma-TF Coil Distance (m)

B2a (T2m)

<beta> (%)

Elongation

2.6

0.55

10.3

17

100

30.1

0.48

58

2.8

1.6

3.9

3.9

<5.0 x 1020

17

5.3

484

q

Plasma Current (MA)

Central Plasma Density (m-3)

Central Ion Temperature (KeV)

Maximum Neutron Wall Loading (MW/m2 )

Total Fusion Power (MW)

-7-



Table 2. Illustrative Parameters for Super High Field ETR

Major Radius (m) 3.4

Minor Radius (m) 0.6

Toroidal Field (T) 15.3

Maximum Field @ Coil (T) 22.4

Current Density in Oxide (MA/M2 ) 125

Current Density in TF Coil (MA/m2) 27.8

Plasma-TF Coil Distance (m) 0.48

B2a (T2m) 140

<beta> () 1.5

Elongation 1.6

q 3.9

Plasma Current (MA) 5.1

Central Ion Temperature (KeV) 17

Central Plasma Density (m-3) < 5.7 x 1020

Maximum Neutron Wall Loading (MW/m2) 7.4

Total Fusion Power (MW) 972
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Table 3. Illustrative Parameters for High-Field Demo

Major Radius (m)

Minor Radius (m)

Toroidal Field (T)

Maximum Field @ Coil (T)

Current Density in Oxide (MA/m2 )

Current Density in TF Coil (MA/m2 )

Plasma-TF Coil Distance (m)

B2a (T2m)

<beta> (%)

Elongation

q

Plasma Current (MA)

Central Plasma Density (m-3)

Central Ion Temperature (KeV)

Maximum Neutron Wall Loading (MW/m3 )

Total Fusion Power (MW)
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3.5

0.70

11.1

18

125

30.8

0.65

86

2.2

1.6

3.9

5

<4 x 1020

17

4.3

676



Table 4. Illustrative Parameters for Super-High Field Demo

Major Radius (m) 4.4

Minor Radius (m) 0.7

Toroidal Field (T) 16.6

Maximum Field @ Coil (T) 23.9

Current Density in Oxide (MA/m2) 125

Current Density in TF Coil (MA/m2 ) 23.5

Plasma-TF Coil Distance (m) 0.65

B2a (T2m) 192

<beta> (%) 1.2

Elongation 1.6

q 3.9

Plasma Current (MA) 5.8

Central Plasma Density (m-3) < 4.8 x 1020

Central Ion Temperature (KeV) 17

Maximum Neutron Wall Loading (MW/m2 ) 6.1

Total Fusion Power (MW) 1200
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