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ABSTRACT

The turbulent steady state of the MHD clump instability is

investigated. Magnetic helicity conservation plays a decisive role in the

steady state; The helicity invariant constrains the turbulent mixing of

the mean magnetic shear driving the instability and modifies the instability

growth rate. The steady state is determined by the balance between this

helicity conserving growth by turbulent mixing and clump decay by field line

stochasticity. The dynamical balance occurs when the mean current and:

magnetic field satisfy J0 0 UB , where yj depends on the mean square
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fluctuation level. Above this critical point (J > p Bo), the plasma is MHD

clump unstable. This self-consistent generation of fields during MHD clump

instability is a turbulent dynamo action. MHD clump instability is a

dynamical route to the force free, Taylor state. For the steady state to

exist, p must exceed a threshold on the order of that required for Boz field

reversal. Only these Taylor states correspond to steady state MHD clump

turbulence. From the p threshold condition, the steady state fluctuation

spectrum (6Brms/B) is calculated and shown to increase with mean driving

current as p3. The onset of the steady state corresponds to a phase

transition where lic = J.B/B 2  is the critical point. Fluctuation

intermittency is discussed.

I. INTRODUCTION

This is the second paper in a series of three papers on the MHD clump

instability. In the first paper (Ref. 1), we described MHD clump

fluctuations and their instability to growth. The fluctuations are produced

in an MHD plasma when the mean magnetic field shear is turbulently mixed.

The turbulence transports a magnetized fluid element to a new region in the

plasma where the mean energy density differs from that of the element's

point of origin. The fluctuations are localized at the shear resonances of

the plasma where the decay effect of shear Alfven wave emission is minimal.

In isolation, the fluctuation is a hole (6Jz<O) in the longitudinal current

density Jz. As the holes resonantly interact, their magnetic island

structures become disrupted by magnetic field line stochasticity. Energy in

the localized magnetic structures become dissipated as shear Alfven waves

propagate down the stochastic field lines. This decay can be overcome as

new fluctuations are regenerated by the turbulent mixing. The net growth
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rate of the mean square fluctuation level is of the form

Y= (R - 1) (1)

where R is the mixing rate and T is the Lyapunov (decay) time of the

stochastic fields. Net growth (instability) occurs when R>1. Equation (1)

can be cast into a perhaps more familiar form by recalling from Ref. 1 that

the mixing rate is nonlinear and, therefore, evolves with the growth of the

fluctuation level. In particular,

R = 0 (1 + YT) 1  (2)

where

AIX (3)
cd

Here, xd is the turbulent resonance (island) width which generalizes the

resonance width of an isolated island. xd scales as the cube root of the

field line diffusion coefficient (see (92)) and reduces to the island width

Ax for the case of a single resonance. Ac is a nonlinear version of the

stability parameter (A ) of linear tearing mode theory and 2, gives the free

energy available for nonlinear clump growth. With (2) and (3), (1) can be

rewritten as

(Y + T 1 )2 2 (4)

(4) is analogous to the growth rate for the Rayleigh-Taylor interchange

("mixing") instability in magnetized fluids. 3, The stochastic decay

(inverse Lyapunov time, T1) plays the role of the restoring force to field

line bending (shear Alfven emission rate) and the magnetic shear driving

term (R) plays the role of the density gradient of light and heavy fluid.

For large amplitude, fully stochastic fields, the Lyapunov time is short,

and (4) takes the form
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Y - D (3 - 1) (5)Xd

where D = Xd2/T is the spacial diffusion coefficient of the stochastic field

lines. The factor (A'D/x in (5) resembles the growth rate of a tearingc d

mode in the so-called Rutherford regimes but driven by a turbulent

resistivity, D. It is an anomalous field line reconnection rate due to the

stochasticity. The factor (R-1) describes the net regeneration of

fluctuations by mixing even as existing fluctuations stochastically decay

("-1").

The nonlinear theory of Ref. 1 describes the strong resonant

interaction (anomalous reconnection) of magnetic islands at high Reynolds

numbers Rm. While, in the presence of weak collisional dissipation (i.e.,

Rm + -), the theory conserves the total energy and cross helicity, magnetic

helicity conservation is neglected. This flaw is remedied in this paper.

Global conservation of magnetic helicity constrains the dynamical mixing of

the mean shear and, therefore, R in the growth rate (5). We calculate the

effect of this constraint below and find that 6A in (3) is given by (116).

If we define A' as the average value of Ak for unstable clumps of wave

number k, then, for clumps with island widths Ax<k~, R is approximatley

given by

2

S-x(6)
d oz

where Joz is the mean current density. The expression in brackets here is

the correction due to magnetic helicity conservation. It can be understood

intuitively (see next section) as a helicity modification to the mean

electric field (Eoz) driving the clumps. Rather than a nonlinear Ohm's law

of the form Eoz = DJoz used in Ref. 1, magnetic helicity conservation
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constrains Eoz to be of the form Eoz - - D(Ax 2V 2j oz. An important

consequence of (6) is that, for driven steady state MHD clump turbulence (A

- 1 in (5)), Joz satisfies

V2 oz + 12 oz

where p2 _ A' xd /X2 for kAx<1. In the general case, we show in Section V

that the mean vector current density go also satisfies (7) so that, for a

wide stochastic spectrum where p would be independent of position,

=0 . 10o in the steady state. This relation is known elswhere as the Taylor

state 6 , but here plays the role of the stability boundary for the MHD clump

instability.

The derivation of the magnetic helicity conserving source term R and

its consequences for steady state MHD clump turbulence are the main

objectives of this paper. The detailed derivations from the MHD equations

are presented in Parts II and III. However, we first continue this

Introduction with a brief review (Sec. IA) of the dynamical equations

developed in Ref. 1 and of the importance of the conservation laws, in

particular that of magnetic helicity. The helicity conserving MHD clump

theory has an enlightening relationship to turbulent dynamo models 7 , and

this is discussed in Sec. IB. A physical discussion of the Taylor state

equation, as well as onset conditions, mixing length relations and amplitude

scalings for the turbulent steady state is presented in Sec. IC. The

transition to MHD clump turbulence and its similiarity to plane Poisuille

fluid flow is discussed in Sec. ID. Part IV deals with the possibility of

current hole intermittency in MHD clump turbulence. Similarities with modon

and phase space density hole intermittency in (respectively) fluid arid

Vlasov plasma turbulence are discussed.8~'I In the Appendix, we discuss an

interesting analogy between phase transitions and the onset of MHD clump

instability.
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A. Statistical Dynamics and Conservation Laws

The dynamical equations describing MHD clump turbulence are, of

necessity, statistical. The two point fluctuation correlation function

plays an essential role in the dynamical model. This correlation function

follows from the conservation of energy and satisfies an equation of the

form'

[,+ T(1,2)] C(1,2) = S(1,2) (8)

A detailed derivation of (8) was carried out in Ref. 1. (The results are

briefly outlined in Sec. III below). T(1,2) is, in the simplest case, a

diffusion operator describing the resonant interaction between islands. In

particular, it describes the exponential divergence of neighboring

stochastic magnetic field lines or, equivalently, the mode coupling

(cascade) of energy to high wave numbers. T(1,2) is a turbulent dissipation

rate of fluctuation energy and is on the order of T~'. Note that the

exponential divergence of field line orbits--sometimes referred to as orbit

stochastic orbit instability1 2-- describes the decay or "falling-apart" of

the fluctuations. The growth of the fluctuations arise from S(1,2). The

quantity S(1,2) is the source of fluctuations resulting from the turbulent

mixing of the mean magnetic shear. It converts ordered (mean) equilibrium

energy into turbulent fluctuations. The growth rate (1) follows from the

solution of (8)--the term R deriving from S(1,2), and the "-1" term from

T(1,2). The use of the Direct Interaction Approximation (DIA) 2,'3 in

models of fluid turbulence also yields equations of the form (8) , with

T(1,2) describing mode coupling via a turbulent viscosity, but with S(1,2)

taken as a prescribed forcing function. Here, S(1,2) is more akin to mixing

length models of fluid turbulence, i.e., the mean-square clump energy,

C(1,2), is determined self-consistently by turbulent mixing of the mean
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field shear. The model stresses this self-consistent production of the

clump fluctuations produced by S(1,2) rather than the mode coupling spectra

determined by T(1,2) alone. We think of (8) conceptually as a marriage

between the DIA and mixing length models.

The T(1,2) and S(1,2) terms in (8) are derived from a renormalized

perturbation theory and, therfore, only approximate the nonlinear terms in

the exact MHD equations. However, the T(1,2) and S(1,2) terms must conserve

the dynamical invariants of the exact equations. This is necessary for the

preservation of the essential physics and, in particular, for a proper

treatment of the mode coupling. In the absence of resistivity and

viscosity, the invariants are total energy, cross helicity, and magnetic

helicity.'' In Ref. 1, we showed that the nonlinear mode coupling is

treated by T(1,2) in a way that energy and cross helicity are conserved.

Here, we show that a proper treatment of the turbulent mixing of the

magnetic shear described by S(1,2) maintains the conservation of magnetic

helicity. The situation is analogous to that of Vlasov turbulence where

T(1,2) maintains phase space density conservation of the exact Vlasov

equation, while S(1,2) ensures the conservation of momentum.' 5 A mixing

length-mode coupling equation such as (8) which follows the nonlinear

evolution of fluctuations subject to dynamical invariants is a general

feature of clump models of turbulence.

Collisional resistivity and viscosity also contribute to T(1,2) in (8).

Their presence in MHD allows for changes in magnetic field topology that the

Ohm's law

E + V x B = 0 (9)

of ideal MHD prohibits (E and V are electric field and fluid velocity).

Because of (9), magnetic field lines are frozen into the fluid flow, so
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magnetic flux surfaces are preserved. With collisional dissipation, field

lines can "slip" from the flow, break and reconnect." In a course-grained

statistical sense, this also can occur in the presence of stochasticity.

The stochastic bending and twisting of a field line down to finer and finer

scale lengths will, when taken below the scale of the course graining,

appear as a dissipation. This is the meaning of the inviscid part of T(1,2)

in (8). The situation is similar to that of Vlasov turbulence. There, the

exact Vlasov equation is time reversible and prohibits the breaking of orbit

trajectories (contours of constant phase space density do not break).

However, statistical course graining introduces irreversibility and

dissipation (e.g., as in the Quasilinear Theory). This irreversible

mixing of phase space contours carrying different density reduces the mean,

course-grained phase space density. A clear example is given in Fig. 5 of

Ref. 18 where a time sequence of phase space density contours is shown. In

the figure, the finite spacial grid used to solve for the contours also

causes a course graining. As the phase space islands interact, their

contours break as they become mixed and twisted down to scales less than

that of the grid size. Magnetic flux contours in MHD can be similarly

dissipated.

Since the energy in MHD is dissipated at a faster rate than magnetic

helicity'', we view (8) as the dissipation of the energy "invariant" by

turbulent mixing subject to the constancy of the more "rugged" invariant,

magnetic helicity. Magnetic helicity is conserved only in the volume

averaged sense. Recall that magnetic helicity is conserved in ideal MHD if

Jdx E.B = 0 (10)

(10) is trivially satisfied because, from (9), E.B = 0 on each flux surface.

However, we take the view that, because of the course-graining or
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collisional dissipation, only the flux surface at the conducting shell

surrounding the plasma is preserved. Therefore, only the magnetic helicity

associated with the total plasma volume is invariant. The situation is

analogous to that of Vlasov turbulence where momentum can be exchanged

locally but total momentum must be preserved globally,

' fdx f dv vf = 0 (11)

where the integrals are taken over the total plasma volume. Consider a

cylindrical MHD plasma with sheared poloidal field, Boe(r), and strong

longitudinal field, Boz >> B0 (r). Then, the helicity constraint (10) for

the mean field becomes

fdx Eoz = 0 (12)

which, when used in Faraday's law for B0 8 (r), yields a global constraint on

the turbulent mixing of B06(r),

' f dr r B0 0 (r) = 0 (13)

where again, the integrals are taken over the plasma volume. The constraint

(13) is the MHD clump analogue of (11) for the Vlasov case. The use of

global helicity invariance has been previously proposed by Taylor.6

The two point energy conservation equation (8) is a Poynting theorem

for the fluctuation energy. The T(1,2) term is the Poynting flux of

fluctuation energy in and out of the volume. The S(1,2) term is the rate at

which fluctuation energy is produced inside the volume by the turbulent

mixing of the mean field shear, i.e., S(1,2) is the rate at which the energy

in the mean field is dissipated into turbulent fluctuations inside the

volume. In the simplest case, S(1,2) is equal to Eoz Joz, where Eoz and Joz

are the mean longitudinal electric field and current density. The

conservation of magnetic helicity constraining S(1,2), therefore, constrains
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the electric field profile Eoz (x). In this paper, we show that the portion

of the mean field Ohm's law due to the turbulence is

EJ o= - FBoz

where D and F are diffusion (turbulent resistivity) and dynamical friction

(drag) coefficients. Only the D term in (14) was considered in Ref. 1.

Inserting (14) into Faraday's Law and using (4) yields a time evolution

equation for the mean magnetic field Boy that is of the Fokker-Planck type.

The diffusion term of this Fokker-Planck equation, coming from the D term of

(14), describes the random motion of the holes. The second term of the

equation, coming from the F term in (14), describes their self-consistent

(correlated) motion. Because of magnetic helicity conservation, the two

terms are connected--in the limit of zero resonance width, the D and F terms

in (14) cancel. The resonant interactions between the holes lead to no net

transport of the mean field B. In this regard it is useful to think of

these interactions as "collisions" between holes, i.e., hole-hole (island-

island) collisions. The situation is analogous to the vanishing of the

Fokker-Planck collision operator for identical particles in a one

dimensional Vlasov plasma: collisions between like particles lead, because

of momentum conservation, to no net transport of the mean particle

distribution. " We show below that net transport from random hole

collisions occurs in (14) at second order in the resonance width:

E = - D(x)2 V 2J (15)
oz .Loz

where Ax2 is the mean-square step size (on the order of the island width

squared). Using Ampere's law, insertion of (15) into Ampere's law yields a

fourth order diffusion equation for magnetic field line diffusion. A

similar cancellation of lowest order particle fluxes occurs in the guiding

center plasma where like-like collisions cause transport (fourth order
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diffusion) at second order in the gyro radius.1' The constraint of helicity

conservation on Ohm's law has also been considered by Boozer. 20

D. Turbulent Dynamo

The D and F terms of the clump model Ohm's law (14) can be interpreted

as the a and a coefficients of dynamo theory7. In dynamo theory, the mean

electric field is calculated from the fluctuating flow velocity, 6V, and

magnetic fields in Ohm's law,

E =-<6V x 6B> (16)

where <> denotes an ensemble average. Frequently, the view taken in dynamo

theory is kinematic rather than dynamic (i.e., self-consistent) in that the

6V's are prescribed and the 6B's are derived from these flows using

Faraday's law. The result is that (16) can be written as

E =a 0J + aB (17)

While a depends on the mean square flow, a depends on the flow field and its

derivatives. Consequently, the so-called a-effect, due to a non-zero a in

(17), only occurs if the statistical properties of this background flow

field lack reflexional symmetry. 7  In the clump model, we interpret (17)

dynamically, i.e., as the self-consistent, helicity conserving Fokker-Planck

process ( 1 4 ). We consider a "test particle" picture where the flow, 6V, is

the sum of two terms: 6V due to the presence of, self-consistent island

structures, and dVc, the response that is phase coherent with the fields of

background islands. With force balance used to evaluate 6V in (16), the

first term of (14) comes from 6Vc and the second term from 6V. The D term

is proportional to the mean square 6B and would, therefore, be present for

any 6B. The F term, however, is nonzero because the fields are correlated

self-consistently in the island structure. This self-consistency causes the
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lowest order cancellation between the D and F terms of (14), thus yielding

the magnetic helicity conserving form (15), the "net" a-effect. We

demonstrate this cancellation for steady state turbulence in Sec. II. The

nonvanishing of the F term in (14) can also be traced to the statistical

prevalence of the current holes (over the "anti-holes"). Thus, the breaking

of reflextion symmetry, as required by a turbulent dynamo, is achieved in

the clump model by the formation and preferential growth of the current

holes (As discussed in Sec. IB of Ref. 1, "anti-hole" fluctuations, 6J>O,

decay).

Comparison with the homopolar disc dynamo is enlightening. 7 A solid

copper disc rotates about its axis with angular velocity Q, and a current

path between its rim and axle is made possible by a wire twisted in a loop

around the axle (see Fig. 1.1 of Ref. 7). Rotation of the disc causes an

electromotive force MQI which drives a current I in the loop given by

L L+ RI = MQI (18)dt

where M is the loop/rim mutual inductance, and L and R are the self-

inductance and resistence of the complete circuit. The system can be

unstable to growth of current and magnetic fluctuations (MI is the magnetic

flux induced across the disc.). Growth occurs when the source of free

energy exceeds the dissipation rate, i.e., when a > R/M in (18).

Ultimately, the disc rotation slows to the critical value C = R/M, and a

steady state is achieved. The situation is similar to that of the MHD clump

instability where the mixing rate of the mean shear plays the role of the

driving frequency 0, and the stochastic decay (turbulent resistivity)

corresponds to the resistance R in the disc/loop circuit. Growth of

magnetic clump fluctuations (see (1)) occurs when turbulent mixing overcomes

stochastic decay, i.e., R>1. Quasilinear relaxation of the shear gradiehts
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lowers R to the critical, steady state value Rc = 1. Multiplying (20) by

I/R gives

( + R) 2 = 2 ( ),I2 (19)dt L L

(19) is analogous to (8) for the clump magnetic energy (C-<6B 2 > in (8)).

The resistive decay rate R/L corresponds to the clump stochastic decay rate

T(1,2) - 1. The driving term on the right hand side of (19) is analogous

to the clump source term S of (8). Note that S - Eoz ~ D - <6B 2 >-C from

(15). As in the disc dynamo where we must have 0 > 0 for growth, a

preferred sign for forcing is provided by Eoz ~ V z > 0 inside the

plasma.

The MHD clump instability is a turbulent dynamo, but not of the usual

type. Typically, dynamo models sustain or increase the mean magnetic field

at the expense of currents flowing across the field. Were it not for the D

term in (14), the F term would cause an increase in the mean magnetic field.

However, the mean field does not increase because, to lowest order, the a-

effect is balanced by the stochastic diffusion of the field lines. This

balance is the result of magnetic helicity conservation. To next order (in

the island width), the mean magnetic field decays according to the turbulent

mixing process (15). The energy lost from the mean field goes, because of

energy conservation, into the creation of the clump fluctuations. This

degrading of the mean field occurs in the interior of a confined plasma

where V 2 J <0 in (15). In the exterior region where V >0, (11) tends to

support the mean field and, therefore, acts in the spirit of a traditional

a-effect. The net effect of (15) is to expel mean poloidal flux from the

plasma.
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C. Steady State Turbulence - The Taylor State

The constraint of magnetic helicity conservation has a crucial effect

on steady state MHD clump turbulence. As the instability proceeds, the

quasilinear relaxation of the mean magnetic field gradients will drive the

instability source term R toward zero. The net a-effect (15) will,

therefore, vanish. This will result in decaying turbulence where the energy

decays by mode coupling (i.e., the "-1" stochastic decay term in (5)) down

to finer and finer scale lengths. However, this decay can be overcome if

the mean field gradients and, therefore, the a-effect are maintained. This

is the critical value Rc = 1 noted above. The turbulence is then driven,

and a steady state turbulence (dynamo action) is possible. Of interest then

is the structure of the driven clump fluctuations rather than the detailed

features of the broad spectra produced in the case of decaying turbulence.

The steady state clump fluctuation level follows from (1) and (6), and

occurs when R = 1, i.e.,

V27 J + P2 J =0 (20)Loz oz

where

12 - AIX (k 2 +* 1 (21)

2 d2 2

For low mode number, small amplitude holes koAx < 1 and (21) gives y2

A'/xd in the fully stochastic case. Then, multiplying (20) by Dxd, and

using (15) gives

E + Ec = 0 (22)oz z

where Ec = D 6Jz - DA' Xd z is the force turbulently dissipating the

holes and
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-6R AXd Jz (23)

is the root mean square hole depth necessary to form a trapped island

structure (see Ref. 1). Since EOZ is the mean field force creating the

holes, (22) is a statement of mean force balance. In addition to being a

steady state (dynamo) condition on the mean-square fluctuation level (p),

(20) can also be thought of as a global equilibrium condition on the mean

current density JOz. In cylindrical coordinates, (20) gives Joz ~ JO(ir)

where Jo is the zeroth order Bessel function. A more enlightening view of

this is obtained by considering poloidal as well as toroidal currents. An

approximate calculation for this case is carried out in Sec. V. The

equilibrium relation between the mean current profile and the mean-square

fluctuation level is found to be a vector generalization of (20):

V2 J + 2 J = 0 (24)

Because A' and xd are spectral averaged quantities, p is relatively

insensitive to position inside a broad, fully stochastic spectrum. (See the

end of Sec. V for further discussion of this point). Therefore, we set P =

constant, and with V.J=0, (24) has for a solution,

J = yB , (25)

yielding again a force-free state (J x Bo = 0). The global force balance

relation (25), the so-called Taylor state, has been known previously as the

MHD state of minimum mean energy with a given constant mean magnetic

helicity6 . That the solution (25) should result from steady state MHD clump

turbulence is not surprising, since the clump dynamics minimize the mean

energy via turbulent mixing subject to the constraint of global magnetic

helicity conservation. Note that, in the clump theory, the parameter y in

(25) is a prescribed function (21) of the turbulence level. The steady

state is turbulent. Equation (25) prescribes the mean profiles in terms of
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the mean-square fluctuation level (p). The fluctuations generating the

dynamo action are created self-consistently by the balance between turbulent

mixing (J 0 ) and the decay (1iB 0 ) caused by field line stochasticity.

Because i depends on the mixing length xd, (20) relates the mixing

length to the shear. This relation follows if we multiply (20) by x and

use (23):

R _ 2
6J x2 2  (26)z d L oz

Eq. (26) is actually an equivalent form of the MHD clump steady state mixing

length relation

<6B 2> -DTx J V (27)x d oz I oz

(27) follows from the steady state integration of (8) with the use of (15)

for S(1,2) - EozJoz and T(1,2) ~ ~ D/xd. Using the hole width,

xd~(64/Joz) 1/2, and 6Bx = 3/Dy - 6*/Ay and 6Jz =- 36BX/3y - -6BX/Ay, (27)

reduces to (26). Equations (26) and (27) differ from the usual form of

mixing length relations because, here, the mixing process is constrained by

helicity conservation. This can be seen by integrating (8) in steady state,

with only the diffusive term in (13) retained in S. Then, we obtain a

mixing length relation of the standard form: 6B2 DTJoz2  ~ d oz 2

However, because of helicity conservation, each term in (14) must be

retained--leading to the use of (15) in S(1,2) and the result (27).

Not all V values (21) are consistent with the steady state. Solving

(21) for xg gives

xd 1 2  2 4 ,24A' k )1 (2 28)
2A'k0

There are no real solutions for xd (and, therefore, D) unless 2 > 2A'k0 .

For reasonable values of A' and ko, this means p will be an order one
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2
quantity. At the threshold P =2A'k,, and koxd = 1. Above the threshold,

ko xd > 1 and

xd 2 /Ak2 (29)d 0

Note that P's on the order of one are comparable to the Lt values required

for a BOZ field-reversed state, i.e., the solution Boz = -oz 1 ~ JO(Wr) to

(25) reverses sign when r>2.4. Therefore, of all the possible Taylor

states (p), the ones with reversed BOZ field correspond to steady state MHD

clump turbulence. Smaller y's apparently correspond to MHD clump

instability.

At the threshold of the clump steady state, the mixing length relation

(27) reduces to

6B - xd oz ko xd (30)

(30) follows from (27) by using (23), (20) for V Joz, and p 2~A'koxd - A,/xd

at the threshold (koxd=1). Since (23) can also be written as 6Bx -

xdJozkoxd, (30) is just the fluctuation level necessary for the formation of

trapped island structures. Since koxd = 1 at the threshold, (30) is, at

threshold, just the standard mixing length relation

6B - x Az (31)

A similar result occurs for Vlasov holes characterized by a velocity

trapping width Av.1 There, the mixing length level 6f - Av3f/3v is the

same order as the fluctuation level necessary for trapped hole formation,

i .e., 6f-(Av/vth)fo. Therefore, in steady state t ur bulence , the

fluctuations can "just barely" self-organize before they become dissipated

by the turbulence. The turbulence is thus composed of colliding, growing,

"amorphous" hole structures: clumps.

In steady state, the diffusion coefficient Dx /T can also be written
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as D-Yn/k , since k - x-1 is the typical radial wave number and Ynj - R/T

~ 1~1 is the characteristic mixing rate. Were it not for the constraint of

helicity conservation, Ynz/k would be the cross field diffusion

coefficient, D , for the mean field flux, 0. However, D < D as can be

seen by combining (15) with Faraday's law:

a99 0 a2 2 D 2
= - D(Ax) 2 o (32)

3x ax

Therefore, D1 -D(Ax/a)
2  ni/k )(Ax/a) 2 where a is the radius of the

current channel. An analogous reduction in cross field transport occurs in

a guiding center plasma of identical particles." Equation (32) is derived

from the MHD equations in Sec. II and Sec. III. A quasilinear equation of

the form (32) has also been derived for an assumed spectrum of tearing modes

by Strauss and Bhattacharjee.22,23

D. Transition to Turbulence

Of course, the steady state condition (24) also describes the threshold

condition for the onset of the instability. Recalling (5), it is

enlightening to write (24) for arbitrary I,

V J + R j 0=0 (33)

with a solution corresponding to (25) of

- R/2 
(34)

Therefore, for a given y, (i.e., amplitude), instability occurs when the

mean driving current density exceeds the critical value

4 = B 0 (35)

For analysis of this instability threshold, it is useful to include

additional dissipation effects such as collisional resistivity (nsp) and
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viscosity (v). Assuming a unit magnetic Prandtl number, the additional

dissipations change T(1,2) T - D/x in (8) to the net dissipation rate

of (D + nfp) X2 (1 + R' )t', where Rm = D/nsp is the Reynolds number.

The growth rate (5) then becomes

L (~ - 1 - -) (36)Ta xd R

Instability occurs when the mixing overcomes both collisional and turbulent

dissipation. While we think of the "-1" term in (36) here as a mode

coupling rate due to "hole-hole collisions", it is also useful to think of

12 1 3it as a turbulent eddy viscosity as in fluid turbulence . Then, the

effective viscous damping rate is (1 + R~')T~'. With these modifications,m

the threshold condition becomes JO>Jc where

c= + 1)1/2B (37)

Thus, the instability condition on the Reynolds number is

J 2
Rm > o (38)

z

where we have considered only the longitudinal part of the current .

Instability (MHD clump regeneration) occurs for a given amplitude (P) and

current profile if the Reynolds number exceeds the critical value given by

the right hand side of (38). Since, for koAx < 1, p decreases with

increasing amplitude, smaller Reynolds numbers require larger amplitudes for

the onset of turbulence. The threshold is evidently nonlinear.

Consider the instability threshold in the case of two large islands

located at different mode rational surfaces. When the island resonances

begin to overlap, the region of initial stochasticity will be small compared

to the island widths. The effect of this intermittent region of
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stochasticity is to replace the "-1" in (36) and (38) with a factor ps,

where ps denotes the percentage of stochasticity compared to the island

width. A further modification is due to the fact that parallel currents--

and, therefore, two current holes--attract each other. This tendency for

island coalescence will tend to inhibit the mode coupling decay rate of the

islands. In order to account for this tendency, we further multiply the "-

1" in (36) and (38) by the factor rc, where rc<1 . The phenomenological p5

and rc factors also occur in Vlasov hole turbulence. There, hole

intermi-ttency reduces the decay rate due to hole-hole collisions, while the

attraction between holes causes hole fragments (produced from hole-hole

collisions) to recombine into new holes. The magnetic island coalescence

instability is the analogue of the Jeans instability for Vlasov holes. I8

The net result here is that, for psrc<<l, the Joz/1Bz term dominates in the

denominator of (38). Since p is given by (21), and a critical amplitude

(island width) is required for island overlap, the stability boundary is of

the form depicted in Fig. 1, a form reminscent of plane Poisuille flow.2s

As discussed in the Appendix, Fig. 1 can be viewed as a phase diagram for

the "phase transition" to steady state MHD clump turbulence.

In a toroidal plasma, the stability condition JO<Jc sets a lower bound

on the safety factor q(a) - aBz(a)/RBe(a), where (a,R) are the (minor,

major) radii of the plasma and (BZ,Be) are the (toroidal, poloidal) magnetic

fields. This can be seen by integrating (35) over the plasma (minor) cross

section to obtain

qc(a) 2/R5 (39)

where is p averaged over the plasma cross section. Stability occurs if

q(a) > qc(a). An alternate view of the instability threshold follows from y

< y' = 2/Rq(a). Since c - q(a)~1 increases with driving current,
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instability results when too much current is driven for a given Taylor state

(1). For example, in a tokamak fusion device, large amplitude, low mode

number magnetic islands frequently develop. Upon overlap, strong

instability ("disruption") can be expected if this current threshold is

exceeded. In the reversed field pinch fusion device, by contrast, the

overlapping islands have smaller initial amplitudes so that will be

comparable to pc (i.e., R comparable to one). The plasma will be near the

Taylor state and thus relatively quiescent. With 5 - pc, (28) implies that

an increase in driving current will just push the clump turbulence to higher

fluctuation levels.
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II. FIELD SELF-CONSISTENCY

As discussed in Sec. I, the Fokker-Planck structure of the mean field

(14) results from the self-consistent generation of the clump fluctuations.

It is this self-consistent structure that ensures the global conservation of

magnetic helicity. We show this here by considering the simplified but

illuminating case of a spacially stochastic fluctuation spectrum that is

time stationary. A complimentary derivation from the time dependent MHD

equations is presented in Sec. III.

We begin by taking the 2 component of the curl of the equation for

steady state MHD momentum balance. Using slab geometry and the model

sheared field of "tokamak ordering" (B=Bo + 6B, Be = B 0 + ' §io B

9 BOy(x), Boz = constant), we obtain

B . VJZ = 0 (40)

or, more explicitly,

3J B' x DJ 6B DJz+ + = 0 (41)
3z B oz y B oz x

oz oz

where we have retained only the 6BX component of 6B for simplicity. Since

we are considering self-consistently generated fields, we must couple (41)

to Ampere's law

2 Jz (42)

where B1 - x(*Y) defines the poloidal flux function $. Because of the

self-consistency, we write the current fluctuation as a sum of two parts,

6Jz = 6fz+ j *' j describes the source of fluctuations in ip generated via

(42), while 6JO describes the response to these fields via (41). Inz

particular, jz describes the resonant clump fluctuations generated self-

consistently by turbulent mixing at the mode rational surfaces, while 6 Jcz
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describes the nonresonant currents flowing in response to the clumps. The

decomposition is similar to that for an isolated current hole discussed in

Sec. IA of Ref. 1 where the coherent analogues of J and 6JC describe thez z

currents flowing (respectively) inside and outside the magnetic island

structure of an isolated hole. In the case of stochastic fields, it is

useful to treat (41) as a Vlasov equation for field line trajectories where

27z plays the role of time. For weak fields, the response 6Jcz can then be

calculated as in the Quasilinear theory. Neglecting ~z, one obtains from

the fluctuating part of (41)

dJc = j k (43)k k. B ax Joz
- - -0

where 6Jk is the Fourier transform of 6J1c. Equation (43) is the usual

2 5current response of linear tearing mode theory. , Substitution into the

ensemble averaged version of (41),

a = - k Im <6$ 6J > B(44)
3zo xk Y k k 'z

gives the diffusion equation

Jo z- Tx Ooz (45)

Here,

<6B2 >
Dm M Xk 2 r6(k .B ) (146)

k B 2k
- oz

is the usual diffusion coefficient of stochastic instability models of

magnetic fields.28 29 Inclusion of JZ in (44) gives the Fokker-Planck

equation

Dm -J Fm J
wz o h a m T o x (ere

where
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Fm = k Im (6$ ~J > (B J (48)
k Yk k oz oz

Since Jz and 6JCz are related self-consistently through (42), Fm and Dm

in (47) are also related. This relationship and its consequences for global

transport are best seen by considering the nonlinear expressions for Dm and

Fm. For stochastic 6B , the nonlinear term in (41) can be approximated by a

diffusion operator in the same way that (41) yields (45). 6Jz, therefore,

follows from

B1'6
+ oy x D m ) c J(93z B o y ax T x z B az x ozoz oz

so that

6J - (x) k (50)k k B a x oz
- - oz

where

gk(x) = dz exp iz k.B0/Boz - (z/z0)3 (51)
- 0

is a broadened resonance function and

2 ; (ky Bgy/Boz) 2 D 1/3 (52)

is the distance along z for a field line to diffuse a distance <6y2>1/2k 1.

Insertion of (50) into (44) then gives the nonlinear diffusion coefficient

<6B2

Dm xk g (x) (53)

k Boz

that is now to be used in both (47) and (50). Note that, for weak fields,

gk+w'f (k.B0 /Boz) and (53) reduces to (46).

The physics of the nonlinear diffusion is easily seen. For finite

amplitudes, field line diffusion occurs when
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kz + k BI x/B 1 (54)z y oy oz 1 z7
0

In terms of the position x5 = - kzBoz/ky B of the mode rational surface of

mode k, (54) is

Ix - xsI < xm (55)

where xm = (k B z/Boz) i.e.,

x= (B Dm/ 3k BI )1/3 (56)m oz y oy

In the stochastic case, xm plays the role of the island width

Ax = (6 /Joz 1/2 (57)

so (55) is the condition for island overlap. To see this, consider the

overlap of two neighboring resonances. From (53) and (51), Dm~<6B>2res

2
zo/Boz where OBres is the resonant portion of 6BX contributing to the

integral in (53). Using now the definition (52) for zo, Dm in (56) can be

expressed in terms of 6Bres so that (56) becomes

x - (6B /k BI )1/2 (58)m res y oy

or, equivalently, (57). Therefore, at island overlap, Dm becomes nonzero

and a field line random walks radially as one moves along z, i.e., (6x) 2 
=

2Dmz.

The nonlinear field line diffusion destroys finite amplitude magnetic

island structures and causes global transport of the mean fields. Localized

island structures are disrupted because neighboring field lines diffuse at

different rates. As in Sec. IIIB of Ref. 1 (see also Ref. 27), this can be

seen by deriving from (51) the two point correlation equation analogous to

(49), i.e.,
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B'
+ x - D ) <6J (1)6J (2)> = 0 (59)az B oz--ay- X - a x- z

in the simplified case of 3JOZ/Dx = 0. Here, x_=x 1 -x 2 , y-=y1-y2 are the

separations between field line trajectories and Dm = D + D - D -

is the relative diffusion coefficient where

<6B 2
DM k = xk cos k y (60)12 k Bz k

k- Boz

For small separations, two field lines feel approximately the same forces

and tend to diffuse together. Then, we can write Dm = Dm k2 y2 where (as in

(93) of Ref. 1), ko defines the typical scale length of the stochastic

fields. Using this Dm, the characteristics of (59) imply (for z_ - 0) that

z/ L
<y_(z)> = (y2-2xyL /L + 2x L /L )e z (61)-c s -c s

where L,1 = Bo /Boz is the inverse shear length and

Lc = (12)-1/3 zo = (4k L-2Dm )-1/ 3  (62)

is the z-exponentiation length or Kolmogoroph entropy.2 From (61), two

field lines, initially separated by x_, y_ will diverge by ko- in y- after a

distance traversed in z of

3k-2
zc - L in 2 2x /L 222 (63)

?_ -2_7LIL +2xL /L
- c s -c s

where y = y.-x+z_/L,. It is this orbit exponentiation process, frequently

referred to as stochastic orbit instability, that tears coherent island

structures apart. This spacial destruction of the islands is connected to

their destruction in time by the Alven speed. As described in Ref. 1, the

islands are disrupted as Alfven waves propagate down the spacially

stochastic field lines. The Lyapunov time of Ref. 1 is T = Lc/VA (see (62)
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above and (95) of Ref. 1), where the diffusion coefficient of Ref. 1 is

D-DmVA in dimensional units (see (53) above and (73) of Ref. 1). Note that,

in the temporal case with flows, the 6B fields in (53) get replaced by the

clump magnetic fields 6L and 6N.

The nonlinear version of (47) can now be obtained as follows. We first

substitute (50) into (42) to obtain

22 k J'
- k + i g (x) k B 6 -I k (64)

- oz

Equation (64) is a resonance broadened Newcomb equation2, 3 0 that is driven

by the clump currents Jk. Let us define the clump or resonant part of the

flux function as

Wk = Xm J dx jk (65)

then, integration of (64) gives

k
k = ( + (66 )k (AI+21kIJ)x

where

ik y/B o
A = - 21k Pfdx g (x)6$ (x) J oz

is the resonance broadened tearing mode stability parameter.2 The

denominator, as discussed in Ref. 1, describes the shielding of the clump

field by the nonresonant currents 6Jc. The self-consistency relation (66)

relates Fm to Dm. Using (66) and (50), the 6Jk contribution to the bracket

in (44) becomes

k 2<*fdx'J*(x
(x) k (68)

oz - JA +2|k 2x

while the jk contribution is
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k 2

y ~~ 2 (69)
oz jA +2|k x

k y m

Passing now to the Fourier integral limit and noting that

<~(1)J(2)>k = 2Regk(1)<J(1)J(2)>k (70)
- - y

(44) becomes

-J -z 2x B f k 2 +2 1-2 dx' Reg (x')Reg (x)3z OZ ax m oz. (27) 2 y k kX -

3J (x) - > 3J (x') (71)

J< a(x')>k k

This can be cast in the form of the Fokker-Planck equation (47) where, using

(65) and (70),

2 -2

Dm 12 dk2 y k2 2 g k(x) (72)
B (21) |A +2lk x1 X

and

dk <65~J >
Fm dk k ImA' (73)Boz (27) 2 y 1,+21k 112x k

Recalling (66), we see that (78) is just (53). Rather than the diffusion

equation (45) for Joz in an arbitrary (non--self-consistent) field 6Bx, (47)

describes the evolution of Joz due to self-consistent, shielded island

fields (66). Note that Fm*0 because the fields are correlated self-

consistently by Ampere's law (42). This correlation connects Fm with Dm and

causes the right hand side of (47) to vanish to lowest order in the island

width. To see this, we note that as xm-z-'+O in (51), Regk(x)+76(k.Bo/Bz),

and the two terms in the bracket in (71) cancel. There is no net radial

transport of the field lines.

For finite island widths, the two resonance functions in (71) overlap
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and cancellation does not occur. To show this, we follow the resonance

expansion of the Fokker-Planck collision operator in Vlasov turbulence."

We assume that the correlation function is factorable:

<( ~(x)> k a(x) b(k ) (74)

Then, (71) can be written as

J = L dx' K(x'-x, +x)H(x,x') (75)TZ oz ax 2

where

2x Reg (x)Reg (x')
K(x'-x, - ) = m d b(k ) (76)

2 B oz2 (2i)2 +2 k 2 y

and

oJ (x) aiJo (xI)
H(x,x') = a(x') Z - a(x) - ax (77)axax

Recalling (51), we note that K-0 unless Ix-x'I <xm. Moreover, K is an even

function of Ax = x' - x and has a weak (nonresonant) dependence on (x'+x)/2.

We, therefore, expand K as

K(Ax, x -) = K(Ax,x) + K(Ax,x) (78)2~ 3ax

and H as

S(xAx) 2  a aa(x) aJz) a(a2 J0 (x) (79)
H(x,x') = iii+ - ax) 792 x Fax a7x_ a ax 2 ..

Substituting (78) and (79) into (75) gives

2 2( a2 Jozx 3(x) ajo (x)
J f 2 dAx (Ax K(Ax,x) [a(x) 2 - a x (80)
Tz o x 2 x a

Because of the resonance functions in K, the dAx integral in (80)

effectively replaces Ax2/2 with the mean-square island width. Then,

recalling (72), (74) and (76), the first term in (80) is
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-(3 2/aX 2)Dm(Ax) 2 (a2 2) .z. For Dm relatively insensitive to x inside a

broad, fully stochastic spectrum, the last term in (80) can be neglected.

Therefore, (80) becomes:

22a ja2 m(,) 2j(1
az oZ 2 ax 2  2 oz

The resonant interaction of finite amplitude islands, therefore, cause

net diffusive transport of the mean field, albeit fourth order diffusion.

Since Alfven waves will carry energy away along the stochastic magnetic

field lines at the Alfven speed, the effective global transport rate in time

due to the stochasticity follows by multiplying (81) by VA. Then, (81)

gives

2 )2 a2

at oz 2 2 oz (82)

where, as we have discussed above, VADm + D. Assuming that Dm is relatively

insensitive to x, we use the mean field part of (42), and thus (82) yields

the time evolution equation (32) for the mean flux, $e. In Sec. III, an

alternative derivation from the time dependent MHD equations yields the same

result as (32). Generalizing (32) to cylindrical coordinates and noting

that Eoz= -3$0/Dt from Faraday's law, (32) gives

2
E -V .D(Ax) . v (83)Eoz 0. gx)* oZ

Magnetic helicity is conserved since (83) satisfies (12). Note that this is

ensured by the Fokker-Planck coefficients D and F. To zeroth order in the

island width, the right hand sides of (14) and (47) vanish. There is no

field line transport and (12) is identically satisfied. Transport occurs at

second order in the island width, thus leading to the helicity conserving

form (83).
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III. MAGNETIC HELICITY CONSERVATION

Here we consider the effect of magnetic helicity conservation on

growing MHD clump fluctuations. For this purpose, we need the explicit time

dependent equations. Time dependent equations for MHD clump turbulence were

derived in Ref. 1. The equations were obtained from the full vector MHD

equations, but with magnetic helicity conservation neglected. We showed

that subtraction of the Alfven wave field from the total field B yields the

clump or resonant part of the field L=B-S~'V, N=B+S~1 V. [We use dimensional

units here (see Sec. IIA of Ref. 1), where S is the Lundquist number (S =

R /TH where TR and TH are, respectively, the resistive and Alfven times for

the current channel radius)]. For example, neglecting pressure (shown in

Ref. 1 to be small for the clumps), the N equation is

( - S<B>.V - S6L.V - V ) N = 0 (84)at I-

The <B>.V term describes Alfven wave emission and, therefore, localizes the

clumps near mode rational surfaces. The nonlinear 6L.V term, when

renormalized, becomes a diffusion operator as in (49) of Sec. II above. The

diffusion coefficient is a turbulent or anomalous resistivity to be added to

the collisional resistivity (the V term in (84)). The mean field <N>

satisfies

(N > = (D + 1) - <N > (85)t y ax ax y

where D is the turbulent resistivity in terms of the fluctuations <6L2 x >k

Because of the conservation of energy, the turbulent mixing (85) of the mean

shear generates clump fluctuations <6N(xj,t).6N(x2 ,t)> u <6N1.6N2

satisfying
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S<B_>.V_ - a(D +2) <6N . 2[~ -S<a>7 - 2 a

2 <N > D< 2
12 x *ax (86)1 2

where D_=D 1 +D2 2 -D 12 -D 2 1 =2 (D-D 1 2 ) with

D S2 f 2dk <6L 2 > G exp ik y (87)1(22 x k k (87

The broadened resonance function is

Gk = dt exp isk.B0t - (t/T0 )3-Yt (88)

where Y is the clump growth rate and To = (1/3 k2 B? 2 2D)1/3. Invertingy Oy

the two point operator on the left-hand-side of (92) gives the clump

fluctuation level (see (97) of Ref. 1):

' 2
<6N1 .Y2> = 2T_ D 12(B ) (89)

where T_ = TCZ (1 + YT)~', with

3k- 2

TcZ = T Zn 2 0 2 2 2 2 (90)
7_-27_x STB +2S B' x T-oy oy

and

T = (12) To = (4k 2S2B, 2 D) (91)0 OY

as the Lyapunov time. In (97), 7 = y. - xBz_. The resonance width in

(91) is -

xd (D/Sk B' )1/3 (92)

so that two field lines are only correlated if Ix_.<xd. As discussed

earlier, these results of the time dependent evolution are related to the

spacially stochastic case of Sec. II by the Alfven speed (i.e., by S in

dimensionalized units). We define the clump "flux" function 1 =i + S1 ,
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where Bl-Vx(2*) and V =Vx(2$) define the poloidal flux function, 4, and the

velocity stream function, 4. The Fourier transform of (89) can then be

written as

( - k 2) <6 (1)6s(2)> = - 2DiE (x_,k)(B' )2 (93)
ax 2 y k ci-' oy

where i(c, (x-,k) is the Fourier transform of (90). As shown in Sec. IVA of

Ref. 1, (93) can be cast in a form reminiscent of the Newcomb equation of

linear MHD stability theory.
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We would like to include magnetic helicity conserving terms in the time

dependent equation (86) as we did in the spacially stochastic case of Sec.

II. As there, we need to distinguish between the phase coherent and phase

incoherent parts of the field (the Alfven wave part of the field has

already been distinguished by the use of the N and L field variables). We

write 6N = 6 Nc + N, where 6Nc, the part of 6N phase coherent with 6L, is

given by (70) of Ref. 1 and produces the diffusion equation (85). Note that

6Nc would be present for any fluctuations 6L. The field N represents the

resonant clump fluctuation produced self-consistently as the 6L fields

turbulently mix the mean shear. Because the mixing occurs at the overlap of

resonances, N will be a random, incoherent function of the field phases.

However, we will only need its correlation function. With the additional

contribution of R, (85) becomes (neglecting collisional dissipation for

simplicity)

<N> L D- L <N > - FL (N> (94)at y ax TQX yy

where FL - S<LxNy>/<Ny> is a Fokker-Planck "drag" coefficient. We introduce

the superscript L on D here to distinguish the <6L 2> and <6N2 > driven

coefficients that we will consider below. A corresponding equation to (94)

holds for 3<L y>/at, but with FN--S<(xLLy>/<Ly>. The additional term FL will

modify the right-hand-side of (86) so that, when integrated, (90) will be

replaced by

<6N . 2 > = 2 L D 2 B + FL Bgy (95)

Similarly,

<6 .6 > = 2TN D 2 B1 - F 2 BI (96)

Strictly speaking, the R and L terms also produce F terms on the left-hand-

sides of the two point equations such as (86). However, the two point
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propagators are less sensitive to magnetic helicity constraints than the

clump source term. While the global conservation of helicity directly

effects the mixing of the mean field, it has much less effect on the local

mixing of the fluctuating part of the field. We, therefore, take tcz in

(95) and (96) to be given by (90) as before. For simplicity, we consider

the strong N/L coupling limit where <N.L>-0 so that T N z TL - Tc, (see

Sec. IIIB of Ref. 1). Adding (95) and (96) then gives the equation for the

total energy correlation,

<6B . 6B2 + S-2 1 * 6-2> = 2 Tlt E J (97)

where

E = D Joz -Vb> z (98)

With F = <V x B>z/Boz, (98) corresponds to the Fokker-Planck form (14). We

can also write F=S<NxL>Z/Boz. F gives the self-consistent, correlated motion

of the clump part of the magnetic field.

Insertion of (98) into Faraday's law gives a Fokker-Planck equation for

the mean field Boy with F-<VxB> /B . Lowest order cancellation between the

D and F terms in this equation is demanded by global magnetic helicity

conservation constraining the dynamics of Boy. The situation is analogous

to the dynamics of the mean distribution (f 0 ) of clumps or discrete

particles in a Vlasov plasma.1- There, fo also satisfies a Fokker-Planck

equation of the form 3f 0 /3t a 3Q/3v, where Q is a (x,v) phase space current

given by Q - D(afo/3v)-Ffo. D and F are velocity space diffusion and

dynamical friction coefficients, e.g., F-<Et'>/fo where E is the electric

field from Poisson's equation and f is the clump or discrete particle part

of f. Because of global momentum conservation, these D and F terms cancel

(Q-0) to lowest order in the resonance width Av. To next order , Q--
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D(Av) 2
9
3 f /v 3 , thus giving a fourth order diffusion process for fC. This

is the well known effect of collisions between like particles (or clumps).

In the MHD clump model, (98) plays the role of Q, with magnetic helicity

conservation playing the constraining role analogous to momentum

conservation.

Unlike the stochastic, but static magnetic field case of Sec. II, we

have not been able to evaluate the correlation <(xL> with our

renormalization techniques and show that it ensures magnetic helicity

conservation in Eoz. The static case involves the rather simple scalar

equation (41) and yields the helicity conserving results (71) in

straightforward way. The dynamic case with the full vector MHD equations is

much more difficult to treat. Preserving the vector properties of the

correlation is particularly difficult. Two points about the calculation are

worth mentioning, however. Unlike kinetic dynamo models,' the evaluation of

F in the clump model requires self-consistent rather than arbitrarily given

flow fields V. From momentum balance one obtains

vSL =2 t dt' J [x(t'),t'] x B[x(t'),t'] (99)

so that

<VSC x B> = -S tdt'<(B.B) Jz > (100)

where the subscript t' means evaluation of time and orbits at t-t'. Along

with the so-calfed B term of kinetic dynamo theory (the a term being

obtained from the time integration of Faraday's law in a given V field),

(100) yields a contribution to Eoz f

<6Vx6B>z tdt' <(6V 2 + S2 6B2 )z > (101)

The coherent part of this response, coming from Jz=Joz, gives the result Eoz
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= DJOZ- The response due to Jzjz contributes to the incoherent or clump

part of -Eoz, i.e., the F-<V x B> term in (98). This contribution depends on

the three point correlation <6B26JZ> and is sensitive to the distribution of

fluctuation amplitudes. If the turbulence is equally populated with 6Jz>o

and 6Jz<O fluctuations, this contribution to the a-effect will vanish. If,

however, holes (6Jz<O) are more prevalent because of their growth, the

reflextion symmetry of the spectrum will be broken.' F and a will then be

nonzero, a being negative and F--a being positive. Of course, this effect

is countered by the diffusion of the field lines (i.e., the D term in (14)

and the B term in (17)). However, at the edge of a confined plasma, Joz

will be small and Eoz can expected to become negative as holes (bubbles)

intermittently develop. Though interesting, these implications of (101) are

not satisfactory since (101) does not ensure conservation of magnetic

helicity. Clearly, additional contributions to <6V x 6B> are warranted, but

we have not been able to identify or calculate them from the vector MHD

equations.

What we have been able to do is to calculate the net, helicity

conserving Eoz from a renormalized version of the reduced MHD (Strauss)

equations. The Strauss equations2 6 are scalar equations for the poloidal

flux function, i, and the stream function, $, where V=Vxof. They are,

neglecting collisional dissipation,

S- B.V$ (102)
- at

-2 aUS - B.VJ z (109)

where U = -V2 is the vorticity. A helicity conserving form for Eoz can be

obtained from these equations since the ensemble average of (102) can be

written as
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a
af<> - V.<6B 16$> (104)

and, with Eoz--3<$>/3t, will automatically satisfy the magnetic helicity

constraint (12). The renormalization merely determines the structure of

<6B16$> to be the current of a fourth order diffusion process. Since the

Strauss equations are only valid for "tokamak ordering", the result we

obtain is only valid in this limit. However, this is the limit that we are

mainly concerned with in this paper. The result agrees with the physical

argument leading to (14) and the stochastic magnetic field transport

calculation of Sec. II.

Since we are interested in the self-consistent evaluation of (104), we

will need the response 6$c that is coherent with 6B1 as well as the part 6B

that is coherent with 6$. (Kinetic or quasilinear dynamo models focus on

only one of the responses, usually 6B ). For this purpose, we rewrite (104)

as

S< > - V.<6B 6$c> - V 6 > (105)

Next, we again distinguish between the wave-like (Alfven) and non-wave-like

(clump) parts of the field. The Alfven wave response (6Bw =± S 1 6V in

dimensionless units) is 6Jw - ±S16U in terms of the fields of (102) andz

(103). The fluctuating part of the right-hand-side of (103) can then be

written as B.VJ + B.6Jw + 6B.VJO, where J is the clump part of thez z -- zz

current density. The last term here gives 6Uc (and therefore 6$c) that we

seek. The first term is small near the resonance and, therefore, can be

neglected as a source for 6 $c. The 6Jw term, when written in terms of 6U,z

can be brought to the left-hand side of (103), and has the effect of

subtracting out the forward or backward Alfven wave as in Sec. IIC of Ref.

1. For 6Jw - S_' 6U, the equation for 6Uc isz
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-2 8 c
S (. - S L.V) 6U - 6B.VJOZ (106)

The renormalization converts the 6L.V term into a diffusion operator as in

Sec. II above. Therefore, 6$c follows from

2-

k S L -1 (107)
- iSk.B +[Y+(T ) ]

where we've approximated the inverted propagator as a Lorentzian and set 6B

-k since we are only interested in the transport due to the clump part of

the field. The governing equation for 6d 0 can be obtained in similar

fashion. For the fully stochastic case (Yt<<1), 6Jz can be obtained from

the static version of (103), i.e., (40). Therefore,

= 6B k'oz
6J= k.B 08)

where 6B is that part of 6B that is driven by the clump part of 6V, and 6JO

is the Fourier transform of 6 Jc. We obtain 69 from (102), or, equivalently,z.

its curl

+ V.V) B, B.VV (109)

where we write B.V6V as B.V6Vw + B.VV. Taking the forward Alfven wave

response, 6Vw S6B , (109) becomes

( -- SL.V) dB - B.VV (110)

Renormalization and time inversion of (110) then give

ik.B Vk
- 6Bk L -1 (111)

- iSk.B +[Y+(T ) 

so that

5 .v J

6 Jk -k - oz (112)
- iSk.B +[Y+(Tr) ]

-0 0
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Since V2(*,$) -- (Jz, U), the equations (107) and (112) give

V2-

2 -k
2)(~S B§ ).VJ(13

2 (~k' 2 k oz(
2 y k) ( f -6 -1

x- - iSk.B +(Y+T )

where we have set rL TO since, in the strong N/L coupling limit, L TN.

Note that, if we had subtracted out the backward Alfven wave (SL+-SN in

(111) and (112)), S would change sign in (113). However, this change would

not matter since we will only need the real part of the inverse propagator.

Of course, this occurs because Alfven wave emission of either polarization

leads to clump decay. For simplicity, we approximate the Laplacian operator

in (113) with k-(Axk- 2 +ky2, where Axk is the resonance width for mode k.

Then, inverting (113) and substituting 6$c and 6*c into (105) gives

a<> = V.D.V J (114)

where

D - S2 fdk + S-2-Y-> G k 2  (115)(2S J r 2 -- -- k k 1
= ~(2,r)--

This is just (32) since, for field line steps mainly in the x direction

(kyAx<<1), k1  - Ax so that D-D(Ax) 2. Note also that in the strong N/L

limit, the total energy correlation function in (115) is the same as <6L6L>

or <6N6N>k. The magnetic helicity is conserved since (114) ensures (12).

The form of (114) has been shown by Boozer to follow from general transport

properties of the energy and magnetic helicity invariants. 2 0

Strauss has obtained an equation similar to (114) for an assumed

22
(given) quasi-linear spectrum of tearing modes. However, the fluctuations

and their evolution are very different from the clumps considered here.

Equation (114) differs from the nonresonant, unrenormalized model of Strauss

because MHD clumps are nonlinear, self-consistently generated resonant

fluctuations whose dynamics conserve the magnetic helicity in both the
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growing (Y>O) and steady (Y=O) states. These features have a profound

effect on MHD clump evolution. For example, clump turbulence does not

approach the Taylor State by the vanishing of V J In the case of clump

fluctuations, the turbulent mixing rate (114) must be large enough to

overcome the nonlinear decay rate due to the stochastic magnetic field

lines, i.e., R>1 in (5). If VJJoz vanished, no new fluctuations would be

produced and any existing fluctuations (including, apparently, those of Ref.

22) would decay away due to the field line stochasticity. The turbulence

level would decrease to zero in a time on the order of the Lyapunov time.

Of course, the mixing and the continuous generation of clump fluctuations is

maintained in the clump model by the maintenance of the Joz profile, e.g.,

with an applied Eoz.

The use of the helicity conserving form E -D(Ax) 2  z2 instead of

Eoz=DJoz in the clump source term 2EozJoz still produces (3) and (5), but

with Ac now given by (see (112) of Ref. 1).

1 dk ReA'+22k I J1 f -f y k y k2 A(k ) - (116)
c -2 o (ReA +2Ik yI) + X k oz-

where Ak is to be evaluated at k.B 0 = 0. Equation (116) is the magnetic

helicity conserving form of Ac which, when used in (3) and (5), gives the

helicity conserving growth rate for MHD clump fluctuations.
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IV. STEADY STATE CLUMP SPECTRUM

Rather than being assumed or given, the nonlinear fluctuations in the

clump model are determined self-consistently from the turbulent mixing of

the mean shear. The mean-square fluctuation amplitude or spectrum can be

calculated for the case of driven, steady state turbulence as follows. We

modify the spectrum equation (108 ) of Ref. 1 for magnetic helicity

conservation (DB' = DJ + - (D/k 2)J) and assume the strong N/L couplingoy .1. IOZ

limit. Then, expressing DL in terms of the spectrum, we have

2 -27B 16(k.B )A(k ) J d k 2 <6i2 (0)>
<a (0) > = oy - -o y oz ( dk' y ) 2k

k A' + 21k I3 J 2 k' -1
- k y oz - (27T) 1 iSk'.B +T0

(117)

where A(ky) is given by (110) of Ref 1 and we have again approximated ReGk

by a Lorentzian. Setting (3) equal to unity and using (116), the solution

to the integral equation (117) is

J" ReA'+2|kjI
<6 2(0)>k=M(x)6(k.Bo) (- ) [A(k ) Y (118)

oz lIA+2|k II

where M(x) is arbitrary if M = 1 and is zero otherwise. (118) is the

steady state clump spectrum.

The fluctuations are driven by A and Jz. The factor ReA'k in

square brackets in (118) is the nonresonant free energy source for the

fluctuations (as for the tearing mode). The (JIOZ OZ) factor is due to the

constraint of magnetic helicity conservation. The delta function in (118)

localizes the fluctuations at the mode rational surface where the tendency

for field line bending is maximum (decay by Alfven wave emission is

minimum). In reality, the 6(k.B 0 ) singularity should be replaced by a

broadened resonance function, since the unperturbed field line orbit used to

obtain 7. in (90), and producing the 6(k.B0 ) in (117) (see (109) of Ref. 1)
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should be the nonlinear trajectory. The A(k ), coming from an x. integral

of Tc, is a measure of the clump energy.

The MHD clump spectrum (1118) is similar to that for Vlasov clumps.

The steady state, mean-square electric potential spectrum for Vlasov clumps

has been calculated without momentum constraints in Ref. 32. Modifying that

result by the factor (-ImEi/ImE e) to ensure a momentum conserving clump

source term, the electron Vlasov clump spectrum is (neglecting ion

nonlinearity) proportional to

ImE( e( )2
(- ) k2 k (119)
Imek 

k
k lEki

where e is the electron dielectric function for mode k. (118) and (119)

can be cast into an even more similar form by using the model for A given

in (26) of Ref. 2. With ReAk (k.B 1)2 ~J the free energy driving term

(-Jo oz) ReA1 in (119) resembles the Ime - 3f /3v driving terms in (119).

Note that momentum conservation constrains the clump source term and thus

requires ImEi ImEe < 0 for Vlasov clump instability. Similarly, magnetic

helicity conservation requires JOZ" ReA < 0 for MHD clump instability. The

main difference between (118) and (119) is the delta function resonance

factor in (118). A delta function localization factor does not appear in

(119) because it gets integrated over by the velocity integral in Poisson's

equation. The lack of a corresponding integral in Ampere's law leaves the

delta function in (118). This difference also leads, unlike in the Vlasov

case, to an amplitude dependent instability threshold, i.e., multiplying

(118) by Gk and integrating over k to obtain the diffusion coefficient

produces, because of 6(k.B 0 ) in (118), the (Y+T~')~' factor in (2). This

r factor is just what is left in Gk when k.BO=0 and what gives R - Tr - Xd 1

in (3). As a result, the MHD clump turbulence is strongly resonant. The
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MHD energy spectrum <6B 2 +S 26V2>1> due to clumps will peak only at the mode

rational surfaces, i.e., k's where k. B=0. By contrast, the electric field

spectrum <E2 > kw for one dimensional Vlasov clumps does not reveal such

peaks. One must look to the phase space density correlation for the

resonant structure of Vlasov clump fluctuations. The electric field and

charge density spectra in Poisson's equation integrate over these

resonances.

Multiplying (118) by Gk and integrating over k gives the steady state

diffusion coefficient

2 J"1 dk 2ReA +,21k |
D = t0 S2 M(x)(- O) ozky 2 A(k ) 1ky (120)

oz (27) 2 y y A+21ky 2

Though M(x) can be arbitrary, the physical parameters of the plasma set

limits on M(x). D(x) must be a smooth, well behaved function of x so that

the island overlap criterion is smoothly satisfied. Further, the diffusion

(Markovian) approximation demands that the fluctuation auto-correlation time

(Tac ) be short compared to T0 . This will occur for a wide spectrum of

strongly overlapping resonances, i.e., a fully stochastic spectrum of

roughly equal amplitude modes. D(x) will thus be relatively independent of

x in the unstable region and zero outside. The amplitudes of M and D are

also limited. Clearly, J sets an upper limit on the amplitude. A

current density hole cannot be deeper than a vacuum bubble. Also, since Te

- D~ , the Tac<To condition limits D to even smaller values. Since Tac~

(S k y Boy Ax g)~ , where Axsp is the spacial width of the spectrum, the

constraint Tac < is equivalent to Ax<Axsp, where Ax is the island width.

If we make the reasonable assumption that the unstable spectrum encompasses

a sizeable fraction of the current channel radius, we must have Ax < a.

The k y dependence of the clump spectrum is, in general, nontrivial.
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For example, the dependence of Ak is sensitive to the mean current profile

and A(k y). Moreover, the k. factor necessary in the evaluation of A(ky)

must be obtained from the selfconsistent solution of (114b ) and (118 ) of

Ref. (1). Because of these complexities, we have not determined a general

k dependence of the steady state spectrum. However, if we use the

hyperbolic tangent model current profile of Eq. (27) of Ref. 2, we obtain

fdx<6T2(x)>k - A(ky) which, for ky>k0 , scales as k but, for k < ko

scales as (1-k2/k 2 ). Again, the large k dependence reflects the
y 0 t

localization of the clumps to y_ scales koy- l.
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V. CLUMP DERIVATION OF Jo= a

In Sec. IC, we obtained the Taylor state Jo0 =iio as a solution to (24).

There, we suggested (24) as the vector current generalization of (20).

While we have derived (20) in Sec. III, and (24) appears to be a reasonable

generalization to (20), we would like to derive (24) also. Ideally one

would derive (24) by including both Bz(x) and B y(x) shear in (86) for the

clump dynamics. We would then proceed to derive the generalization of (93),

and, upon integration, set the generlized i equal to one and obtain (24).

However, we have not been able to derive (24) in this way. While the

assumption of tokamak ordering greatly simplified the calculation of R from

(86), the general calculation is much more difficult. For example, the

B (x)*o effects will contribute to both the mixing term for self-consistentz

clump generation and to the propagators for clump decay. These additional

B vector contributions must be evaluated in a way that the self-consistency

and conservation properties of the two point equations are maintained.

Alternatively, one might imagine trying a quasilinear calculation in the

spirit of Ref. 22. However, such calculations are not fully nonlinear and

consider only nonresonant diffusion effects. For example, we note that the

propagators in the diffusion coefficients in Ref. 22 are of the form Y /W.

We recognize this as the well known Y/w2 structure of non-resonant diffusion

in quasilinear theory (here, wk = k'Bo is the linear Alfven frequency). For

clump fluctuations, the resonant contribution to D dominates, since, at the

resonance, the turbulent mixing makes its largest contribution and the decay

by Alfven wave emission is minimal. The nonlinear terms neglected in the

quasilinear approach are also crucial to clump dynamics. For example, the

diffusion coefficients in the nonlinear mixing term on the right hand side

of (86) would, without their resonance broadening factors, diverge in the



(ideal) solution for the clump growth rate. The broadening provided by the

renormalization resolves this k.B0 =0 singularity and leads to the

amplitude dependent threshold (R=1) and, for YT>l, the Y2 hydrodynamic-like

growth of the instability. It is the amplitude dependence of this threshold

parameter I that determines the amplitude 'dependence of p (see (20) and

(21)). The nonlinear terms are also important for clump decay since, no

matter how small in magnitude, they will dominate near the resonances of

clump localization. Therefore, while either the assumption of tokamak

ordering or small amplitudes is simplifying enough to allow tractable

analytical calculation, a rigorous calculation appears to be prohibitively

difficult in the general case where neither assumption is made.

Unfortunately, such is the case for a rigorous derivation of (24).

Assuming some reasonable symmetry properties for the steady state clump

spectrum and diffusion coefficients, a hybrid derivation based on direct

calculation and, when prohibitive, physical argument and analogy with the

derivation of (114) is possible, however. For simplicity, we work in

rectilinear, slab geometry. However, our final result (137) will be a

vector equation valid in any coordinate system. We also work with

dimensionalized variables where magnetic fields are normalized to the

spacially averaged mean magnetic field go and lengths to the current channel

radius a (see Sec. IIA of Ref. 1 for details).

We begin with the generalization of the mean-square clump source term

Eoz Joz to E*. = EozJoz + EoJ oy. In the presence of Joz and Joy, the

magnetic field B=VxA is now given in terms of the poloidal (Az = p) and

toroidal (Ay = T) flux functions. As with Eoz, the mean electric field Eoy

will have the Fokker-Planck form (14), i.e., Eoy = DJOy - F Boy. As

discussed in the Introduction, this structure is a consequence of the self-
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consistent nature of the clumps, the F term being due to the incoherent part

of the clump field. Because of magnetic helicity conservation, the D and F

terms cancel to lowest order in the island width and lead to a fourth order

diffusion process of the form (114) or, more simply, (15). Recall that D in

(114) for E0 z =-3<$P >/3t is due to the poloidal component of clump flux

perturbation 6T, i.e., 6Tp so that D+DP in (114). Therefore, in an

analogous fashion, Eoy =-3< T>/at will be of the form (114), but with D

replaced by the 6'T driven coefficient DT. This assumes that the

contribution from poloidal and toroidal flux fluctuations are independent,

and produces a model where their diffusive contributions are additive. Note

that this assumption does not preclude the possibility that the mean parts

of the poloidal and toroidal flux functions are correlated (i.e., as in

(25)). These Eoy and Eoz components combine to give an Eo of the form BO/B2

V.H, where H is the current for the fourth order (toroidal and poloidal)

diffusion process. The factor B /B here is required since, in the general

case, (10) rather than (12) preserves the magnetic helicity. (Note that for

tokamak ordering, the full vector form here reduces to E = V.H (see (83)

or (114)) and the helicity is preserved via (12) as before). We also assume

for simplicity that, in the steady state, the turbulence is isotropic so

that D is diagonal, with the RR and g? components equal and each denoted by

D. Therefore, with J,, = .B /B0 , the helicity conserving, two point

source term for poloidally and toroidally shear driven clumps is

J11 (6 2 al 2-2 BT~ V 1 (121)B 1 2 1 oz 12 1 oy

where 5P is given by (115) but with Gk replaced by BoGk (similarly for DT).

This additional BO factor in the D's provides for the correct magnetic field

normalization of Gk in the general case (see (29)). Note that in the



tokamak ordered case, B0 = 2 Boz = : in dimensionless units, so BP = DP and

the first term of (121) gives the previous result calculated from the

Strauss equations.

Equation (121) replaces the right-hand-side of (97). Integration along

the two point orbits gives

-2 11 p 2 TZ T 2
-2 (-r 5P JZ + T D V J (122)
B (ck 12 1 oz c 12 1 oy

where tj and TT are the clump lifetimes in the poloidal and toroidal flux

surfaces respectively. Since the essential correlation between poloidal

flux surfaces comes from their y_ separation, we set expik.r_ = exp ikyy_ in

DP12 and put <B->.V_ = B x_ D/3y_ in the two point propagator used to

evaluate <y2(t)> and thus T . The clump poloidal lifetime T is then

given by (90). Its x_ integral is given by (109) of Ref. 1. Similarly the

essential correlation between toroidal flux surfaces comes from their z_

dependence, so we, therefore, set expik.r_ = expik z_ in T and put <B_>.V_

Bo z x_ V/z_ in the two point propagator used to evaluate <zf(t)> and thus

T T Then, the x integral of the clump toroidal lifetime T T is given by

(109) of Ref. 1, but with the replacements B + Bz, 6(k + k B x+/Boy oz, z y oy+oz

6(ky + kz Boz X+/Boy), and A(k ) + A(kz).

The clump correlation function now contains contributions from both 6T

and 6TT' We again assume that the poloidal and toroidal clump fluctuations

can be treated independently so that the fluctuation correlation <5llp 6 TT> is

negligible. For example, in the strong N/L coupling limit, this means that

<6N (1) 6N ( 2 )> - k 2<[6' (1) 6T (2)> - k <6T T(2)]> where

<5 p(1) 5T p (2)> = <[6$P(1) 6 p(2) + S-2 5$p(1) 6$ p(2)]>. The Fourier

transformed nonlinear Newcomb equation (93) now becomes
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( - k ) <6.F (1)6T (2)> + (- - k )<6T (1)6T (2)>
a2 y p p k, 3 2 z T T k

= 2 0 (T F V Jo Z + Ct V J oy) (123)

where TP, is the Fourier transform of Tct and we have set D1= D since the

dominant x_ dependence comes from the Tct factors. If we integrate (123) as

in Sec. IVB of Ref. 1, we obtain

[6(p)+2Ik 1<62 (0).> - 6 (T)+21kz <62
y p k k z T (O)>k

V2
' A(k )B 6(k + k B? x /B0 z) joz

0 S z y oy J

2
0V J

+ A(k ) BT 6(k + k B' x /B ) V (124)z y z OZ + y JYiO

where 6'(p) is the discontinuity in <6T (1) 6' (2)> As in Ref. 1, wek p p k

equate the discontinuities 6' to that of the Newcomb solution. In the

general case, the Newcomb equation can be written in terms of the radial

component of the magnetic field 6B =ad4 /ay - a6$T/;z. We again assume that

poloidal and toroidal fluctuations are uncorrelated (<64 p6ST> = 0) so that

<6B (1)6B (2)> = k 2 6 (1)6$ (2)> + k 2 <6$ (1)6$ (2)>x x k y p p k< z T T k (125)

Then,

<6B (1)6B (2)> k 6 (p)<5 (1)6$ (2)>;- x x k =y k ()<p p k

+ 6 (T)<6T(1 )M6T( 2 )> (126)

But, it is also true that

S6BI(1) 6B'(2)'
<6B (1) 6B (2)> 6B( 1) 6B (2)6B (1)6(2)> (127)ax x x k< . 6B X
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= < (6B (1)6B (2)> (128)k x x k(18

Therefore, the discontinuity of the general Newcomb solution can be written

in terms of the 6' factors as

k 2<6 (0)>
A = 6(p) 2 2 2

k - k <62 (0)> +k 2z6p (0)>
y p k z T k

k2 2 0)>
+ k ( k (129)

- k <62 (0)>k+k <6 2(0)>
y pk zT k

We now assume that the poloidal and toroidal wave numbers of a resonant

clump fluctuation are comparable in the steady state. This seems to be a

reasonable assumption for the fully developed, isotropic spectrum considered

here. Equation (129) then simplifies to

6 ,(p)<6$P2 (0)>k+6 <(T)<6 (0)>k
A' = k k k T k (130)

<6 p (0)> + <6c T (0)>

(130) and a matching of the solutions then allows the left-hand-side of

(124) to be written as

-(A +2 1k 1) <62 (0)> - (A +2|kz|) <62 (0)> (131)
k y Y p k T<zI <5Y )k

Since the toroidal and poloidal fluctuations are assumed uncorrelated, we

break (124) into its toroidal and poloidal components,

kBJ ReA' +21k I (k2 2
<6T 2 (0)> A k y2 2I6(k+k BIx+/B J oz

SBo (ReA+2 )+ z yoy+ oz JOZ

and

IT ReA'+2k V 2 J
<6Y 2 (0)> - l DI B6(k +k BI x /B ) oy (133)

T k SB 2 2 y z oz + oy )
r Xo (ReA +2k df) +c oy

where A = Im .We now form the diffusion coefficients by multiplying
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2 22 2 2 2 2 A -2 +k2+(132) by S2BOG kY/kd and (133) by S2BoG kz/kd where kd = (LX)- + k +

k 2 is the generalization of k in Sec. III. Again, the delta functions inz

(132) and (133) will collapse the G function and give the Lyapunov time to.

Thus, similar to (111) of Ref. 1,

ki V 2

= - (ST k B ) BPI I oz(134)
B 000 J

0 oz

IT= (S kB9 T _ y_135I oy
D -(ST k B ) DI(135)

B 0 00 J
0 oy

where

dk ReA +2Ik I k

I irk 2 2 A(k ) (136)
o (ReA +2Ik i) +X kd

and, as in (116), A is evaluated at k.B0=0. Of course, (134) is just 1=

for the poloidal driving term whereas (135) is the toroidal analogue.

Provided the D's are not zero, (134) and (135) can be expressed in

vector form as

2 + P2 J = 0 (137)
1-0 -0

where

2 = 1 (ST k B )I (138)
0

In the case Boz = constant >> Boy, then J /Bo=Joz, k0 B0 =koy, and

T 0=SkoyJoz xd so that 1y
2~Ak xd and (137) reduces to (21). In the general

case, T~= Sk0 J xd so that p2=xd/I. Then, for a smooth, broad and

relatively flat spectrum, p is constant and, with V'Jo = 0, the solution to

(137) and Ampere's law is the force-free Taylor state

Jo = 4i (139)
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where

y2d 2 = d /1 (1140)

We can redefine I to make it dimensionless and of order unity by writing

I = A k2 + (Ax )-21 (141)
d 0I 0 o

where A' is a mean value of A for the unstable modes (ReA' evaluated for

k = ko) and Ax0 is the island width for mode k0 . If we assume that island

overlap is more than satisfied in the steady state, then Ax0 - xd and (141)

can be rearranged and written as

2
2k xd I - 1) = (1-k xd 2 (142)

o2A'k d o d(14)
0 0

A real and positive solution for xd (and, therefore, D) only occurs when the

threshold condition

y2 > 2A'k 0d (143)

is satisfied. Otherwise, the plasma is unstable. Therefore, of all

possible Taylor states (i.e., yi values), the one with p values given by

(143) correspond to steady state clump turbulence. Notice that this

threshold behavior can be traced to the presence of the inverse squared step

size in brackets in (141), i.e., to the constraint of magnetic helicity

conservation. Since Id-1, (143) implies that y is an order one quantity for

reasonable parameters. Such y's also lead to Boz field reversal, since Boz

=Py J - J0 (pr) from (141). Therefore, steady state clump turbulence

occurs for Boz field reversed Taylor states. At the threshold, koxd = 1 and

i 2=2A'k0 /Id. Much above threshold, koxd >>1 and

2 2
= ' k xd /d (144)

or, in terms of the pinch parameter (0 = lia/2 in dimensional units),
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x = 41 62/A' k2 (145)
d d 0

Since xd - D <6B>1/3, (139) implies that 6Brms increases with

increasing current (6) as 63

In the Taylor model where (25) is calculated as a final state, P enters

as a Lagrange multiplier in a variational (energy minimization) principle

and is, therefore, a constant. In the MHD clump model, the dynamical route

to the final state is prescribed and p only becomes constant in space when

the clump spectrum becomes broad, flat and fully stochastic. Such spectral

properties result from a large number of overlapping resonances. As we have

noted in the discussion following (120), such conditions on the spectrum are

also required for the strict application of the Markovian diffusion

approximation used throughout the MHD clump theory. Inside the spectrum

where these conditions are satisfied, D and p will be relatively independent

of position. Near the edges of the spectrum, the individual mode structures

become important and will give a spacial dependence to D and p.

At first throught, one might conclude that the* Taylor model makes a

more restrictive prediction about the final state than the clump model,

namely, y = constant. Actually, the constancy of p is also built in by

assumption in the Taylor model. There, if one assumes that magnetic

helicity is invariant on each flux surface, the parameter yi in J = yB is

determined by each flux surface, i.e., p depends on position. However,

Taylor notes that during "violent", turbulent relaxation in an MHD plasma,

flux surfaces will not be preserved. Only the flux surface at the

conducting wall surrounding the plasma is invariant. Therefore, assuming

that magnetic helicity is only conserved at the plasma boundary, there is

only one Lagrange multiplier in the Taylor model--the p associated with the

boundary. The variational principle then leads to J = pB, where now, p is a
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constant. The constancy of y in the Taylor model can, therefore, be traced

to the destruction of flux surfaces during turbulent relaxation of the

plasma. Of course, flux surfaces can only be "violently" destroyed over a

significant portion of the plasma crosssection if their resonances strongly

overlap. Strong mode coupling and mixing will ensue and dynamically, a

wide, fully stochastic spectrum will develop. The resulting stochastic

field lines will transport current throughout the plasma crosssection, thus

"homogenizing" the turbulence. Therefore, both the Taylor and the MHD clump

models assume the constancy of p. Moreover, the justification for the

assumption is essentially the same for each model.
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IV. INTERMITTENCY

An outstanding issue in the model concerns the complete role of finite

amplitude island equilibria in the turbulence. In equation (8), the

nonlinear interaction term T(1,2) describes, in its simplest form, the

exponential divergence of neighboring field line trajectories. Memory of

the initial state, i.e., initial correlations, will be lost exponentially

with time. This lack of predictability, however, will be lessened if,

because of the nonlinearity, coherent island structures tend to form. With

this tendency toward fluctuation self-organization, the net mean-square

fluctuation decay rate T(1,2) will be reduced, and fluctuation intermittency

will tend to develop. Such a tendency toward intermittency would

qualitatively alter the conceptual picture of the turbulence.

The intermittency issue is of importance in Vlasov hole turbulence, and

we can look there for some guidance. Computer simulations of Vlasov plasma

graphically show the development of hole intermittency in decaying3 3 and

driven 9 (i.e., unstable) turbulence. It has been proposed by Dupree 21 that

these features can be partially understood conceptually as the tendency to

develop fluctuations that maximize the Maxwell-Boltzman entropy (fznf) of

the plasma subject to dynamical constraints of energy and momentum

conservation. The variational principle yields a fluctuation amplitude of

6f ~ Av (146)
-~2

vth

where vth,e, and Av are thermal velocity, dielectric function, and

fluctuation velocity width. Rather than assuming a particular measure of

the entropy, we can also obtain (146) by minimizing the mean-square phase

space density, f2, subject to momentum and energy conservation. While in a

Vlasov plasma, f2 is a dynamical invariant (it is constant along particle
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orbits), it will, in a coarse-grained sense, be dissipated by turbulent

electric fields in the plasma and cascade to high wave numbers. Such a

minimization principle is similar to the selective decay hypothesis" of

fluid turbulence (see below).

Equation (146) describes a self-consistent, bound phase space density

hole structure. Using Poisson's equation for the hole potential $, (146)

yields the trapping condition

Av - (eo/m)1 /2 (147)

for a virialized equilibrium hole (e/m is the charge to mass ratio). Hole

material tends to self-attract and coalesce into new holes in much the same

way as a self-gravitating fluid.' a This is a further impetus for hole

formation. An analysis of collisions between holes shows that a dual

cascade occurs with 6f tending toward small scales and energy toward large

scales. 21 Given that the Vlasov fluid is governed by a two dimensional (in

x and v) phase space incompressible flow, this cascade is analogous to that

of two dimensional Navier Stokes turbulence. The Vlasov phase space

density plays the role of fluid vorticity. Because (146) is the most

probable state for the distribution of energy, momentum and phase space

density, fluctuations can be expected to self-organize into such hole

structures in a turbulent plasma. Another reason for the development of

"Vlasov vorticity" concentrations is that an isolated hole can be unstable

to growth for-arbitarily small free energies. These tendencies for hole

self-organization and growth imply a turbulent state that is composed of an

intermittent distribution of colliding, growing holes. The clump/hole

theory deals with this turbulence, strictly speaking, only in its extremes.

In the intermittent case of isolated coherent holes, one deals with the hole -

model and considers self-consistent hole structure, dynamics, and
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growth. 21,34 In the opposite extreme where the packing fraction of the holes

in phase space is one half (i.e., the distribution of 6f is Gaussian), one

deals with the clump model and considers two point correlation functions,

mode coupling, and growth of the mean-square fluctuation level.'s The

tendency for hole formation and attraction is modeled phenomenologically in

the statistical equations. The T(1,2) term describing decay by

exponentially diverging orbits is reduced, in accord with computer

simulations", by a multiplicative factor on the order of 1/3.

Interestingly, in the intermediate regime where the region of applicability

of two models overlap, the clump and hole models agree. For example,

neglecting mode coupling (hole-hole collisions), the fluctuation growth rate

of the clump model agrees with that of the isolated hole model. The short

coming of the clump/hole theory lies in its inability to predict

quantitatively the development of hole formation and intermittency from the

statistical correlation function equations describing the turbulence.

However, the theory can predict, based on fluctuation self-organization and

isolated hole growth arguments, that hole formation and intermittency will

develop. Probability arguments have also been used to calculate

approximately under what conditions intermittency will occur.

Intermittency in fluid turbulence is well known. Concentrations of

fluid vorticity have been observed in computer simulations of decaying fluid

turbulence. As in decaying Vlasov turbulence, the vorticity

concentrations, called modons, develop spontaneously and, except for brief

encounters with other modons, persist. The space occupied by the modons

(i.e., the modon "packing fraction") decreases with time, leading to

nonGaussian statistics. Modons also develop in apparently driven,

geophysical flows. 3 7 ,3 Their formation is important to the predictability
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of such flows. One route taken for the integration of modons into the

turbulence is similar to that for holes in Vlasov turbulence. A variational

or minimization principle is invoked, based on the so-called selective decay

hypothesis. Of all the inviscid dynamical invariants, the "dissipated"

one that viscously decays the fastest (to high wave numbers) is selected to

be minimized subject to the constancy of the remaining, more slowly decaying

("rugged") invariants. The variational principle yields modon solutions."

The stability and interactions between modons are the subject of active

research.

Though current density concentrations (intermittency) have been

observed in simulations of decaying, homogeneous MHD turbulence "', the issue

of isolated island formation and intermittency is less clear in shear driven

MHD turbulence. However, there are suggestive parallels with Vlasov hole

intermittency. One is the existence of most probable states. In parallel

with the Vlasov case, one might calculate such a state by minimizing the

energy subject to the constancy of magnetic helicity. Recall that it is the

energy--being the MHD analogue of the Vlasov phase space density--that mixes

and cascades to high wave numbers during turbulent mixing. In a coarse

grained sense, the energy is dissipated. This is another variant of the

selective decay hypothesis (see Montgomery's review). Performing the

variational principle, one obtains a result known as Woltjer's theorem, 4

- VB= 1 P9 (148)

where W is the Lagrange multiplier for the magnetic helicity. Coupled with

Ampere's law, (148) is just the force-free (JxB = 0), Taylor state (J = pJB).

The global or mean field part of (148) is (25). As we showed explicitly in

Ref. 1, one localized or resonant fluctuation solution to the self- -

consistent force-free state equations, J = VxB and JxB = 0, is the magnetic
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island or current hole. The suggestion here is that, in a turbulent MHD

plasma with magnetic shear, fluctuations will tend to self-organize into

current density holes. These localized fluctuations described by (23) and

(57) are the analogues of the Vlasov holes described by (146) and (147).

The magnetic island coalescence instability4'--in analogy with the self-

gravitating, Jean's instability of Vlasov holes--would also tend to promote

this self-organization into island structures. The decay effect of the

T(1,2) term in (8) will be reduced by this tendency for fluctuation self-

organization. Further impetus for magnetic vorticity concentrations comes

from the growth of the current holes. We, therefore, expect that coherent,

current (magnetic island) structures will form intermittently out of MHD

clump turbulence.

Without the intermittent formation and growth of current holes, the

turbulence would have a symmetric distribution of 6 Jz fluctuations, i.e.,

6Jz<0 and 6Jz>0 values would be equally likely. Preferential formation and

growth of the holes (6Jz<O) breaks this symmetry. Such symmetry breaking is

required of a turbulent dynamo, though it is the statistics of the flow (5V)

field that are broken in conventional kinetic dynamo models.' Rather than

assumed, as in a kinetic model, MHD clump turbulence is self-consistently

generated via Ampere's law. Ampere's law determines both the hole structure

and the free energy source for hole growth. The 6 Jz+-6Jz symmetry is thus

self-consistently broken. The breaking occurs spontaneously as parallel

current fluctuations 6Jz <0 intermittently coalesce into self-consistent hole

structures, and dynamically as the holes (once formed) preferentially grow

via MHD clump instability (recall that the 6Jz >0 fluctuations decay). An

analogous situation occurs in the Vlasov plasma where the 6f-+-6f symmetry of

weak turbulence is self-consistently broken via Poisson's equation. Phase
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space density holes (6f<O) spontaneously coalesce (Jean's instability) and

grow (hole instability) while 6f>O fluctuations decay. Symmetry breaking by

the spontaneous generation of nonperturbative, self-consistent structures

also occurs in models of supeconductivity (Cooper pairs) and quantum field

theory (Higgs field). 4 2- There, the symmetry breaking is interpreted as a

phase transition. The condensation of holes out of Gaussian background

turbulence in a Vlasov plasma can also be thought of as a phase transition.

An interpretation of the MHD clump instability as a phase transition to the

Taylor state is discussed in the Appendix.
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APPENDIX

In this Appendix, we suggest that the relaxation to the Taylor state

via MHD clump instability can be viewed as a phase transition where uc

o'. /B0 is the critical point. For analogy, we consider the Meissner

effect in a superconducting, current carrying wire and the spontaneous

magnetization in a ferromagnet. At least, the discussion below presents an

alternative view of the instability. At best, the results suggest the MHD

clump instability as an example of a dynamical model for phase transitions.

The salient features of superconductivity are well known.2-" The

self-consistent, collective interaction of the electrons with the lattice

ions in a superconductor produces an attractive force between the electrons.

For small electron energies (i.e., low temperatures, T), this attractive

force overcomes the normal Coulomb repulsion and binds the electrons

together into so-called Cooper pairs. When an imposed magnetic field tries

to penetrate into the superconductor, it induces a macroscopic flow of

Cooper pair current given by

J= -K2A (Al)

where A is the vector potential and K2 is a positive constant. This

diamagnetic current in turn self-consistently generates (via Ampere's law) a

magnetic field which tends to cancel the imposed field. The magnetic field

satisfies

V2B = K2B (A2)

so that the field only penetrates a characteristic distance K~1 into the

superconductor. This expulsion of flux from a superconductor is known as .

the Meissner effect.
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As implied above, these superconductivity effects only operate below a

specific critical temperature (Tc). The metal is said to undergo a phase

transition at T=Tc. Above TC, the microscopic diamagnetic currents

fluctuate with no preferred orientation. However, for T<TC, this

orientation symmetry is broken as the currents tend to line up to yield the

macroscopic, nonzero mean field (Al). Such "long range ordering" is

strongest when the energy of the collective electron motion is minimum, i.e.

for the ground state. When T=O, all the current fluctuations line up in the

same direction. In such a state of vanishing thermal motion, resistance to

current flow is zero--a well known property of superconductors. A similar

symmetry breaking and long range ordering also occurs in a ferromagnet where

spin alignment leads to a net magnetization (M) of

M(T) = M(O) [1-( -) 2 ] (A3)T
c

for T<Tc and M = 0 for T > Tc. The bracketed expression in (A3) measures

the amount of symmetry breaking and long range ordering of the spins below

the critical point T=Tc. Such phase transitions can be described

theoretically by the Ginzberg-Landau mean field model in which the nonzero

magnetization of the lowest energy state is obtained by minimizing the Gibbs

free energy subject to constant M. The conclusions of the mean field model

are supported by the so-called BCS theory where the condensation of the

ordered field into the ground state has been calculated quantum

mechanically. These are equilibrium thermodynamic or statistical models.

They do not address the dynamical route of the phase transition.

Consider now MHD clump instability in a current carrying plasma. As in

Section IV, we imagine that the instability develops from background noise

where current fluctuations are Gaussianly distributed. As we've seen, for

A'>0 and R>1, current hole (Jz<0) fluctuations will preferentially grow--
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thus breaking the 6Jz ~ z symmetry of the pre-instability phase. For

A'>O, the currents (43) induced in response to the magnetic fields (6B in

( 43 )) of the hole fluctuations, JZ, reinforce iz further. From Ampere's

law, this is a paramagnetic effect (see (64) - (67)). In isolation, such a

Jz fluctuation would develop into a magnetic island. As discussed in Sec.

IA of Ref. 1, the island structure forms as the self-consistent trapping

(self binding) of the magnetic field lines balance (near the shear

resonances) the variation in the field line pitch. However, in an

environment of many overlapping resonances, an island will be dissipated by

field line stochasticity. In the MHD clump instability, net growth of hole

fluctuations occurs as the regeneration of new holes overcomes the

stochastic decay. This occurs when R>1, where R is given by (33). Here,

the stochastic decay plays the role of decay by thermal agitation (T) of the

superconductivity case. In the steady state, the fluctuation level is

nonvanishing and, with R = 1, (33) reduces to (137), or with Ampere's law,

72 2 B ( 4V 2B 0= - p 2B 0(0n)

Unlike (A2), (A4) has a minus sign--a sign that reflects a paramagnetic

(rather than diamagnetic) effect where, in the steady state, clump

fluctuations sustain the field by dynamo action. In analogy with the

superconductivity case, the self-organization of 'the fields occurs as the

system relaxes to its lowest energy state. As we've seen, the solution to

(A4) is the Taylor state (25), i.e., the state of lowest energy subject to

constant magnetic helicity. It is a turbulent steady state where the

symmetry has been broken to form a macroscopic but turbulent fluctuation

level of current holes.

A measure of the strength of the phase transition to the steady state

is the growth rate of the fluctuations. In the fully stochastic case
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(YT<1), (i4) gives

' 1 1 - - 1 /2
- R ) (A5)

which, when combined with (34), can also be written as

Y [1 - (,)2] (A6)
2T

where p. = J0 *o/B . The critical point for the phase transition is y=ljc'

For y>ljc, the plasma is stable--no current holes grow. For p<,c the

symmetry is broken and current holes preferentially self-organize and grow.

This is analogous to the development of long range order in the

superconducting state.

An analogy with the "order parameter" M (see (A3)) can be made by

relating (A6) to the steady-state hole fluctuation level. If <6B > is the

background magnetic noise level, then the fluctuation amplitude resulting

from MHD clump instability will be given at time t by

<6B 2> = <6B 2> exp dt' Y (A7)
0

where Y is given by (A6). If the plasma is driven, as we have discussed in

Sec. I(C,D), the fluctuation level will grow and then saturate at a finite

level. Let the time for the steady state to develop be denoted by t .

Then, the current hole fluctuation level, AB 2 , will be given approximately

by

2 2
AB= <B >Yt (A8)

where AB2 = <6B 2 (t ) >- <6B >. Then, (A6) and (A8) give

AB2 AB2 (0) -(E )2] (A9)
1c

for p < pc and AB2 = 0 otherwise. Here, AB2(0) U (5Bb> tR/T. The

parameters p and yic play the roles of T and Tc respectively in the
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superconductivity case. For the transition (instability) to occur, we need

p < uc which means that R > 1, i.e., hole self-organization and growth

overcomes stochastic decay caused by "collisions" with other holes. This is

analogous to the condition Tc > T where the self-ordering of the

magnetization currents overcomes the competing effect of random thermal

motion (interparticle collisions).

Note that an increase in driving current (i.e., in pc) leads to larger

fluctuation levels. Because (A6) is only strictly valid for Yt<1 (fully

stochastic limit), (A9) is only valid near the critical point y=yc. For

YT>1, the instability is more of the interchange type, and the y1 dependence

of AB2 changes. Of course, when new physics comes into play, similar

changes in parametric dependence also occur in superconductivity

transitions. If, as in Sec. ID, we consider the instability onset at the

overlap of two magnetic islands, the stability boundary is Rm t(ii c) 2

With (21), this gives Fig. 1. Figure 1 is a phase diagram for the phase

transition caused by MHD clump instability for finite Rm.

As we have discussed here and in Ref. 1, the clump fluctuations arise,

because of energy and magnetic helicity conservation, from the mixing of the

mean sheared fields. As the fluctuations grow during MHD clump instability,

the mean (course grained) fields are dissipated as the mean flux is expelled

from the plasma. This spontaneous expulsion of mean flux during MHD clump

instability is analogous to the Meissner effect. The disruptive

instability 3 in a tokamak fusion device is a "Meissner effect" in which the

plasma confinement is lost before the Taylor state of lowest energy is

reached. The phase transition does not reach completion. However, in a

driven reversed field pinch device, the mean flux is maintained

(replenished) and a steady state turbulence is possible. At the attainment
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of the steady state, the phase transition reaches the Taylor state of

minimum energy and the mean fields are supported by the paramagnetic, dynamo

action (A4), i.e., (25).

Equilibrium thermodynamic or statistical mechanical models of phase

transitions are analogous to the Taylor model 6 of relaxation in an MHD

plasma. Such energy minimization principles predict the final state of the

transition, not the dynamical route taken. However, as we have seen, the

MHD clump instability is a dynamical route through the transition to the

Taylor state in an MHD plasma.
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FIGURE CAPTION

1. Reynolds number Rm vs. amplitude for transition to MHD clump

instability (schematic).
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