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A gyrotron oscillator with a single cylindrical cavity has produced output powers up to

645 kW and efficiencies up to 24% at 140.8 GHz, and step tunable single mode operation

between 126 and 243 GHz. Mode stability and suppression of nearby competing modes are

found to persist even when operating in very high order cavity modes with severe mode

competition. These results greatly improve prospects of developing cw megawatt gyrotrons

relevant to the heating of fusion plasmas.
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In recent years, intensive research has been conducted on novel sources of high power

radiation at millimeter wavelengths. Important advances have been reported in research on

electron cyclotron masers such as the gyrotron,' 4 Cerenkov sources,' free electron lasers,"

and other novel devices.' For application to plasma heating at millimeter wavelengths,

which requires CW or long pulse operation, the gyrotron has achieved the most impressive

results, with 100 kW, CW operation at 140 GHz4 and 200 kW, CW at 60 GHz.10

The extension of gyrotron operation to high frequencies, at least 250 GHz, and megawatt

power levels will be required for future applications in ECR heating, such as for the pro-

posed compact ignition tokamak (CIT), a 10 T device, or for a fusion reactor. One major

obstacle to increasing the power and frequency of gyrotrons is the need to operate in high

order modes." An important physics issue is the stability of operation of an oscillator

in a highly overmoded cavity with minimal mode separation and severe mode competi-

tion. Although stable, single mode operation may be possible under such conditions due

to mode suppression,14 previous experimental evidence for this has been lacking in highly

overnioded gyrotrons.

This paper reports a major advance in gyrotron research with the achievement of

power levels of over 0.5 MW at frequencies up to 243 GHz in short pulse operation. These

results were obtained with a gyromonotron utilizing a single, tapered cavity. Only one

previous gyrotron device (of moderate voltage) has achieved such high power levels, a

Soviet 2.1 MW, 100 GHz gyrotron3 ; however, no details have been reported of the nature

of that device or its operating mode. The present results, although obtained in short pulse

operation, indicate that the gyrotron is very promising for further development as a CW,

megawatt power level source for application to plasma heating in future plasma machines.

The tapered cavity has been previously questioned with regard to its ability to maintain

single mode operation at high power and frequency. As a result, a number of innovative

approaches to mode control have been suggested, such as the complex cavity (or step

cavity), 2 which has proven successful at lower frequencies, and quasioptical cavities, par-

ticularly Fabry-Perot cavities.' 2 Our experiments indicate that the tapered cavity is, in
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fact, remarkably effective in providing efficient, single mode emission even when the cavity

is highly overmoded. Single mode operation has been achieved in the TE 22,4 mode, the

377th transverse mode of a circular waveguide, corresponding to a cavity diameter of 12A

(A is the free space radiation wavelength). This cavity is also easily fabricated, and can be

step tuned by varying the applied cavity magnetic field. Such step tuning may be useful

during plasma heating when the magnetic field applied to the plasma is varied, or for

reasons of controlling the plasma.

The mode of a weakly tapered gyrotron cavity can be approximated as a TEpq mode

of a circular cylinder cavity, where m, p, q are the azimuthal, radial and longitudinal mode

indices, respectively. The oscillation frequency w is given by

W2/C2 = k2 = k + k (1)

where k1 = v,/R0 and kl = qir/L, R and L are the cavity radius and length, and v,,, is

the pth root of J,(x) = 0. The condition for excitation of the cyclotron instability is

w - k11/311c = nwc = nwco/ (2)

where wc = eB 0 /m is the cyclotron frequency, y-2 = (1 - 02), and 3 is the total beam

velocity normalized by c. The velocity components parallel and perpendicular to the

magnetic field B0 are given by #11 and 13 j respectively. Only fundamental operation (n=1)

will be considered in this paper. For a gyrotron operating near cutoff, kj_ > ki and

W ~ v 1,c/R, ~ w,. For a given -y and R,, a mode represented by vmp and oscillating at

w is only excited over a narrow range in B,. By varying the magnetic field, a sequence of

discrete modes can be excited.

The excitation region for each mode can be determined by combining the linearized

equations of motion13 with the equilibrium condition within the cavity. This results in the

following threshold condition for the beam current:

Ith(A) = 2190 11 Asexp(2x 1 (3)
QT L px - 1 mP
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where
j 2

S = r2,±i(kLRe)SM ~(vi, - m 2 )J2(mp)

y =lr(/1//01i)(L/A) and x = L(o - wc)/4cI311. The total cavity Q, QT, includes diffractive

and ohmic losses. A Gaussian axial field profile has been assumed. The choice of sign

depends on the azimuthal rotation of the rf field. Figure 1 shows Ith for modes in our

cavity between 135 and 144 GHz, indicating the high density of modes present.

In our tapered resonator, single mode operation is the result of three factors: beam

quality, cavity attributes that reduce the number of competing modes, and mode suppres-

sion. Beam quality is important because a spreadin 7, #,3 or 011 can cause some electrons

to become resonant with competing modes' 4 as well as reduce the efficiency. The density

of competing modes has been reduced by designing the resonator tapers to produce strong

diffractive losses at the cavity ends for q > 2 modes, allowing the q = 1 to dominate.

Further mode selection was achieved by choosing the electron beam radius that results

in preferential coupling to the desired transverse TEmp mode structure. As a result, the

number of competing modes in our cavity scales approximately as A rather than V\.

Mode suppression in tapered cavities has been extensively modeled in the past. 4 '18" 9

These simulations indicate that once a mode becomes established within a cavity, the

nonlinear pertubation of the beam increases the threshold conditions for other modes,

especially when the established mode interacts efficiently with the beam. Therefore, the

desired mode must be excited before unwanted modes are excited as the gun voltage is

raised to its steady state value." Although nearby modes can be excited by the sideband

generation mechanism, which is called nonlinear parasitic mode excitation in gyrotrons,1 6'1 7

this effect has been previously shown to be relatively weak in gyrotron oscillators.' 7 A nu-

merical simulation of our experiment would be of great interest but is beyond the scope

of this paper. However, our experimental results agree qualitatively with previous sim-

ulations. In fact, the degree of success of mode locking in the present experiments is

remarkable and can probably be even more effective in CW operation.

The design of the present experiment consisted of first identifying specific modes, such
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as TE 5 ,2 ,1, which have a relatively wide separation from nearby modes. The cavity and

high quality electron beam were then designed to excite the desired mode first, as the volt-

age was raised, while avoiding parasitic modes and sideband generated modes. Supression

of nearby modes in saturated operation then assured single mode operation. The cavity

was also designed to overcome certain technological constraints. For example, an ohmic

wall loss of less than 2kW/cm2 was maintained so that future development (by industry)

to the CW regime for plasma heating is feasible.

A schematic of our experiment is shown in Fig.2. The gyrotron operates at 4 Hz with

3 psec pulses. The magnetron injection gun, which was built by Varian, produces a beam

with a theoretical I3/oi= 1.93 and a spread in #8 of 4% at 80 kV and 35 A.2 ' The beam

has been placed relatively close to the wall to minimize voltage depression by the space

charge field. The cavity magnetic field is provided by a Bitter copper magnet capable of

fields up to 9.7 T. There is also a small gun coil centered at the cathode for optimizing

the beam quality. The cavity, which consists of a straight cylindrical section terminated

at each end by linear tapers, has an effective L of 6A, and a diffractive Q of 415. The

radiation produced is transmitted via a 2.54 cm ID copper waveguide to a broadband

motheye window, 20 and broadcast into a shielded box where measurements of the power,

frequency, and far field pattern can be made.1

In the first set of experiments, stable operation was achieved in the TEi5 ,2 ,1 mode at

140.8 GHz. Output powers up to 645 kW were measured at 80 kV and 35 A with single

mode emission. The efficiency peaked at 24% at 15 A, and remained between 20 and 24%

at higher currents. This contrasts with self-consistent nonlinear theory, which suggests that

the efficiency should continue to increase to 38% at 35 A. The observed degradation of

efficiency at higher currents may be due to several effects, including mode competition from

the TE1 ,3,1 mode, which was observed at 136.4 GHz. The highest TE 5 ,2,1 powers occur

along the boundary with the TE 1 ,3,, oscillation region. The optimum cavity magnetic field

of 5.48 T at 35 A agrees with predictions based on nonlinear theory. It was found that

the gyrotron was sensitive to the magnetic field settings. Minimal second harmonic (n=2)
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emission was observed, probably due to suppression by the dense fundamental spectrum.

The tuning of our gyrotron was investigated as the magnetic field was varied from 4.8

T to 9.7 T. The results are shown in Fig.3. The dominant modes observed corresponded

to the p=2, 3, and 4 radial modes. For each series, high power single mode emission was

detected at discrete frequencies separated by about 7 GHz corresponding to a sequence

of azimuthal (m) modes with q=1. In the highest order mode observed (TE 2 2,4 ,1 with

D=12.2A), 470 kW was generated at 243 GHz in a single mode. This data indicates that

the gun, although designed for operation at 140 GHz, produces a high quality beam over

the entire range from 126 to 243 GHz. It also appears that high powers could be achieved

at even higher frequencies if magnetic fields above 9.7 T were available.

The normalized current' 3 I is also plotted in Fig. 3 for the observed modes using

the actual beam radius and including the effect of higher magnetic compression at higher

frequencies. This parameter is defined as:

I 0.59 X 10~4_ A Sm (4)
-y)31 L

In Fig.3, only the maximum value of Smp for the two rotating modes is plotted. This

graph indicates that the output power scales approximately as I, as would be expected

from nonlinear theory. 3 The curves for I also predict a transition from the p=2 to the

p= 3 modes at about 165 GHz, and from the p=3 to the p= 4 modes at about 225 GHz, in

agreement with our observations.

The step tunable behavior of the gyromonotron can be understood by analyzing the

coupling strength S, between the beam and rf field. A plot of S, is shown in Fig.

4 for the TEi5 ,2 ,1 mode and neighboring parasitic modes. The beam is located between

Re/Ro of 0.69 and 0.72, ensuring good coupling to the TEi5 ,2,1 and suppression of the

competing modes. A plot of Sp for other nearby TE, 2,1 modes would show a similar

functional dependence. For example, the inner maximum occurs at Re/Ro=0.70 for the

TE13 ,2 ,1 and at 0.75 for the TEi8 ,2 ,1 mode. Thus, choosing Re for strong coupling to the

TEi5 ,2 ,1 mode automatically leads to strong coupling to nearby TEm, 2,1 modes, resulting

in strong emission from these modes.
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In summary, single mode, step-tunable operation of a gyromonotron with powers up

to 645 kW has been demonstrated between 126 and 245 GHz. These results make the

cylindrical cavity highly competitive with alternative approaches, such as the complex

cavity and quasioptical gyrotron. Additional mode suppression techniques, such as the

coaxial insert,2 2 could make the gyromonotron even more attractive. These results suggest

that megawatt gyrotron sources at frequencies relevant to the heating of fusion plasmas

should be feasible.

This work was supported by the Department of Energy. The Bitter magnet was pro-

vided by the National Magnet Laboratory. The authors wish to thank Dr. A. Singh, Mr.

W.J. Mulligan, Ms. S.E. Spira, Dr. B.G. Danly, and Dr. C.Y. Wang for their assistance.

We also thank Dr. H. Jory, Dr. K. Felch, and Dr. H. Huey for helpful discussions, and

their contributions to the development of the high quality electron gun.

7



References

'K. E. Kreischer et al., Int. J. Elec. 57, 835 (1984).

2 Y. Carmel et al., Phys. Rev. Lett. 50, 112 (1983).

3A. SH. Fix et al., Int. J. Elec. 57, 821 (1984).

4K. Felch et al., Int. J. Elec. 61, 701 (1986).

'J. Walsh, B. Johnson, G. Dattoli, and A. Renieri, Phys. Rev. Lett. 53, 779 (1984).

'T. J. Orzechowski et al., Phys. Rev. Lett. 57, 2172 (1986).

7 J. Fajans, G. Bekefi, Y.Z. Lin, and B. Lax, Phys. Rev. Lett. 53, 246 (1984).

'S. H. Gold, D. L. Hardesty, and A. K. Kinkead, Phys. Rev. Lett. 52, 1218 (1984).

'H. A. Davis et al., Phys. Rev. Lett. 55, 2293 (1985).

"0 K. Felch et al., In Proc. Fourth Int. Symp. on Heating in Toroidal Plasmas, Rome, Italy,

1165 (1984).

"K. E. Kreischer, B. G. Danly, J. B. Schutkeker, and R. J. Temkin, IEEE Trans. Plasma

Science 13, 364 (1985).

' 2 T. Hargreaves, K. Kim, J. McAdoo, S. Park R. Seeley, and M. Read, Int. J. Elec. 57,

977 (1984).

3 B. G. Danly and R. J. Temkin, Phys. Fluids 29, 561 (1986).

"I. G. Zarnitsina and G. S. Nusinovich, Radiophys. Quantum Elect. 17, 1418 (1974).

'5 K. E. Kreischer and R. J. Temkin, Int. J. Infrared and Millimeter Waves 2, 175 (1981).

"6 K. E. Kreischer et al., IEEE-MTT 32, 481 (1984).

8



"G. S. Nusinovich, Int. J. Elec. 51, 457 (1981).

'8D. Dialetis and K.R. Chu, Infrared and Millimeter Waves, Ed. By K.J. Button, Vol. 7,

Chapter 10, Academic Press (1983).

"V. L. Vomvoridis, Int. J. Infrared and Millimeter Waves 3, 339 (1982).

20J.Y.L. Ma and L.C. Robinson, Optica Acta 30, 1685 (1983).

"H. Huey et al., Tenth Int. Conf. Infrared and Millimeter Waves Digest, IEEE Catalog

No. 85CH2204-6, 223 (1985).

1
2 K. E. Kreischer, A. Singh, S. E. Spira, and R. J. Temkin, IEDM Technical Digest, IEEE

Catalog No. 86CH 2381-2, 330 (1986).

9



FIGURE CAPTIONS

Figure 1 Threshold current Ith(A) for the TE15 ,2,1 and nearby modes.

Figure 2 Schematic of the gyrotron

Figure 3 Solid lines- Measured output power for TEm,,,1 modes at 80 kV and 35 A. Dashed

lines-The theoretical normalized current I for these modes.

Figure 4 Coupling strength Smp (see Eq.(3)) versus the normalized beam radius. The beam

is centered at 0.71.
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