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ABSTRACT

The theory of MHD clump instability in a plasma with magnetic shear is

presented. MHD clump fluctuations are produced when the mean magnetic field

shear is turbulently mixed. Nonlinear instability results when, as the

clump magnetic island structures resonantly overlap, the mixing overcomes

clump decay due to magnetic field line stochasticity. The instability

growth time is on the order of the Lyapunov time. The renormalized

dynamical equation describing the MHD clump instability is derived from one

fluid MHD equitions and conserves the dynamical invariants of the exact

equations. The renormalized equation is a nonlinear, turbulent version of

the Newcomb equation of linear MHD stability theory and can be cast into the

form of a nonlinear MHD energy principle. The growth rate of the

instability is calculated. The instability is a nonlinear analogue of the

Rayleigh-Taylor interchange instability in a magnetized fluid and, in the
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fully stochastic case, of the tearing mode instability.

instability is a dynamical route to the Taylor state.

MHD clump
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I. INTRODUCTION

It has been suggested that nonlinear fluctuations called clumps will

occur in magnetohydrodynamic (MHD) plasma with magnetic shear.' Clumps were

first discussed in studies of Vlasov turbulence, where the term was used to

describe resonant fluctuations produced by the turbulent mixing of phase

space density gradients . The clump fluctuations arise because the phase

space density is conserved in a Vlasov plasma: an element of phase space

density is turbulently transported to a new region of phase space of

different density. In the corresponding MHD case with magnetic shear,

clumps arise because of the conservation of energy.' Clumps are localized,

non-wave-like-structures and, in the Vlasov plasma, were shown to be holes

in the phase space density. 4  In isolation, the Vlasov hole is a Bernstein-

Green-Kruskal (BGK) mode and is the analogue of the modon in fluids. 5  In an

MHD plasma with shear, the corresponding role is played by a hole in the

current density, i.e., by the magnetic island. The Vlasov hole fluctuation

is fundamentally nonlinear. Its self-consistent structure contains closed

(trapped) orbits and, therefore, cannot be obtained from linear perturbation

theory. The linear perturbation expansions also fail in the MHD case where

resonantly trapped magnetic field lines close to form magnetic islands.

Hole stability properties are also nonlinear. For example, Vlasov hole

turbulence can grow in amplitude in linearly stable, current driven

plasma. 6 A turbulent Vlasov plasma is composed of a random collection of

these colliding, growing holes called clumps. 0-12 The MHD analogue of the

Vlasov clump instability is the subject of this paper. The MHD clump

instability describes the turbulence that results from the strong resonant

interaction of magnetic islands at high magnetic Reynolds numbers. The

turbulence has many features of fluid and Vlasov plasma turbulence, and
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thereby provides an interesting bridge between the two types of turbulence.

MHD clumps are resonant fluctuations localized near mode rational

surfaces in the plasma. The fluctuations are produced when the mean

magnetic field shear is turbulently mixed. Instability results when the

mixing rate exceeds the clump decay rate due to the magnetic field line

stochasticity generated at island (resonance) overlap. The stability

boundary is nonlinear and, above a critical but small fluctuation amplitude,

is below the linear stability boundary (Kruskal-Shafranov limit). The

growth rate is amplitude dependent, and is on the order of the Lyapunov

time. For low amplitudes, the Lyapunov time is long and the growth rate is

a nonlinear analogue of that for the Rayleigh-Taylor interchange (mixing)

instability. For large amplitudes, the Lyapunov time is short and the

region of stochasticity is large. Then, the growth rate resembles that of

the tearing mode driven by an anomalous resistivity due to stochastic

magnetic field line diffusion. The instability threshold is a nonlinear

analogue of the Kruskal-Shafranov condition where the Lyapunov length

replaces the longitudinal wave length of the fluctuation. The turbulent

mixing during MHD clump instability minimizes the energy subject to magnetic

helicity conservation. Steady state MHD clump turbulence- is described by

the Taylor state.

The results presented here are developed from intuitive and physical

models, as well as derived from a renormalized perturbation theory of the

MHD equations. Though most fully developed for the nonlinear description of

turbulence in simplified one dimensional plasma,','" renormalized plasma

theories can nevertheless be arcane. Applying the theories to the coupled,

nonlinear, three dimensional vector equations describing MHD fluids would

appear to only enhance this reputation. We have, therefore, applied the



theory in a way that stresses its physical and conceptual features. This is

made possible by earlier work on one dimensional Vlasov plasma where an

integrated theoretical and computer simulation effort led to a detailed, but

intuitive and tractable model of Vlasov turbulence. This model, the

clump/hole model, describes the plasma from the complementary viewpoints of

localized, coherent structures (the holes) and their integration into a

fully turbulent state of incoherent fluctuations (the clumps). The detailed

results of the model agree well with the computer simulations. The MHD

clump model extends the conceptual and mathematical features of this

antecedent work. In particular, we expand upon the preliminary work of Ref.

1 with calculations based on Ref. 8.

Much work has been done by other investigators on turbulent relaxation

in MHD fluids.14-26 These include studies on stochastic diffusion of

magnetic field lines, 1',1 selective decay and constraints of MHD

conservation laws,'''17'1 quasilinear models of turbulent dynamo

action,' a,19 nonlinear dynamics of coherent 2 0 and interacting magnetic

fluctuations, and final force-free (Taylor) states of minimum

energy. 1,24-2s Except for Ref. 26, where the self-consistent generation of

(time independent) stochastic fields was considered, these investigations

have assumed a given spectrum of fluctuations (e.g., Alfven waves, tearing

modes). However, in the clump model of MHD turbulence, the self-consistent

generation of fluctuations is treated on an equal footing with the nonlinear

conservation laws. One is, therefore, led down a path different from the

previous investigations. The result is a model that unifies many of their

features and reveals the MHD clump fluctuation as a new constituent of MHD

turbulence in sheared magnetic fields. Rather than having to assume a given

spectrum of magnetic islands, a priori, the theory determines the
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fluctuations self consistently from the turbulence itself via Ampere's law

and the conservation laws. In addition, unlike a statistical mechanical or

variational calculation, the theory self-consistently determines nonlinear

final states and the rates at which they are attained. 27 One pays a price

for this--unlike a quasilinear model, the renormalized theory is manifestly

nonlinear and, therefore, necessarily more complicated and approximate.

However, we believe that the MHD clump theory, besides providing a unified

picture, has a strong intuitive appeal that more than compensates for its

additional complexity and approximations.

This paper describes MHD clump fluctuations and their instability to

growth. Steady state MHD clump turbulence and the conservation of magnetic

27
helicity are treated in a subsequent paper , but a brief preview of the

results is presented in Sec. IC below. The present paper is organized as

follows. The current hole and its magnetic island structure are derived in

Sec. IA. A physical discussion of resonantly interacting hole growth and

decay is presented in Sec. IB. We conclude the Introduction with the

preview of magnetic helicity conservation and its consequences for clump

dynamics. The clump fields and their conservation laws are derived from the

one fluid MHD equations in Part II. One and two point renormalizations of

the clump field equations are presented in Part III. In Part IV, the two

point equation is cast into the form of a nonlinear Newcomb-like equation

and solved for the instability growth rate. In Part V, we show that the

growth rate is analogous to that for the Rayleigh-Taylor instability in a

magnetized fluid. In Part VI, we cast the clump growth rate into the form

of a nonlinear MHD energy principle and show in Part VII that the stability

boundary is a non-linear analogue of that for the linear kink mode. Part

VIII compares the growth rate to that for Vlasov phase space density holes.

6



A. Current Density Hole

The fundamental nonlinear structure in the theory is a hole in the

current density, i.e., a fluctuation 6Jz<O where JZ is the longitudinal

current density. The current hole produces self-consistent magnetic fields

which become "trapped" about spacial resonances (so-called mode rational

surfaces) in a sheared magnetic field. The hole is localized near the mode

rational surface where the restoring force to field line bending is minimal.

The trajectory of these perturbed magnetic field lines forms a two

dimensional vortex or magnetic island structure in the plane perpendicular

to the current. A saturated tearing mode 2-29 is an example of such a

vortex. A Kadomstev bubble 3, formed by a vacuum region inside the plasma,

is an extreme example, where the hole depth is maximum, i.e., the current

density is zero in the hole. This self-consistent island/vortex structure

is the analogue of the trapped particle phase space vortex of the Vlasov

hole 4 and of the modon in fluids. 5

Consider MHD force balance

J x B 0 (1)

(J and B are current density and magnetic field) and Ampere's law for the

self-consistent field

V x B ji J (2)

The equilibrium island structure of the current hole follows from the

resonant solution to (1) and (2) in a sheared magnetic field. For

simplicity, we use slab geometry and write B = Bo + 6B, Bo = B 1 + BOZ 2 , and

S= Boy (x)?, where Boz is assumed constant and 6B is only in the

transverse direction, i.e., 6B = 6BI. For Boz >> Bo0 , this is a field with

so-called tokamak ordering. Taking the 2 component of the curl of (1) and
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using V.B = V.J = 0, (1) reduces t020

B.* Jz . 0 (3)

(3) states that the Jz is constant along magnetic field lines. It is the

reduced current equivalent of JxB = 0, i.e., that J flows along magnetic

field lines (J = pB). With B, = Vx($g) defining the poloidal flux function

and setting ye=1 in (2) for convenience, Jz and B in (3) are coupled self-

consistently through Ampere's law:

Expressing (3) in terms of the model field gives

B J - J + B (x) - J + SB -J = 0 (5)o3z z y ay z x axz

where for simplicity we have retained only 6BX in 6B. The two dimensional

island structure is determined by the B line trajectory in the plane

z=constant. The solution, therefore, is Jz = z( ) where = o + 6p. This

can be made more explicit by assuming a weak shear so that B (x) = B' xoy cY

where B = 3B Y/3x. Then, the structure equation is

B' x- J + 3 (6)oy 9y z D3Xz(6

with a solution of J = J(6p - By x2/2). The island is formed as the

unperturbed field line trajectory go is perturbed and trapped near the

resonance by the nonlinear line bending term 6Bx in (5). The trajectories

' 2
are bound (closed) when B x /2 - 6i < 0, i.e., the island width is given

by Ax=(26ip/B )/2

An analogous trapped structure occurs in a Vlasov plasma described by

the Vlasov equation

0+ v - e (7)

In steady state, unperturbed particle trajectories x-vt become perturbed and
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resonantly "turned around" or trapped by the potential $. The phase space

island structure is determined by contours of constant f=f($+mv 2 /2e). The

trajectories are bound when the total energy is negative, mV 2/2 + e$ < 0,

i.e., the island (trapping) width is Av = (-2e$/m)1/2. Poisson's equation

determines the self-consistent potential required to trap the island

contours of width Av,

a-2  6$ = -4we fdv6f (8)
ax

One divides 6f into two parts: ? describing the island structure and fc

describing the nonresonant particles passing outside the island. 4 Then, we

write (8) as

2 6$ + 4ne Jdvfc = - dvf (9)
ax

We Fourier transform (7) and evaluate fc at the phase speed of the hole.

Then, in terms of the mean distribution gradient, fc is given by

c e 1 o
f - 60 -(10)k = r6k v 3v

This nonresonant (v>Av) particle distribution tends to shield out the

resonant island potential. This leads to the definition of a dielectric

shielding function, Ek, from the Fourier transform of the left hand side of

(9), i.e.,

2 af
k 1- P Idv- (11)

where P means principal value. The Fourier transform of (9) can then be
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written as

k - (12)
k

where = (4 re/k 2 )fdvfk is the hole or resonant part of the potential.

Since the hole width is Av and Av2 =- 2e$/m, (12) then yields an approximate

relation between the hole depth and resonance width

k v (kA 2 (13)
t

where vt is the thermal speed and AD is the Debye length. Equation (13)

gives the hole depth required to trap the particle trajectories into a bound

hole structure of width Av and k'. Localized, hole solutions result for

Ek > 0. A more rigorous calculation using maximal entropy arguments yields

essentially the same hole solution as this physical balance of forces

arguments.4

Imposition of self consistency (4) on (3) similarly yields the bound

current hole. This "modon" solution follows from (4) with JZ=JZ(p)' we

divide Jz into currents flowing inside (resonant) and outside (nonresonant)

the island resonance as in (9). For small island width, the nonresonant

current can be obtained from the linearized version of (3):

6JNB 6B k a (14~)
k k.B 0x Joz

where k.Bo = kzBoz + ky Boy(x). Eq. (14) is the usual nonresonant current

response of tearing mode theory.2 The k.B 0 singularity in (14) implies

that the field lines are particularly susceptible to bending at the mode

rational surface where k.B=0 - 0. The island structure will, therefore, be

localized about this resonant surface at x5 = - kzBoz/kyBoy. Inserting (14)

into (4) gives
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_i - k2 +kJ = - 6J (15)
x2 y k.B-0 k = k

The well known Newcomb equation of linear stability theory follows from (15)

with 6J = 0 and describes the currents flowing outside the island

resonance. Integrating (15) over these currents gives

Ak =-12kyH y- Pf dx k.B oz (16)6 k (x -. - x o

Ak is the usual stability parameter of linear tearing mode theory,

1= - 1 dx 32 (q ) (17)
ak s ax

or, more conventionally2'

64 (1) 6p(2)

( ) 6 (2) ( )

where (1,2) refer to positions (infinitesimally) on either side of the

singularity at x=x . The jump in the logarithmic derivative of 6p is due to

the k.B0  singularity in (14). In linear tearing mode thleory, the

singularity is resolved by collsional resistivity. In the nonlinear clump

model, an analogous role is played by the nonlinear diffusion of stochastic

field lines, i.e., resistivity due to the turbulence.

Nonlinearly, (4) and (5) give the self-consistent hole solution. We

note that the nonlinear term on the left hand side of (5) will resolve the

k.Bo singularity. _ For example, 26 in the presence of field line

stochasticity, the nonlinear term gets replaced by a diffusion operator with

the effect of replacing k.B0 in (14) and (15) with k.Bo + id where 6>0. We

can then integrate (15) over all space and, using (17), obtain

(Ak + 2k + iA) 6$(x 5) - dx6JR (19)

where
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rk 3Jy oz
(20)

y OY s

The factor A is an effective imaginary part of the stability parameter A'.

Since the integral in (19) only contributes in the resonant region of width

Ax, (19) implies that Ampere's law can be schematically written as Vi $ -

M6JR where M~
1 - [Ak + 2ky + AIAx. M is an effective permeability shielding

the island and is the analog of the dielectric shielding (11). Here, the

shielding comes from nonresonant currents flowing outside the island. For

Ak+ 2IkyI>0, the nonresonant currents reinforce the resonant part of the

island field. Using Ax6JR to approximate the right hand side of (19) and

the resonance width Ax = (6JOZ )1/2 from the solution to (6), we can

estimate 6JR from (19) and obtain the depth (-6JR) of a force-free hole

fluctuation (z = z ~ Joz) of small (I6Jz(J oz), but finite amplitude,

6J ~ - A'AxJ (21)z oz

(21) is the MHD analogue of the Vlasov hole relation (13). As with the

Vlasov hole, it relates the hole depth required to self-consistently trap

the field lines about the resonance.

As in the BGK solution of the Vlasov case, the current hole (21) is one

of many possible solutions to the coupled equations (3) and (4). The full

nature of these solutions would require a detailed pseudo potential

analysis. However, we take the position where that in the turbulent state,

many details of isolated, coherent hole structure will be "washed out" by

the turbulence. Therefore, any bound structures tending to form will do so

by the approximate balance of forces just described. The boundary

conditions and detailed behavior of flux contours near and outside of the

separatrix are approximated by the parameter Ak. An analogous approximation -

(i.e., the use of ek in (13)) has proven to be very successful in the Vlasov
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4.case.

B. Growth and Decay of Current Holes - Mixing and Stochasticity

We are concerned primarily with the inviscid dynamics of current holes

at large Reynolds numbers. Neglecting the dissipation effects of

resistivity and viscosity, a localized magnetized fluid element--such as an

MHD hole fluctuation--can dissipate its energy in several ways. 3' In

addition to convection, dissipation can occur by the radiation of sound

waves away from the hole. This effect of pressure is considered in Sec.

IIIC. Another channel--and the one of importance here--is through the

radiation of shear-Alfven waves down magnetic field lines away from the

hole. The rate at which the energy is dissipated is VAk.B/B, where VA is

the Alfven speed and k is the wave number of the fluctuation. Since the

holes are localized near mode rational surfaces where k.B = 0, the

dissipation is minimal. Indeed, the trapping of the field lines near the

resonance eliminates the dissipation even for a finite amplitude island.

This equilibrium can be disrupted, however, if island resonances strongly

overlap. Then, the island structure discussed in the previous section is

dissipated or "torn-up" as Alfven waves propagate down the resulting

stochastic magnetic field lines away from the hole. This decay is

calculated in detail in Sec. III below, but can be understood here by the

following physical considerations.

The diss-ipation rate (r' ) for a finite amplitude island is

approximately VAkyxdBoy'/B, where Boy' = DBoy/3x is the shear strength and

xd is the width of the stochastic region. (In the turbulent regime, xd

plays the role of resonance width that the island width plays in the

coherent island regime. For strongly overlapping islands, xd - Ax). Hole

13



energy is dissipated as an Alfven wave propagates down a stochastic field

line that random walks radially a distance xd for each longitudinal distance

of zTVA -(kyxdBoy/B)~'. For diffusing field lines, (6x) 2 = 2 Dmz, where Dm

is the field line diffusion coefficient. Therefore, x2d~Dmzo. In the limit

of infinitesimally small island width, Dm is given by the well known

expression 1,

D = dk <6B 2> k ur6(k.B /B) (22)
(21r) - -o

For finite sized islands, the k.B 0 resonance in (22) and (15) becomes

broadened to, approximately, (k.B 0 /B + izo') as in Ref. 26. Equation (22)

then becomes an equation for Di. Its solution shows that, at island

overlap, Dm becomes nonzero and the field lines become stochastic.26 Two

neighboring field lines will diverge apart radially by xd after a length

z-z0 . The length zo is referred to as the Lyapunov length or Kolmogoroph

entropy". The dissipation rate, -t1-VA/zO, is the inverse Lyapunov time.

In terms of the radial diffusion of the field lines, T can also be written

as T~ D/xd where D=VADm . Here, D is a turbulent resistivity which, along

with Dm, becomes nonzero at island overlap. The time T is the time that two

neighboring stochastic field lines will remain correlated, i.e., diffuse

together. The nonlinear time T is a turbulent skin or resistive time.

The dissipation can be opposed by the production of new fluctuations.

This is the origin of the instability. The instability occurs as the

resonant interactions of the finite amplitude islands create new

fluctuations (clumps) by turbulently mixing the average magnetic shear. The

clumps are produced because the energy is conserved in inviscid (ideal) MHD.

The energy plays the role here that the phase space density plays in the

production of Vlasov clumps.2 The turbulence transports an element of

magnetic fluid of given energy density to a new region which, because of
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the magnetic shear, has a different energy density. Since the magnetic

shear results from a longitudinal mean current density in the plasma, the

mean current density is the free energy source for the instability. Net

growth, i.e., instability, is achieved by the creation (R) of the new

fluctuations by turbulent mixing at a rate faster than that of the

stochastic decay, thus yielding a net growth rate of the form

1
Y= - (R - 1) (23)

The characteristic time scale for growth is the Lyapunov time T. This

creation of MHD fluctuations by turbulent mixing is the nonlinear, turbulent

analogue of the Rayleigh-Taylor (interchange) instability in a magnetized

fluid.2 93 1 The "-1" stochastic decay term in (23) is the turbulent

analogue of the line bending (restoring) force of the Rayleigh-Taylor model.

The factor R/T is the clump analogue of the mixing rate of light and heavy

fluid. The analogy is discussed in detail in Sec. IIIF below.

The instability is fundamentally nonlinear and three dimensional, even

though an individual island structure is two dimensional. This is because

the interaction of island resonances with incomensurate field line pitches

(sometimes called field line "helicities") is three dimensional, i.e., shear

Alfven waves propagate down magnetic field lines. For strongly overlapping

islands, this resonant interaction is very inelastic, causing significant

magnetic field line stochasticity and mode coupling of energy to high wave

numbers. The strength of the interaction increases with fluctuation

amplitude. Nonlinearity is also important for the production of the

fluctuations. Constrained nonlinearly by energy conservation, stochastic

(turbulent) transport creates new fluctuations (clumps) by the mixing of the

magnetic shear. In addition, the nonlinearity tends to cause a clump

fluctuation, once produced, to self-organize into a localized island (hole)
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structures. Instability results from the competition between these

nonlinear effects of clump production and decay. These strong nonlinear

features of the instability imply that the turbulence cannot be described by

a perturbative nonlinear model in which linear theory provides the lowest

order approximation. The stability analysis relies fundamentally on the

existence of two-dimensional magnetic island equilibria of finite amplitude

and their three dimensional interactions. These features are reminiscent of

the transition to turbulence in plane Poisuille fluid flow32 and in current

driven Vlasov plasma6~9. As there, we find that the transition to

turbulence is strongly nonlinear and subcritical. The onset and evolution

of the MHD turbulence is described by a fully nonlinear set of equations,

rather than the linearized MHD energy principle or the Newcomb equation for

linear disturbances. In the description of turbulence in fluids, the

inadequacy of the Orr-Sommerfeld equation for linear fluctuations is well

known. 12-1 The MHD clump theory extends the linear energy principle and

Newcomb equation to the nonlinear, turbulent regime. Subcritical MHD

turbulence has been apparently observed in computer simulations by Waltz. 4

The depth of the current density hole plays a role similar to that of

vorticity in fluid turbulence. "Magnetic vorticity" (J) self-consistently

determines the magnetic field through Ampere's law (2). Because of the

existence of the finite amplitude island equilibrium, the magnetic vorticity

fluctuations tend to organize into the localized, resonant island structures

of Sec. IA above-. Though both positive and negative fluctuations in the

current density can occur, it is the current density holes, i.e., the

negative magnetic vorticities, that can grow. These correspond to A'>0 in

(21). To see this explicitly, consider an isolated concentration of

magnetic vorticity, 6J. Faraday's law is
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6$ = - D 6J (24)

where D is a turbulent resistivity modeling the stochastic background

fluctuations (i.e., other islands). Growth, a positive value to the right

hand side of (24), occurs for current holes, 6J<O. Using the island width,

and (3) for 6J, (8) yields a growth rate, AH = alndw/3t, resembling that for

the tearing mode,20

Y ~ D (25)H Ax

Growth occurs for A'>O (free energy available) and D*O (stochasticity from

overlapping resonances). For A'>O, the nonresonant current 6 JNR flowing

outside the island reinforces the resonant island current 6JR (see (21)) and

the island grows. Though the instability may be precipitated by the overlap

of two coherent islands (e.g., two tearing modes), a truly turbulent state

will quickly develop as interactions ("collisions") between the islands lead

to mode coupling (hole decay) and mixing (generation of new holes). The

resulting turbulence will be composed of incoherent, strongly interacting

magnetic vorticity concentrations which we call MHD clumps. Rather than a

coherent island structure, an MHD clump fluctuation is a flux tube or bundle

of correlated magnetic field lines with finite lifetime on the order of T.

The instability or turbulence is modeled as the creation, interaction, and

growth of these clump fluctuations. In this turbulent regime, (25) is

replaced by (23).

The derivation of (23 ) is the main objective of this paper. We find

that the clump regeneration factor R in ( 23) can be written approximately as

(see (112) and (114))

R kd 2 (1 + Yt) -1 (26)

IAkxdI
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The Akxd factor in the numerator of (26) is the magnetic shear driving force

for the instability. The instability derives its free energy as in the

tearing instability. The I 4xd- 2 factor in (26) gives the shielding of the

clumps. The clump fields that randomly mix the magnetic shear are shielded

by the nonresonant currents flowing outside the islands. A has a real and

imaginary part because of the stochastic broadening of the k.B 0 resonance.

The (1+YT)4' factor in (26) occurs because the clump fields causing the

turbulent mixing are growing in time. For YT>1, growth can occur before any

appreciable stochastic decay, and (23) and (26) give

Y2 _ 2 (27)

where R = R(1+YT)~'. In this regime, the instability is a nonlinear

analogue of the Rayleigh-Taylor interchange (mixing) instability. When

YT<1, the effect of stochasticity is significant, and the instability

resembles that of the tearing mode, but driven by an anomalous resistivity

due to stochastic magnetic (and flow) field diffusion. In this limit, (23)

and (26) give

D kY ~ D (R - 1)
xd

(28)

since T~1 - D/xd. Except for the factor in parenthesis, (28) resembles the

growth rate of the tearing mode in the Rutherford regime.20 Here, D replaces

the Spitzer resistivity of the Rutherford model, and the turbulent resonance

width xd replaces the coherent island width Ax. The (-1) factor in (28)

accounts fer the net regeneration of new fluctuations by mixing even as

existing island structures are torn up by magnetic field line stochasticity.

The (1-1) factor corrects the growth rate (25) calculated in Sec. VI of Ref .

1.
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C. Magnetic Helicity Conservation

We derive the clump regeneration factor (26) in Sec. III from

renormalized MHD equations that are an ensemble averaged version of the one

fluid MHD equations. In the absence of collisional dissipation (resistivity

and viscosity), the one fluid MHD equations admit three dynamical

invariants: total energy, cross helicity, and magnetic helicity (see Sec.

II). (Except for the smallest spacial (dissipation) scales, these will be

approximate invariants for large Reynolds number turbulence as well). As we

have discussed above, it is the turbulent mixing of the energy invariant

that is responsible for the generation of clump fluctuations. However, in

an MHD plasma with self-consistent fields, the turbulent mixing of the

energy is not done arbitrarily, but rather is globally constrained by

magnetic helicity conservation. While we only deal explicitly with energy

(and cross helicity) conservation in this paper , magnetic helicity

conservation has important consequences. These are outlined briefly below,

but are derived in detail in a subsequent paper on steady state MHD clump

t ur bulence .

Mean magnetic helicity is conserved because the fields generating the

clumps by the mixing of the mean shear derive self-consistntly from the

clump currents themselves via Ampere's law. As a result, the mean magnetic

field and, from Faraday's law, the mean longitudinal electric field follow

from a mean nonlinear Ohm's law of the form

E = DJ - FB (29)
oz oz oz

The D term in (29) describes the turbulent diffusion of magnetic field lines

and would be present for an arbitrary spectrum of stochastic fields. The F

term reflects the self consistency of the fields, i.e., the fact that the

source of the stochastic mixing fields is in fact the individual cLumps
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themselves. In the limit of zero island width, magnetic helicity

conservation is ensured by the cancellation of the D and F terms in (29).

This situation is analogous to the vanishing of the net transport between

like-like particles in a one dimensional Vlasov plasma. There, the

transport vanishes because of momentum conservation. Here, we have helicity

conserving, resonant interactions ("collisions") between islands (current

holes) rather than between momentum conserving, shielded test particles. To

next order in the island width, Eoz becomes

E =- V . D . V J (30)= - oz

where D-D(Axi) 2 - D[kY 2 + (Ax)- 2 '-. Equation (30) is reminiscent of the

net Eoxgo flux of guiding centers in a guiding center plasma where, because

of ambipolarity constraints, net transport across the magnetic field occurs

at second order in the gyro radius. At island overlap, the deeply resonant

part of the island structures "collide" in an analogous fashion to the

guiding centers, with magnetic helicity conservation playing the role of the

ambipolarity constraint. Equation (30) conserves the magnetic helicity

because fdx Eo. B = 0, i.e.,

Jdx E 0 = 0 (31)

in a strong and constant longitudinal field Boz. For a cylindrical plasma

surrounded by a perfectly conducting wall, the integral constraint can be

combined with Faraday's law to give the equivalent constraint on the mear

field _

f dr r B = 0 (32

Equation (32) is the analogue of momentum conservation of the Vlasov cas(

and the ambipolarity constraint of the guiding center case.

Because of magnetic helicity conservation, the turbulent mixing expell:
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poloidal flux during the instability. Inside a confined plasma (where V2

Joz < 0), Eoz > 0 and the flux decreases (see (30)). The converse occurs at

the plasma edge (where V2 j > 0). Equivalently, from the helicity

constraint (31), an increase in Eoz inside a cylindrical plasma (where r is

small) must be accompanied by a simultaneous, small decrease in Eoz near the

plasma edge (where r is large). For a significantly large increase in Eoz

on axis (i.e., the development of large fluctuation levels), Eoz will become

negative near the plasma edge. We note that such radial electric field

profiles have been observed during plasma disruptions in tokamak fusion

devices.

Since magnetic helicity conservation constrains the dynamics of the

mean shear profile, the turbulent mixing process generating the clump

fluctuations is similarly constrained. While (26) derives from the

nonlinear Ohm's law Eoz = DJOZ, (30) implies that we must multiply (26) by

(-V J /k J) in order to ensure that the mixing process conserves magnetici. oz ± oz

helicity (k 2 k2 + (Ax)- 2 here). Then, the clump source term f in (26)

becomes

a x 72
kd OZ) (33)
J~' 2 k2

lAxd kIJoz

This constrained form of the clump mixing rate directly couples the

fluctuation level to the mean profiles being mixed. For example, in steady

state MHD clump turbulence (Y = 0 in (28)), the turbulent mixing balances

the stochastic decay and Joz satisfies

o2 + w2z =0 (34)
h oz oz

where
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2 d (k2 + 1) (35)
- AkvX x2

We show in the subsequent paper 27 that, (34) becomes

V 2 + 2 J = 0 (36)

in the general case of poloidal and toroidal currents. With V.Jo = 0, (36)

has the solution

J0 = o (37)

MHD clump instability drives the plasma toward a force free state and is,

therefore, a self-consistent, dynamical route to the Taylor state.25 This

occurs in the MHD clump model because turbulent mixing minimizes the energy

subject to the constraint of magnetic helicity conservation. The self-

consistent generation of currents and fields during MHD clump instability is

a turbulent dynamo action. The D and F coefficients in (29) correspond to

the B and a coefficients of dynamo theory.19

In the case of large, overlapping island resonances (as in a tokamak

fusion device, where the mode rational surfaces are widely separated), the

mixing lengths are large. Instability starts far from the Taylor state and

results in significant disruption of the current profile. For more closely-

packed resonances (as in a reversed field pinch fusion device), the initial

mixing lengths are smaller and a steady state turbulence level is possible.

However, in order for a fully stochastic (Ax-xd) steady state to exist

(i.e., Ax real in (35)), p must exceed a threshold given approximately by P2

> 2Ak k -6 for typical parameters. Since the Bessel function solution to

(37) changes sign when W> 2 . 4 , steady state MHD clump turbulence corresponds

to Boz field reversed Taylor states. MHD clump instability appears to

provide a basis for a unified description of turbulent relaxation in

tokamaks and RFPs. The instability occurs in its growth phase as the tokamak
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disruption and, in its steady state turbulence phase, in the RFP. Detailed

comparisons between experiments and predictions of the MHD clump theory are

presented in a second subsequent paper.
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II. MHD EQUATIONS

A. Dissipative, One Fluid Equations

The one fluid MHD equations provide a fluid description of the self-

consistent magnetic and velocity fields in a plasma .29 Self-consistency is

achieved by combining momentum balance with Ampere's law, and using

Faraday's law in conjunction with Ohm's law,

E + V x B pJ, (38)

to obtain

2

p0 (L+ V. V) V= B. VB - V1 (P + .) + V 2V (39)
0 tP0 -tl 1 2p0

+ V.V) B = B.VV + ( )V B (40)

where rnp is the Spitzer resistivity, v is a collisional viscosity and, as

above, we've assumed that Bz is constant and V=6V is only transverse.

Three decay laws can be derived from (39) and (40). They are for the

total energy,

' fdx ( pV2 + B2 /2p) =-2v dx w2

- 2n p Jdx J2  (41)

the cross helicity,

. fdx V.B ( + -) idx w.J (42)
-at0 0o P

and the magnetic helicity,

dx A.B = -2 .. 2 fdx B.J (43)

where A is the vector potential (B=VxA) and W is the fluid vorticity (w = V

x V). Because of the difference in the number of gradient operators in the
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dissipation terms of (41) - (43), the magnetic helicity decays at a much

slower rate than energy and cross helicity. This feature of the dissipation

has been observed in computer simulations and is sometimes referred to as

selective decay.16 Energy and cross helicity cascade to high wave numbers

while magnetic helicity remains approximately constant.

In order to define the Reynolds' number subsequently, it is useful to

normalize B to Boz, lengths to the current channel radius a, time to the

Spitzer resistive time tR = 40a 2/ s p, and V to a/TR. Then, (39) and (40)

become

-2 a
S ( 1 V.V _SV 2)V=B.VB -V P* (144)at ( - v 1j. -l

+ V ) B = B.VV (45)

where all quantities are dimensionless. The two scaling parameters in (44)

and (45) are the Lundquist number S=TR /TH (TH = a/VA is the Alfven time),

and the "Prandtl" number Sv = TR/Tv (T v = pOa 2/v is the viscous time). Note

also that: (1) the generalized pressure (p + B /2p%) in (39) is normalized

in (44) to p*=(p+B2/2pj)(e/B 2 oz), (2) with J+(Poa/Boz)J in Eq. (2) Ampere's

law becomes VxB = J, and (3) with E+(iea/nspBoz)E in (38), Ohm's law becomes

E + VxB = J. Though we will frequently consider only near ideal MHD effects

and, therefore, neglect the collisional dissipation terms in (39)-(40), the

particular normalized form (44)-(45) will be useful in identifying the

physical significance of the nonlinear terms (e.g., as anomalous

resistivities) and estimating the effects of collisional dissipation on MHD

clump dynamics. The particular normalization will also be useful in Ref. 35

where the theory is compared to laboratory plasmas with finite S.

We will use the equation of state V.V = 0 so that p* in (44) is

determined from B and V. If the turbulent mixing occurs on a faster time
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scale and shorter spacial scales than the mean pressure profile, we can

assume that mean pressure balance will be satisfied in a quasilinear sense,

i.e.,

<B>.V<B > - V <p*> = 0 (46)

The mean pressure po=<p*> responds quasistatically to the mean magnetic

fields. Of course, in a low a plasma, the pressure p in p* is small, and

the mean current flows mainly along <B>, i.e., (46) reduces to 1 x Bo = 0.

In the case of Vlasov clumps, the mean distribution is also assumed to relax

quasilinearly. The mean distribution changes slowly compared to the mixing

rate for clump production. This occurs if the mixing length (resonance

width) is less than the scale characteristic of the mean distribution. In

the MHD clump case, this means Ax < a, where a is the radius of the current

channel. From (45), (46), and V.V = 0, 6p* = p* - <p*> is determined by the

equation

V 2 6p* = .B .[6B + SB V<B > - S- 26V.6 (47)

where 6B=B-<B>. The system (44), (45) and (47) form a closed set for the

determination of B and V.

B. Conservation Laws

We are interested in nonlinear MHD instability and, therefore, cases of

sizable fluctuation levels. In such cases, the magnetic Reynolds' number Rm

- S6BAx (see (44) and (45)) is larger than unity. For Rm >> 1, collisional

dissipation will be a relatively small effect in (44) and (45), except for

the small scales Ax<xc of the dissipation range (xc - (S6B)~ is the

dissipation scale). Neglecting collisional dissipation, i.e., the third

term in the parenthesis of (44) and (45), the MHD equations admit three
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invariants: total energy, cross helicity, and magnetic helicity. Neglecting

surface terms, the three conservation laws can be written as

a Jdx (B2 S- 2) = 0 (48)

for mean energy,

a fdx V.B = 0 (49)
t -

for mean cross helicity, and

dx A.B = 0 (50)

for mean magnetic helicity. As discussed in Ref. 1, the invariants (48) and

(49) result from the particular structure and symmetry of the nonlinear

terms in (44) and (45). For example, total energy is conserved because the

V.V terms in (44) and (45) vanish separately upon integration (i.e., a mode

coupling effect) while the B.V terms, when integrated, cancel between (44)

and (45) (i.e., a dissipation effect where magnetic and flow energy are

converted into each other). Equation (50) results from fdxE.B=0 when E+VxB

= 0. This can be seen directly by considering (45) explicitly in terms of

E, i.e., Faraday's law gives

a f dx A.B = - 2 dx E.B (51)

Since Bz is assumed constant and V=6V is transverse only, we can set

in (49). If we further assume an ordering where Boz >> Bol, then (50)

is equivalent to (31) or, with Faraday's law, (32). The conservation laws

(48), (49), and (50) constrain the dynamics of the B and V fields. For

example, consider the simple case where the cross helicity is initially

zero. By (49), cross helicity will remain zero. Separating (48) into mean

and fluctuating parts gives
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dx <6B + S-2- dx B >2  (52)

where <> denotes an ensemble average. The conservation law (52) states that

any rearrangement (such as turbulent mixing) of the mean magnetic field

profile will necessarily produce fluctuation energy, i.e., MHD clump

fluctuations. Note that arbitrary rearrangements are not allowed. Only

those self-consistent motions that satisfy (50), or equivalently (31) or

(32), are allowed. Equation (32) constrains the source of fluctuations on

the right hand side of (52). Equivalently, we note that Faraday's law is

linear, so that the right hand side of (52) can be rewritten in terms of the

mean electric field Eoz = <Ez> to give

dx <6B + S2 62> = 2 Jdx E J (53)

The equivalent mean magnetic helicity constraint on Eoz in (53) is then

(31).

Note that, in a course grained sense, the energy is dissipated. The

turbulent mixing converts the large scale (mean) shear profile into smaller

scale clump fluctuations. Since the magnetic helicity is conserved during

the mixing, the energy is dissipated subject to the conservation of the

helicity. This is reminiscent of the selective decay that occurs in the

presence of collisional dissipation (see Sec. IIA above). Indeed, we show

in Sec. III that, during the turbulent mixing, the nonlinear terms in (44)

and (45) have the effect of anomalous resistivity and viscosity. This can

be seen approximately here by writing Rm~S(6B/Boz) (ax/a) in dimensional

units as

Rm ~ [VA x(6B/Boz )/nsp (54)

The bracket in (54) is an anomalous resistivity due to magnetic fluctuations

SB with transverse correlation lengths Ax. In the renormalized turbulence
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equations derived in Sec. III, the bracket in (54) gets replaced by a

diffusion coefficient, D=VADm , for diffusing stochastic magnetic field

lines. It is also enlightening to write (54) as

Rm - [Ax) BA (55)
sp oz

The first factor in brackets is the collisional resistive time in the

resonant layer . The second factor is the inverse of the perturbed Alfven

time in the resonant layer. If we denote these nonlinear times as TR and TH

respectively, then Rm = TR/TH, i.e., the Lundquist number (S) defined

nonlinearly in the resonant layer. The dimensional nonlinear resistive

(Lyapunov) time is -t = TR(ri~p/D) = TR/Rm = TH, i.e., the Alfven time defined

for the perturbed field in the resonant layer.

C. Clump Fields

From the above, we conclude that MHD clump fluctuations can only be

investigated with a dynamical model that conserves energy and magnetic

helicity. Since these constraints are due to the structure and symmetry

properties of the nonlinear terms in (44) and (45), special care must be

taken in treating those terms. In particular, any renormalization method

used to approximate the stochastic or turbulent portion of these terms must

preserve their symmetry properties so that the conservation laws are

satisfied. One way to facilitate this is to rewrite (44) and (45) in terms

of new field variables L = B - S~1V and N = B + S~'V. Neglecting 6p*

terms, (44) and (45) can be written for unit Prandtl number (S= = 1) as

( - SL.V - V ) N = 0 (56)

( + SN.V - ) L = 0 (57)at J.-
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where <L>.V<N> and <N>.V<L> terms are absent because of mean pressure

balance (46) . We have suppressed the ap* terms here because, as we show in

Sec. III, the 6p* effects are small compared to the magnetic shear driving

terms for clump production. Additionally, we have taken S,=1 in (56) and

(57) because the symmetry is best displayed for this case. While S =1 is

not generally appropriate for all interesting plasmas, the resulting V

terms in (56) and (57) do provide an approximate and effective measure of

collisional dissipation for large Rm clump turbulence. Again, the reason

for this is that the nonlinear terms dominate the collisional terms during

the instability. Since V.L = V.N = 0, the conservative structure of the

nonlinear terms in (56) and (57) ensure that <N2 > and <L 2> are invariants in

the absence of collisional dissipation. In the case of homogeneous

turbulence, where a spacial average can be identified with an ensemble

average, the conservation of <(N2 +L2 )> and <(N2 -L2 )> is equivalent to (48)

and (49) respectively. The relevant magnetic helicity constraint is still

(31) or (32), since 3<N>/3t = <L>/3t = 3<§>/3t.

The advantage of (56) and (57) in describing clump dynamics is their

resemblence to the flow of phase space fluid in a Vlasov plasma, i.e., to

the Vlasov equation. In the absence of collisional dissipation, the

conservation of <N 2 > and <L 2 > is analogous to the conservation of (mean

square) electron and ion phase space densities in a Vlasov plasma. 2 ,3 As

there, the conserved quantities are mixed to finer spacial scales during

turbulent decay. Here, this cascade to high wave numbers occurs in the

energy. With the neglect of collisional dissipation (i.e., RM-+O), the flow

in (56) and (57) is "incompressible" and a magnetized fluid element retains

its energy density for a finite time (the smaller the volume element, the

longer the lifetime). During this time, the turbulence randomly transports
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the fluid element to a new region of space where, for nonzero magnetic

shear, the <N 2> and <L2> energy densities are different. As in the Vlasov

plasma, this mixing process is the origin of the clump fluctuations.

While (56) and (57) follow directly from the MHD equations, it is

interesting to deduce them from the physical effects governing MHD clump

evolution. We recall from Sec. IB that, in addition to convection, a

localized clump fluctuation can dissipate its energy through the emission of

shear Alfven waves. We, therefore, have two fluctuations to consider:

wave-like (Alfven waves) and non-wave-like (clump) fluctuations. The two

fluctuations tend to exist in mutually exclusive regions of space. While

the clump is resonant and localized near the mode rational surface, the

shear Alfven wave propagates in the nonresonant region away from the mode

rational surface. The two fluctuations represent two degrees of freedom or

excitation in the plasma. The Alfven wave magnetic fluctuation is given, in

dimensional units, by 6B = v/p6V, where p is the mass density.29 Note that

this expression is valid even for finite amplitude Alfven waves. The

localized clump fluctuation is obtained by subtracting out this wave

component from the total fluctuation 6B . This subtraction and distinction

between wave-like and non-wave-like portions of the field fluctuations is

analogous to the one made in (8)-(9). There, we wrote the total fluctuation

as 6f = Sfc + f where T denotes the localized (resonant) non-wave-like part

of the fluctuation and 6 fc determines the wave-like (nonresonant) response

through the dielectric constant (see (10), (11)). Since, in the MHD case,

the wave has two polarizations, we define N = B + /pV and L = B - /pV in

dimensional units. Consider the dynamical equation for N. Since the

backward Alfven wave has been subtracted out, the N field decays by

convection, collisional dissipation, and the propagation of forward Alfven
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waves. For unit Prandtl number, we have, in dimensional units,

a 1 2( V.) N = B.N + (58)

The equation for L is similar, except that Alfven wave emission is due to

the backward wave:

a ~ 1 2
( + V.V)L =- B.VL + nV L (59)

A rewriting of these two equations expresses their symmetry and coupling

features:

+ (p-1/2 n2
+ (p) N.V - nV?)L = 0 (60)

a _ p-1/2 n2
- (p) L.V - =)N = 0 (61)

These equations, when nondimensionalized, are just (56) and (57). The

fields N and L have historically been known as Elasser variables." Their

physical significance here lies in their identification with the clump or

resonant portion of the field.

Besides providing a natural basis for clump analysis, the fields L and

N also define the correct variables for analogy with the unmagnetized fluid

case (see Sec. 4-3 of Ref. 31). Turbulent transport coefficients which

depend on the mean-square flow fluctuation in the pure fluid case will

depend on <L 2> and (N 2> in the corresponding MHD case. This equal footing

of the B and V fields in the turbulent transport processes can be traced to

the symmetry of the nonlinear terms in the ideal MHD equations. Physically,

the fields are "frozen-in" so that B is transported with the flow. This

symmetry can be "broken" by collisional dissipation. For example, for nsp *

0 but v = 0 as in the classic case of the tearing mode, the addition and

subtraction of (44) and (45) will not lead to the particularly symmetric

equations (56) and (57) expressible in terms of L and N alone. While the N
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and L dynamics are approximately conservative for Sv - 1 and Rm >> 1, if the

turbulence "cools" down to Rm - 1, the symmetry will be broken and the

clump-like, conservative form of equations (56) and (57) will not be

preserved.

It is interesting to note that the symmetry of the nonlinear terms in

(56) and (57)--specifically the absence of SN.V6N and 6L.V6L terms. A

similar situation also occurs in the Vlasov clump case.' There, because of

Poisson's equation, the self-consistent electron and ion fields conserve

momentum. As a consequence, contributions from like-like fields (electron-

electron, or ion-ion) cancel between themselves. Net transport arises only

from interactions between like and unlike fields. The analogous situation

occurs in (56) and (57), since they are self-consistent to start with (i.e.,

Ampere's law has already been imposed). As a result, the nonlinear terms in

(56) and (57) take on a symmetrical form--thus conserving energy and

helicity and leading only to like-unlike (nonlinear) interactions between

the fields.

As in the Vlasov case, the two point correlation function is the

appropriate quantity to describe clump dynamics. 2 , 3  The reason is that one

point equations cannot describe the correlated motion of neighboring fluid

elements and, therefore, the clump lifetime of localized, correlated

magnetized fluid elements in an MHD clump. When renormalized, the one point

equations would predict that field lines at all radial positions in the

plasma would diffuse independently. Consequently, fluid elements of any

spacial extent would decay at the same rate. However, a fluid element of

infinitely small scale will have an infinite lifetime, since, in the limit

of zero separation, neighboring field lines feel the same forces, diffuse

together, and are thus correlated forever. Such an infinite lifetime is
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merely a statement that the total energy, i.e ., <N 2 > and <L 2>, is conserved.

For a clump of finite spacial extent, neighboring field lines diffuse at

different rates and diverge apart exponentially. The clump decays as energy

cascades to high wave numbers. As discussed in Sec. IB, the characteristic

time for decay is the perturbed Alfven time--the time for Alfven waves to

propagate down the stochastic field lines away from the clump.

It is perhaps appropriate here to comment on the reduced MHD (Strauss)

equations36 for the poloidal flux t and the vorticity U=-.(VxV) =-V2.

These follow from the inverse curl of (40) and the 2 component of the curl

of (4):

a t - - 3pz Z aZ
( +1.)* = 2 z+( 3

p( + V.V) U = B.VJ + vV U (64)

Though the Strauss equations have proven extremely useful in the study of

resistive MHD fluctuations such as tearing modes (see, for example, Ref.

20), it appears that they are not the most appropriate equations for the

study of nonlinear clump fluctuations. First, the essence of clump

production is the conservation of "phase space density" and its resonant

cascade under turbulent decay to high wave numbers. While U does cascade to

high k, (63) and (64) for p and U cannot be combined into such an

appropriate conservative form. The problem can be traced to the fact that p

is not mixed during turbulent decay but, rather, flows to long scale lengths

(inverse cascade). As we have shown, however, the full unreduced MHD

equations for B and V display the conservative MHD clump dynamics in a

natural way. In addition, the essential resonant localization and decay

properties of nonlinear clump fluctuations are not directly evident in (63)

and (64). Because the Alfven wave response has not been explicitly
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distinguished (subtracted out as in (58) and (59)), the fluid element

propagators appear to be nonresonant. However, as we have seen, an MHD

clump fluctuation can decay resonantly by the emission of shear Alfven

waves . It is the localization of the clumps near mode rational surfaces

that minimizes this decay. The resonant property of the propagators in (56)

and (57) displays this clump localization directly and leads to the

exponential increase in the separation between neighboring field lines i.e.,

to the resonant decay of the clumps. Of course, the Strauss equations have

the advantage of being scalar equations that do not involve the pressure p*.

However, we shall see that the two point correlation equations we will need

to describe the clumps involve only scalar quantities such as (L(1).L(2)>

and <N(1).N(2)>. We will also show that, for the clump problem, the Sp*

terms in (44) and (45) can be neglected.
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III. RENORMALIZED EQUATIONS

The renormalization of the clump field equations (56) and (57) is

carried out below. While a straightforward renormalized perturbation

procedure leads, as in the case of Vlasov turbulence 3'' 3 , to numerous terms,

we focus only on those terms in the perturbation expansion that have an

identifiable, physical meaning. These are a Markovian diffusion term and a

Fokker-Planck "dynamical friction" term2 7 that ensures the conservation of

magnetic helicity in the model. This is not to say that the other

contributions to the renormalization are necessarily smaller in magnitude or

less important. Any terms relating to clump self-energy (island

coalescing), for example, must play a relevant role in the turbulence, but,

we have not been able to identify such terms. In our view, the simplest,

self-consistent, energy and helicity conserving model of the turbulence can

be constructed from only the diffusion and Fokker-Planck drag terms

generated from the formal renormalization procedure. Such a view has also

proven useful in the Vlasov case. There, a statistical model retaining

only a diffusion and a momentum conserving (Fokker-Planck friction) term

from the renrormalization provides the basic but essential features of one

dimensional Vlasov clump dynamics. The model, when modified

phenomenologically for clump self-energy, agrees well with the results of

computer simulations.",'' 0 ' 1 2 The physical meaning of additional terms in

the Vlasov renormalization have proven to be obscure or impenetrable. The

clump self-energy effects have been particularly illusive. The

corresponding terms generated in the renormalization of the three

dimensional MHD case are even more complex and obscure and we, therefore,

ignore them in this investigation. An emphasis on conceptual and physically

motivated models over formal, mathematical approaches has also been useful
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in the understanding of fluid turbulence. As there, the model developed

below focusses on the concepts of turbulent eddy diffusion and mixing.

It turns out that the effects of magnetic helicity conservation can be

treated separately from those of energy and cross helicity conservation.

Therefore, in the balance of this paper, we neglect magnetic helicity

conservation (and, therefore, the Fokker-Planck drag terms) and focus only

on renormalized equations of the diffusive type. This leads to (28) where

the "-1" term derives from the diffusive decay of the clumps and the clump

source term R derives from the diffusive mixing of the mean magnetic shear.

Corrections to i due to magnetic helicity conservation are derived in a

subsequent paper (Ref. 27), but have been reviewed in Sec. IC above.

A. One Point Renormalization

Though our goal is a renormalized equation for the two point

correlation function, the diffusion coefficients in the two point equation

depend on one point fluid element propagators. We obtain these in the

spirit of Refs. 38 and 39. The renormalization is done at the level of the

fluid element trajectories in position space, rather than in full Fourier

transform space. This allows for a more transparent connection with the

renormalized field line trajectories of Sec. IA, as well as making the

physical meaning of neglected non-Markovian effects more clear.

Working in slab geometry for simplicity and retaining only the 2

component of the fluctuating field, we suppress the V collision term for

simplicity and write the perturbed version of (56),

(2- S<B>.V - S6L 3) 6N = S6L <N> (65)

Consider the fluctuation 6N in a large group of turbulent background

fluctuations 6Lk(x) with wave numbers k = (kypkz). We seek the ensemble
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averaged effect of the background fluctuations in the nonlinear term of

(65). To do so, we calculate that part of 5N that is proportional to each

6Lk* in the nonlinear term of (65), i.e.,

6N(x,t)=S dt' G(t,t')6L (x,t,)e i'<x 3 6N(x,t') (66)6N~xt)=s 0 kax

Note that there is also a part of 6N coming from the 3<N>/3x term on the

right-side of (65). However, that term (see (70)) contributes to the

equation for <N> rather than to the equation for AN. The operator G(t,t')

in (66) satisfies

( - S<B>.V - S6L a) G(t,t') = 0 (67)at 3 x

with G(t,t)=1. G(t,t') is a single element propagator that converts x into

the time-dependent magnetized fluid element trajectory x(t) with initial

condition x(t')=x (i.e., Eulerian into Lagrangian variables). For random

phase, stochastic fields, we retain only the ensemble averaged orbits in

G(t,t') and, therefore, set G(t,t') = <G(t,t')> = <G(t-t')> in (66). We

further make the Markovian approximation by setting 6N(x,t') = 6N(x,t) and

pulling a6N(x,t)/3x outside of the integral in (66). This approximation is

strictly valid only if the scale lengths and correlation times of the

background fluctuations are much shorter than those of 6N(x,t), but it

yields the physically appealing result of a diffusion equation. With these

approximations, we insert (66) into the nonlinear term of (65) to obtain

- S<B>.- - D -) 6N = S6L - <N> (68)at -- ax ax 3x

where

S dk <L(
D = S2J dt <6L2(x,t )> ke x<G(t)e (69)

o (2t). k

is the diffusion coefficient. According to (68), the ensemble averaged
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effect of the turbulent background fluctuations is to cause a magnetized

fluid element to diffuse. The mean field also diffuses. Inverting (68) by

the use of <G(t,t')> gives the portion of 6N that is phase coherent with 6Lk

6N(x,t)C=Sf dt'<G(t,t')>e - 6L (t') a (N(xt')> (70)
0J k (70

We again make the Markovian assumption by setting <N(x,t')> = (N(x,t)> and

pulling a<N(x,t)>/3x outside of the integral in (70). The Markovian

assumption here is on a sounder footing than in (66) since the mean field

evolves more slowly and on larger scales than the fluctuation 6N. Insertion

of (70) into (56) and ensemble averaging gives

<N> = a (D+1) <N> (71)at ax ax

The turbulent diffusion coefficient D appears as an anomalous resistivity.

Note that the positive diffusion terms in the equations for N and L are

consistent with the cascade of these quantities (energy and cross helicity)

to small spacial scales.

The turbulent diffusion of the mean field in time is related by the

Alfven speed to the diffusion in z of spacially stochastic field lines

discussed in Sec. IB. To show this, we note that

( - S<B>.V - D ) <G(t,t')> = 0, (72)

a result that follows from (67) in the same manner in which (71) has just

been derived from (65). Assuming the model sheared field of Sec. IB

(G(t,t')> expi(kyy+kzz) can be evaluated from (72) and inserted into (69) to

give

fdk
D f 2 S2 <L 2 > G (73)

(2T)

where
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Gk = dt exp[iSk.gt - (t/T ) -Yt] (74)
- 0

with

T=1 k2 B'2 S2 W-1/3 (5to (- k B' S D) (75)3 y oy

The quantity Y in (74) follows from the assumed slow growth of the mean-

square fluctuation level, i.e., <6L 2 (t)> = <6L2 exp ft dt'Y(t') in (69).

For weak static fields, Gk = irVSk.po), so that in dimensional units, the

anomalous resistivity D in (71) is Da2 /TR = SaDm/TR = VADm where Dm is given

by (22) with 6L (the clump portion of the magnetic field) replacing 5B.

For finite amplitudes, it is useful to approximate (74) as a Lorentzian, Gk

= i(Sk.B 0+iT~ )0 . As with zo (see Sec. IA), To broadens the resonance and

leads to a nonzero D at resonance overlap. From (74), D becomes nonzero

when

x-x | < (D/3Sk B' ) 1 x 0 (76)
Sy oy o

where x5 =- kzBoz/kyBoy is the position of the rational surface. Equation

(76) is just the island resonance overlap condition. To see this, we write

D~S 26B2res to where 6Bres here denotes the clump part of the field that is

within a resonance width of x5 . Equation (76) then gives D~S6Bresxo and xO

becomes

x - (6B /k B' )1/2 (77)
0 res o oy

Since (77) is on the order of the island width in the resonant modes, (76)

becomes x-x5 3<Ax and, therefore, D becomes nonzero at island overlap. Note

that DX /T0 - (AX) 2 /. The field lines diffuse with a step size of the
00

island width and with a time step of the Lyapunov time. This suggests the

model of colliding islands that we have alluded to in Sec. I. In

dimensional units, D~(6Bres/Boz) VAXo where we interpret xO as the
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transverse correlation length.

Similar calculations as these can be carried out on (57). For

simplicity, we consider only the case of L and N coupling where (V> = 0 and

<V.B> = 0. This is a "strong" coupling where <N 2> = <L2> = <L.N>. As a

consequence, <L> also satisfies (71). Note that DL = DN = D. The change in

sign of S (i.e., the direction of Alfven wave propagation) in going from

(56) for N to (57) for L does not effect the diffusion coefficients since

only the real part of the propagator Gk is required for D or DN.

Physically, Alfven wave emission causes clump decay--regardless of the

direction of the wave propagation. The strong coupling limit means that the

mean-square magnetic and flow fields are transported similarly in accordance

with the (approximate) frozen-in property of the fields. The two fields

respond nonlinearly on the same time scale, i.e., T L = T N= To. The

situation is analogous to the case of electron and ion Vlasov clumps where

the electron and ion masses are equal." The strong coupling limit has an

additional advantage: we need only consider the energy and magnetic helicity

invariants (48) and (50). The third invariant of cross helicity is

satisfied identically for all time (see (49)).

B. Two Point Renormalization

The renormalization of the two point equations for <N1 'N2>

<N(x,,t).N(x2,t)> and <Ll.L2> = <L(x 1 ,t).L(x2,t)> can be done in the spirit

of the last section. We only sketch the procedure here, but the reader can

find details in Sec. VII of Ref. 1.

The two point version of (56) is

- SL.Y - SL 2 ' 2  2'2 0 (78)

where we have again suppressed collisional dissipation terms for
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simplicity. Separating mean and fluctuating quantities by NI.N 2 = <N1.'2) +

6(Nl.82), (78) becomes

- S<B >.V - S<B >.V ) (N .Nat 1i -1 -2 -2 -1 -

- S i <6Li 6(N N2)> - 0 (79)
i-1,2

In order to evaluate the nonlinear term in (79), we use the two point

version of (70), i.e.,

c t -ik.x.i
6(N 1.N2) = S dt' <G 12 (t,t')> 6 Lk (t') e ~ ~

i-1,2 -

.V<Nl (t') .N2 (t')> (80)

where G1 2 (tt') satisfies

(-sL . - g222) G t~t') = 0 (81)

with G1 2 (t,t) = 1. Again we make the Markovian approximation by setting

<N (t').N2(t')> = <Nj(t).N 2 (t)> in (80). Substituting (80) into (79) and

reintroducing the collisional dissipation term then gives the bivariate

diffusion equation

S <B. -. V .(D. +2).V <N1 .2> <0 (82)
i=1,2 1 1 1,2 -l 2

where

CO dk -ik.xik.x.
D. .=S2 2dt f 2 <L(xit)6L(x ,t)> e <G2(t)> e - -j (83)

=o ( 2 ) 2 - ik1

Similar calculations can be carried out on (81) and, again using the

Markovian approximation, we find that <G 1 2 (t)> satisfies the same equation

as <N1'N2 >, i.e., (82). The orbit function <G 1 2 (t)> exp ik.xj in (83) can

then be evaluated as in the last section. We again use the model sheared

field of Sec. IA and find that
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dk
Dij = S2 (2 < kG exp ik (y y (84)

where Gk is given by (74) and, for the near resonance case, we have set

xl=x 2 in the spectral function and set k.(xi-x) = ky(yi-yj) in the orbit

function. Note that the xx component of (84) , which we denote by Di , is

just (73) as y1_+y2, i.e., D11 = D2 2 = D.

Retaining only the x component of the field fluctuations for

simplicity, we can straightforwardly obtain the equation for D(N1>.<N 2 >/3t

from (71) and subtract the result from (82) to obtain the equation for

<6N1 .6N2 > = <1'2> - <N1>.(2>. Since uncorrelated fluid elements diffuse

independently, we can equivalently deduce that <N1 >.(N 2> satisfies (37), but

with D12 = D21 = 0. Assuming that <6N,.6N2 > depends only on the relative

coordinate x. = _x-x 2 , an approximation valid for scale sizes less than the

mean shear length, the equation for <6N,.6N2 > can be written as

- <B_>.V - (D_+2) <6N .6N2

=2D 12  3x (N2' 3<N I (85)

where D_ = D + D22 - D12 - D2 1 and, with 6L as the x component of 6L,

D12 2 dk2 2(xk=)> G, exp ik y_ (86)
(21T)

The equation for <6L,.6L2 )> corresponding to (85) can be obtained in a

similar way. Note that we have evaluated D12 on the right hand side of (85)

at x_-0 since, for IxI>xd, D1 2 +0 (see (84)) and the clump source term

vanishes. Also, since the linear and nonlinear shear damping (Alfven wave

emission) terms vanish on the left-hand side of (85) as x_+O, the clump

source term on the right-hand-side of (85) makes is largest contribution

when x_=0.
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The correlated and relative diffusion coefficients D1 2 and D_ have the

following meaning. As x1+x2, two points in a magnetized fluid element feel

the same stochastic forces and, thus, diffuse together, i.e., D.+O. For the

shearless case this means, in the absence of collisional dissipation, that

(N2 > is conserved in (82). Since an analogous result holds for <L2>, the

nonlinear diffusion terms generated in the renormalization conserve total

energy and cross helicity. In the case of nonzero shear, energy and cross

helicity are again conserved. The conservation of <N 2 > means that the

diffusive mixing (rearrangement) of (N>2 must produce fluctuations <6N 2>,

i.e., the clumps. This is the meaning of (85) and, in the strong N/L

coupling limit where <V.B> = 0, is just the energy fluctuation production

relation (52). In this limit, the equation for <6L 1 .6L2 >, being the same as

(85) but with S+-S, yields the same result. For large xI-x 21, two fluid

elements feel different forces and thus diffuse independently, i.e., D 12+0

and D.+2D. The net effect of D_ is to diffusively mix magnetic fluid

elements of different spacial scales. In this way, energy cascades to small

spacial scales (high wave numbers).

Along with the conservation of magnetic helicity imposed in Ref. 27,

the renormalization preserves all of the dynamical invariants of the

original one fluid MHD equations. This is of crucial importance. First, it

ensures us that, while some terms have been neglected, the renormalized

equations we have derived maintain the essential physics of the original

equations. One could go so far as to say that the preservation of the

dynamical invariants is the most important requirement of the

renormalization procedure.

Since the two point correlation function is peaked about x_-0, the

turbulent and collisional diffusion terms on the left-hand-side of (85)
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cause the decay of localized fluctuations. This is in contrast to the

corresponding diffusion terms in the one point equations, e.g., (68) and

(2 4). There, V 2 = - 6Jz > 0 for a hole fluctuation so that the diffusion

terms produce growth (as for the tearing mode). Physically, the diffusion

operators cause decay in the two point equations because neighboring

elements in a localized clump fluctuation undergo stochastic orbit

instability, and thereby diffuse apart radially. Correlations are destroyed

by this effect.

C. Effect of Pressure

Because the p* pressure terms conserve energy by themselves when V.V=0,

we have been able to treat the renormalization and conservation properties

of the nonlinear N.V and L.V terms separately from the pressure terms. We

now consider the pressure terms and show that their effect on (85) is

negligible compared to the current (magnetic shear) driven clump effects we

have already considered. The main reason for the neglect of <p> is that <p>

does not effect the mean magnetic field profile. Indeed, because of mean

pressure balance (46), it is (B> that determines <p>. Because of (46), <p>

has no effect on the correlation function equations. While the remaining

6p* terms do have an effect, the effect is small since, from V.V=0, 6p* does

not contribute to the total energy balance. The vanishing of fdx<V.V6p*>

means that the corresponding 6p* contributions to the two point correlation

function equation for the energy will vanish as x-+0. Since the shear

driving (mixing) term on the right-hand-side of (85) is finite and indeed at

its largest value at x_=0, the effect of the 6p* terms are, by comparison,

negligible. It is useful to see this in detail by considering the linear

part of 6p* in (47) (consideration of the nonlinear leads to the same
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conclusion). Using V.<BX>=O and V.6B=O, this part of 6p* satisfies

V 2 p* = 2 B' 6B (87)
1  oy ay

where, as above, 6B is the x component of 6B. If we again neglect the

correlation between 6V and 6B (strong coupling limit), 5p* makes the

following contribution to the 6N correlation function equation (85):

<6p* 6B2> - - <66B > (88)
a1 1 2 ax2  2-

Since 6p* - 6B from (87) and <6B6B> is a function of x_, the term

a<6p*6B2  - can be evaluated from (87) so that (88) gives a contribution

to (85) of

x

-4 B' dx' <6B(1)6B(2)> (89)oy ay_
0

In wave number space, this 6p* contribution is proportional to k.[-E(1)-

90(2)]. The additional source term to (89) vanishes as x_+O, thus making it

negligible to the shear mixing term already present on the right-hand-side

of (85). The terms are in ratio of x_/xd for small x-. A term

corresponding to (89) appears in the .<6Li.5L2 > equation, but with a plus

sign.



IV. CALCULATION OF THE GROWTH RATE

A. Nonlinear Newcomb Equation

- The dynamical equation (85) for the mean-square fluctuation level can

be inverted in time to yield a nonlinear, turbulent version of the Newcomb

equation. The nonlinear equation will dominate in the resonant region fx1-

x21<Ax and will determine the effect of turbulent mixing and decay of

fluctuations in the vicinity of a mode rational surface a xs=x 1 . The

behavior of the fluctuations away from the resonance, 1x5-x>Ax, will be

determined by the resonance broadened version of the Newcomb equation. In

analogy with linear tearing mode theory, a matching of the two solutions

relates the growth rate Y in the inversion of (85) to A' of the Newcomb

equation.

Consider first the case of time stationary turbulence where the mean-

square fluctuation level is not growing in time. Assuming that the

fluctuations have scale sizes less than the mean shear length, the time

inversion of (85) along the stochastic two point orbits can be written as

<6N .6N2 > = 2D T_(x_,y_,z_) B, 2 (90)

where

S 2  d 2 t
-t(x) = D f 2 <6L 2 >kGk dt' <exp ikyy_(t')> (91)

and we have noted that 3<N>/3x = Boy S. Equation (90) means that the

localized clump fluctuations are driven by the large scale magnetic shear

(Boy), a result consistent with the cascade of energy from large to small

scale lengths. The meaning of the -r_ factor in (90) can be understood from

the mixing process generating the clumps. Since a clump fluctuatin arises

from the diffusive (D) transport of a magnetized fluid element to a region

of differing energy density, a larger fluctuation results as the element
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diffuses farther and farther away from its density of origin. If the clump

is not susceptible to decay during the transport, the fluctuation would get

inexorably larger with time, i.e., T. in (90) would be equal to the elapsed

time t. However, because of stochastic decay processes, a fluctuation of

finite size has a finite lifetime (T_), so that the magnitude of the

fluctuation is limited to the value given by (90).

The clump lifetime is determined by the operators on the left-hand-side

of (85). These operators approximate the energy cascade to high wave

numbers by a relative diffusion (mode coupling) processes in the two point

correlation. In principle, the cascade involves all scale lengths in the

clump but, because of complexities in an analytical evaluation of T_, we

will be forced to consider only the turbulent dissipation of scales smaller

than the clump size. We will find that the decay occurs as neighboring

field lines in the clump diverge apart exponentially with time at a rate

( cl)~1. While the % = Tcl expression we calculate below is only strictly

valid for scales less than the clump size, it nevertheless gives a

reasonable result for the characteristic clump decay time. Moreover, the

precise analytical expression for T_ is not crucial, since, as we shall see,

we will only need an integral of T_. similar approximations for the Vlasov

clump case have yielded a clump lifetime in good agreement with computer

simulations .6

We expand the randomly fluctuating (stochastic) orbit function exp[iky_

(t)] of (90) in cumulants 40,2 and, for a normally distributed y_, obtain

<exp iky_> = exp(-1/2 k 2<y 2 >). The time evolution of <y2> can be calculated
y -

from the two point orbit characteristics of the left hand side of (85).

Using the model sheared field of Sec. IA, <B_.>.V_. = B' x_ 3/y for z =z2 '

the characteristic equations imply that
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<y (t)> = 2S 2B <D_> (92)
toy

(92) can be solved approximately by expanding D_ = 2(D-D 1 2 ) for small y_ so

2 2 2that <D_>=2k2D<y2>, where k. is defined by

32
k =-( ) (93)o 2D (2 y-=O

Because of the cascade of energy to high k, one might worry that this small

kyy_ expansion will quickly become invalid during the cascade. However, the

instability growth rate is on the order of T-1, so that the expansion is

valid during most of the first e-folding growth time of the instability.

Using this <D_> in (92), the time asymptotic solution with initial condition

y_(O) = y_ is

<y (t)> = (y2-2y SB x T + 2S 2B x -r )e t/T(94)-- oy-0 y-

where

-1

2 2 t2 -- (12) 3 T
T = (4k S2B D) 3 o (95)

is the characteristic time for neighboring field line orbits to diverge

apart exponentially. This divgerence causes the cascade of the energy to

high wave numbers, not a surprising result, since (94) is determined by the

diffusive dynamics of D_ in (85). In dimensional units, -C = zo/VA where zo

is the Lyapunov scale. While (94) has been calculated for z_=O, the z_

dependence can be recovered by replacing y_ in (94) with _ = y_ - xz- B

where x+ = 1/2 (xj + x 2 ). Since k. is the typical k in the k integral of

(91), the time integral in (91) will converge for t>Tci, where k2<y2

(-cl)>/2 ~ 1. Using (93), Tcl is given by
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~y 7 ~i *ln
'c ' -' ' ~ ~ 2 2 2 2 2 2

k9 (Y _-27_SB x_+2S B' x T
0 0 Y O y-

for argin>1 and is zero otherwise. Since the time integral in (91) is on

the order of Tcl, we conclude that T_~T cl in (90). When the fluctuations

are growing during the instability, the two point propagator on the left-

hand size of (85) is effectively (Y+-rc 1 ), where Y is the growth rate of

the correlation function. Therefore, the time inversion of (85) can be

generally written as

'2 -1
<6N 1 .6N2> = 2DTcl B (1 + Y T ct) (97)

The equation for <6I1.6L2> follows by making the replacements S+-S and

D=DL+DN on the right hand side of (85) (see (56), (57) and (68)).

With Y=0, (97) is in the form of a standard mixing length relation.

The mean (large scale) shear (B' ) is mixed to generate the smaller scaleoy

clump fluctuations. As discussed above, Tcl in (97) does not mean that the

clumps are driven by the small scales. Tcl describes the decay or lifetime

of the clumps and, along with the factor D, determines the mixing length.

The mean-square mixing length is x2 = Dic. Using (94),

xd = (4D/Sk0 B )1/3 (98)

so that rkOSB oyxd=l. xd is the two point generalization of the one point

resonance width xo (see (76)). Two field line trajectories are in resonance

(feel the same stochastic forces) when Ix_|<xd'

The resonant, nonlinear version of the Newcomb equation is derived

from (51). We define the clump "flux" functions T+* S~_' so that

3<N (1) 3% (2) i+ (1) 3T + (2)
- . 2 x ay y1 2 T e 1

Therefore,
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<6N .6 2 k = (- + k ) <6T+(1) 6T+(2)> (100)

and the Fourier transform of (97) can be written as

(! - k ) <6T (1)6+ = - 2DB '2 -,k) (101)
k oy c+i+ k-

where

Tl -x,k) adz-e Z dy_e (102)T(10)cl

Recalling (73) and (74), we can write D-S2<6L 2 >k(Y+To~

S 2ky2<6T2> (Y+') near the mode rational surface. Substituting this into

(100) and rearranging produces the Newcomb-like equation

2 22 (BI
k 2+ S2 )2 <T +(1)6T (2)> = 0 (103)

Fluctuations are created as the mean magnetic shear (B ) is turbulently

mixed (D) near the resonant surface. This mixing is opposed by stochastic

line bending forces (Sk.B-T('), but for a large enough mixing rate, net

growth (Y>0) of the mean-square fluctuation level is possible. We show in

Sec. IIIF that the instability is a nonlinear, turbulent version of the

Rayleigh-Taylor instability in a magnetized fluid.

Near the mode rational surface (Ixl<xd), the instability is described

by the nonlinear Newcomb equation (101). Close to the resonance, clump

decay by stochastic line bending (shear Alfven wave emission) is small. In

the limit, a clump of infinitesimally small scale will, because of energy

conservation, have an infinite life time (t 0 1 +o). The mean-square source of

fluctuations on the right hand side of (101) will increase secularly with

time and thus diverge. In the nonresonant region away from the mode

rational surface, shear Alfven wave emission (propagation) dominates.
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Energy is carried away from the clumps along stochastic field lines, thus

yielding a short clump life-time (Icl~Ic1+0). The clump source term in

(101) then goes to zero and, as we show in the next section, (101) goes over

to the two point Newcomb equation with broadened resonance 26

2 k J'
_- k + <6 (1)6(2))> =0 (104)

X_2 y k B? x +iz k
y OY- o

Eq. (104) follows by evaluating the Newcomb equation ((15) with 6JR = 0) at

position (1) and multiplying by 6(2) and ensemble averaging, where (2) is

at the mode rational surface, i.e., at x2 = - kzBoz/ky BY where k. B(2) = 0.

Note that we have also included the zo broadening in (104) and set 12 /axi =

a 2laX since x1 -x, 2 =x- This zo broadening resolves the singularity at the

mode rational surface. However, because of energy conservation, the

singularity in (101) exists to all orders in the field amplitude. The

source term for turbulent mixing in (101), therefore, dominates in the

resonance region.
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B. Growth Rate

Since D in (101) depends on <6Y 2 (0)>k (see (86)), we can solve (100)

for <ST 2>. Let x+ = (x 1+x 2 )/2 be located at the mode rational surface. If

E denotes the region about this singular surface, then, using xl=x++x_ and

X2 =X+~x-, we have

15X<6T(1)6T(2) >1 = <[6T'i(x +x_)5'(x-x_)

E

- S6(x +x_) 6T'(x+x)- -

= 2 <[6 'I(x+ +E)6(x +- ) - 6 (x++E) 6T''(x +-e)]>

=2 <6T1(1)6Y(2) - 6T(1)6T'(2)>

= 2 <I-62;(21) 616(22)>

= 2 6' <6T(1) 5'(2)> (105)

where 6' denotes the jump (discontinuity) in (101), and (1) and (2) in (105)

denote x++E and x+-E respectively. Therefore,

2
P dx- D2 2 <6'(1)6i(2)> = - 26' <6y-2 0)>

23k

<6T(1)6Y(2)>k reduces to the Newcomb solution <6$(1)6p(2)>k outside the

singularity when YT<1. To see this, we note from Faraday's law that

Y6~k .B 6$ - k B yX6$ ~ T~'(6/S)(x/xd), so 6i - (YT)~' (x/ xd ) (6/S).

Therefore, away from the singularity, 6'-6W except when YT is very large.

Since we are interested primarily in the stochastic regime where YT<l, this

approximation is a good one. The Newcomb equation for <6(1)6(2)>k is

given by (57) . Since
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<6$(1)65 (2)> = 2 '1 ) - $

2 A' <6 (1)6p (2)> , (107)k

the discontinuity in (104) is just A'k, the usual tearing mode stability

parameter. Therefore, as in the tearing mode theory 2, we match the inner

and outer solutions by setting 6'k = A'k. Since (101) describes the growth

of current hole turbulence, this procedure just matches (for each k) the

resonant hole solution to the Newcomb solution. Near the resonance, the

current hole has the same radial dependence as the tearing mode (i.e., see

Sec. IA, IB where 6Jz= - 26$/x
2 < 0) so that, for an isolated coherent

hole, the matching is done as in standard tearing mode theory, i.e., one

equates the logarithmic derivatives 6' and A'. The results (106) and (107)

mean that, in the turbulent case, the matching of solutions is also obtained

by setting 5' = A'.

Using (106) and 6'k = A , (107) gives

2D LB 2

<6Y (0)>k oy dx- T (x-,k)exp[-Ik Ix] (108)+ A +21k yI - c9. y

where A'k is given by the resonance broadened version of (16) and the

superscript L on DL is a reminder that DL depends on <6L 2 (0)>k, i.e., <6y2

(0)>k. An approximate way to evaluate the integral in (108) is to note that

the integrand is nonzero in the range ky_-koy_-1/2 and x_/xd-1/ 2 so that we

can replace YT., in the denominator of (102) with -2YT (see Ref. 8), and

exp(-kyx_)-1 in (108). Then, using (96) and (102), we do the x_ integral

first by completing the square in the denominator of (96) and get

1TA(k ) -
dx_ (x k) = y A ( (1+2Y-t) 6(k +k x+B ) (109)ci- ISBy I Z y + oy

where
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A(k) = 2 [1 - J (/6 k/k )] (110)
k2 0 0

(J is the Bessel function). Equation (110) is proportional to the clump

magnetic energy (see (90)). Recalling (73) and replacing the resonance

function Gk with a Lorentzian (see (74)), we can construct DN from the

left-hand side of (108) to obtain

N L oSB I k0D = D L N
1+2Yt A'c

where r = Y + t0  (with To given by (75)), and

dk ReA'k+21k I 21 f 2 k y y k A(k ) (112)
c o (ReA' +21k I) +A

is an effective (inverse) A'k averaged over the clump spectrum. Here, k in

A'k is (ky,-kyByx+) where A is given by (20). An equation similar to (101)

can be derived for <6_> in terms of DN. The equation can be integrated and

used to construct DL:

L N SBY k0D = oyN o (113)
1+2YT A'rc

As in the Vlasov clump case (see Ref. 8), the coupled equations for the

diffusion coefficients yield a quadratic equation for Y. We can simplify

the situation here by taking the N/L strong coupling limit where, for zero

cross helicity, we can set TN = TL = T0 and TN = TL = T. Then, the two

equations (111)-and (113) each yield the same equation for the total energy

correlation function, i.e., for DL = DN = DE where DE is given by (73), but

with <6L 6L> replaced by <6B6B + S-26V6V>. Further , we note that to -

(12) 1 [- 2t, so (111) and (113) finally give
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2 (11 4a)
(1 +YT

where, since ISB0y k T xd 1 ,

2
R =A, (11 4b)

C,'d

Note that the B factors on the right-hand-side of (101)--ostensibly the

clump driving terms--divide out in the derivation of (11L4) in favor of A'k

J., as the driving term. One of the B, factors divides out because fdx.

Tci~(Boy)1 in (109). Because of (73) and (74), the evaluation of D at k.Bo

= 0 removes the other factor of BO. The free energy source for instability

is, therefore, the same as for the tearing mode.

In the limit YT>1, the Lyapunov time is long and growth can occur

before field line stochasticity has any appreciable effect. In this

hydrodynamic limit, (114a) becomes Y2 = R/T2 which, with (114b), can be

approximately written as

ReAl x
2 k (115)

IA xd 1 2

If we now recall that T~ =koBoySxd a.nd write (as in (77)) xd =

(6Bes/k B )/2 for the island width in the resonant modes, (115) can be

rewritten in dimensional units as

ReA <6B2 >
_2 k 2 x res (116)
TH Axd d

Except for the clump shielding factor I Axd 2 , (116) is the same form as

the growth rate calculated in Ref. 21. However, rather than the growth rate

for a tearing mode in an assumed static background of stochastic fields,

(70) describes the growth of resonant clump fluctuations. The clumps are

self-consistently generated and shielded as other growing (background)
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clumps turbulently mix the mean shear.

In t-he limit where large amplitude islands overlap, the stochastic

region is large and the Lyapunov time is short. This YT<1 limit of (114)

yields a growth rate of

Y - D ( - 1) (117)xd

where, for large amplitude islands, we have used (2f)~' - A'xd in front of

the parenthesis of (117). Here, A' is an effective average value of A'k

taken over the wave numbers of unstable clumps, i.e., the dominant A'k in

(112). Without the parenthesis, (117) resembles the growth rate of a finite

amplitude, tearing mode island in the so-called Rutherford regime.20

Replacing turbulent parameters with their corresponding coherent island

quantities, i.e., A' with A'k, xd with Ax, and D with the collisional

Spitzer value rgp, we obtain the Rutherford result. The (-1) factor in

(117) brings the coherent island Rutherford result into the turbulent

regime. Though an individual island will grow at the rate (25), the

stochasticity resulting from the resonant interaction between islands will

cause mode coupling and, hence, island decay. Net growth (117) of the mean-

square fluctuation level results if the creation of new fluctuations by

mixing (4) occurs at a rate exceeding the decay rate due to stochasticity (-

1), i.e., R>1 in (117).

In the- stochastic regime, the instability describes the nonlinear

reconnection of field lines. The characteristic reconnection time is -t--the

nonlinear or turbulent resistive time in the resonant layer (-T' - D/x2) or,

equivalently, the Lyapunov time for stochastic field lines to diverge

exponentially. This stochastic transport of field lines across the sheared-

fields of the plasma randomly mixes elements of magnetized fluid at a rate

- . Because of energy conservation, this random mixing process creates
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clump fluctuations at the same rate, and is the source of the instability.

The speed at which field lines are randomly transported across the

resonance--a speed referred to in the space plasma literature4 ' as the

"merging rate"--is Xd/T. Since, in dimensional units, ~ ~ VAkyBoy xd/Boz,

and xd is on the order of the island width, the merging rate is

approximately given by VA(6B/Boz), where VA is the Alfven speed in the

longitudinal field BOz. The merging rate is the Alfven speed in the local

perturbed field. Again, the Alfven speed appears because the nonlinear

dissipation of a clump is due to the propagation of Alfven waves down the

stochastic field lines away from the clump.

Evaluation of (113) for Y requires k' which, from. (86), (93), and D =

2 (D-D1 2) is given by

2 1fdk dkk = f z y ~2 k~ <6Vi2(O)>k =1 (118)
(27r) y k

where

S Re A'+2|k I +
I = Jdk k n+2A(k ) (119)n - Y (ReA' k +21k 1)2+x 2 y y

Since i depends on ko (see (114) and (112)), (114) and (118) have to be

solved simultaneously in order to obtain the growth rate. Instability

requires a value of (ReA' + 2IkyI) that is positive and sufficiently large

to ensure that R>1. Moreover, the only scale length in (119) to determine

ko is ReA'k. While ReA'k is rather sensitive to current profile, we expect

less sensitivity in ko and i since they are integrals over ReA'k. Still,

the coupled integral equations are non-trivial and require numerical

evaluation. For a rough estimate of these quantities, we consider a

toroidal, confined laboratory plasma typical of a tokamak fusion device.

There, ReA'k>O for low mode number modes.28 In particular, ReA'k - a- in
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dimensional units where a is the minor radius of the plasma column.

Equations (118), (119), and (114), therefore, imply that unstable MHD clump

fluctuations will have low poloidal mode numbers and growth rates on the

order of the inverse Lyapunov time -~-. Note that instability (R>1)

requires (ReA'k + 2Iky )>O rather than ReA' >O, since the linear line

bending restoring force term 2Iky l in (16) is already taken into account in

the nonlinear T term in (1114), i.e., the (-1) term in (117). Only the J V

part of ReA appears in the clump growth factor i of (117).
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V. RAYLEIGH-TAYLOR ANALOGY

The net growth of fluctuations (113) by mixing can be obtained by

analogy with the Rayleigh-Taylor interchange instability for a fluid with

inverted density gradient. In a magnetized plasma with shear, the

instability is known as the Kruskal-Schwarzschild instability. 3 ' The MHD

clump instability is a nonlinear, turbulent analogue of the Kruskal-

Schwazschild instability.

Consider the Rayleigh-Taylor instability for an incompressible,

unmagnetized fluid. In dimensional units, the fluid evolves according to

mass conservation

a + V.Vp = 0 (120)

and momentum balance

P(a + V.V) V = - pgR - Vp (121)

where p is the pressure and we have assumed that acceleration due to gravity

points in the negative 2 direction. Linearizing (120) and (121), one

obtains

a 2 a 2 2 ND (p Y ) L 6V - k (p Y 2 _ ) (122)x o ax k y 0 ax k(2)

where 6Vk is the Fourier transform of the 2 component of 6V, Y is the growth

rate, and p0 is the mean density. In the case of magnetized fluid with

shear, one couples (120) and (121) to the Faraday/Ohm law

a = V x (V x B) (123)

and (122) becomes

1 + (k.B)2] - 6V

60



k p + Q 2 - g 6 Vk (124)

Instability occurs when the forcing by the density gradient term overcomes

the stabilizing effect of line bending. When 3p 0 /3x > 0, i.e., heavy fluid

on top of light fluid, potential energy is decreased upon interchange or

mixing of fluid elements. If the wave number of the frozen-in fluid

elements is perpendicular to Bo, the interchange will not alter the magnetic

energy. For k. B*0, the mixing bends field lines and increases magnetic

tension, and thus tends to stabilize the instability. Stabilization occurs

as energy is carried away from the fluctuation in the form of linear shear-

Alfven waves.

Extrapolating (124) to the nonlinear, turbulent regime yields the

governing equation for the MHD clump instability. First, we must deal with

the nonlinear mean-square fluctuation, rather than the linear, one point

fluctuation. The conservation of mass density (120) is replaced with the

conservation of energy density. Therefore, instead of an equation for 5Vk,

one has an equation for the correlation functiOn <6V(1)6V(2) +

po I6B(1)6B(2)>k. Recalling that B1  Vx2p, and defining the stream function

$ through y1 = Vxf, we will have a nonlinear dynamical equation for

k 2<61P(1S( 2)> = 2<[6 (1)6*(2) + po6$(1)6$(2)]>k. Second, the linear lineyk

bending term k.B 0 = - iB0 .V in (124) must be generalized to the nonlinear,

stochastic regime. This means that in (124), [p0 Y
2 +(k.B )2 ] = j/pOY+ik.Boj 2

-1-0

+ p(Y+T-)2, since VA .B(x)/B - VAkyB xd/B~-T1 near the resonance. The

finite amplitude and stochastic bending of the field lines is approximated

by field line diffusion. Neighboring field lines (and frozen-in-fluid

elements) diverge exponentially at the rate T_' and carry energy away

stochastically in the form of nonlinear shear-Alfven waves. This
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stabilizing effect is countered by the creation of new fluctuations by

turbulent mixing. Nonlinear, turbulent mixing of the magnetic shear

replaces the gravitational forcing term for coherent interchange of the

density in the Rayleigh-Taylor model. Therefore, the coherent mixing term -

g 9p 0/ax32W/Dx
2, where W =- pogx is the mean potential energy, must be

generalized to the turbulent, current driven case. In the equation for the

correlation function, this means a 2W(1,2)/ x, where W(1,2) is the two

point, nonlinear magnetic potential energy of the clumps. Neglecting

helicity conservation, we can use the turbulent mixing length relation <6B2 >

-~ <2 >(By)2 ~ D- (B' 2 and estimate 3 2W(1,2)/ax2  W/x 2  Dx2 "ci

(B' )2 - (t t /)(B'y)2. Therefore, the turbulent, current driven analogue

of (124) then becomes

a ( -)2 a 2Sp ( Y- 1 ) -D<6T 2 (x-)>ax o o ax 'k

2 -1 2_ 'ck 21 2
= ky p(Y+T )2- (B' ) <6T (x_)> (125)

where we have divided out the k factor from both sides and set <6T 2(X_)>
y

<5(1)6'(2)>. Rearranging (125) gives

2 T (V k B' /B )2
- k + A y oy 0 < 2(x )> = 0, (126)

ax 2 ky +-1)2 k
0

Since Tc ~ ci 0 + YTO)~', (126) is just (102) in dimensional units. The

quadratic dependence of (113) on Y is thus due to the second order time

derivative (i.e., acceleration) in the momentum balance. In the stochastic

regime the acceleration goes over to diffusion (6x 2 - t) and the quadratic

dependence on Y becomes a linear dependence as in (117).

62



VI. NONLINEAR ENERGY PRINCIPLE

The equations for the MHD clump instability can be recast into the form

of an "energy principle" similar to that of linear MHD stability theory.29

The linearized energy principle of MHD derives from the conservation of

energy

Jdx * p0 <6V2> + dx6W = 0 (127)

where 6W is the potential energy density driving the instability. For

instance, in the case of the Rayleigh-Taylor instability of Sec. IIIF, a

quadratic form can be constructed from (124) to give

y2 _ fdx 6W (128)
fdx- <p >2 0 k

where 6k is the fluid displacement and, in the simplified case of 36Vk/3x =

Y9Ek/3x = 0, 6W is

6W = (kB)2 - g 2 E, > (129)

Instability results when 6W<O, i.e., when mixing of the density gradient

overcomes the stabilizing effect of line bending.

For the MHD clump case, we deal with the total fluctuation energy and,

thus remove <6B 2 > from 6W in (127). The two-point, clump analogue of (128)

is

fdx 6W c

2 -(129)
fdx_<6V1.6V2 26B1 .6B2 > k

where

6W 12 tcz 2
6W = <6V .6 + S B .6B >-2 - DB (130)to0 -1 62 , -2 k T0 oy(10

Instability (6Wc<O) results when turbulent mixing of the magnetic shear (the

second term in (130)) overcomes stochastic line bending (the first term in
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(130)). Insertion of (130) into (129) and integration over x_ gives

Y t < c < 6 ( 0 ) >2< 2 0 ) >

o k

DB' 2

- f(+2 1 k
-

dx_-Tcexp[- Ik |x_] (131)

or, upon rearrangement and use of (108) and (73),

S1 - (1-R)
T0 T0 T0

This is just (113) or (23). Clearly, 6W0<O means that R>1, or, when YTo<<1

>1l.
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VII. NONLINEAR KRUSKAL-SHAFRANOV CONDITION

Though the unconstrained mixing calculation of the MHD clump

instability presented here neglects magnetic helicity conservation, it does

provide an interesting physical interpretation of the instability threshold.

For this purpose we use the Re Ak model of Eq. (26) of Ref. 28 for long

wavelength (low mode number) modes in a general current profile , i.e., Re

Ak ~ (k.B/k.Bo)2/ky - (Boy/Boy) 2/ky. Since the relevant ky's are of order

ko, (112) gives A c~ ReAk - ko. The instability condition R > 1 is

approximately then xdReAk < 1, i.e., the "constant i approximation" in the

stochastic layer . Defining L. koxd BOY/Boz, the instability threshold

condition becomes in dimensional units

1
Joz Bozc

where again we have set %=1. As discussed in Sec. IB, Lc~zo is the z

stochasticity length--the length one must move in z for the stochastic field

lines to diffuse radially by xd. For instability, (133) states that

sufficient production of fluctuations by mixing (Joz - B'y) must occur to

overcome the spacial destruction of the localized clumps as neighboring

field lines diverge apart stochastically. Equation (133) is reminiscent of

the instability condition Joz>kzBoz for the linear kink mode (Kruskal-

Shafranov condition). 29 In a conventional picture, the kink instability

arises if the "pressure" due to bunching of the poloidal field lines

generated by Joz can overcome the resistance to this bending of the plasma

column provided by the Bo z-field line tension. In the MHD clump

instability, random localized bending and bunching of the field lines occurs

nonlinearly as the mean poloidal shear profile is turbulently mixed. This

process is opposed by the random restoring force of the stochastic magnetic

field lines. Since this restoring force (and the Alfven wave emission it
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causes) is minimal near the mode rational surfaces, kzBoz of the linear

stability condition is replaced by k.B-k B xd-Boz I in the nonlinear

(clump) stability condition.

A further connection with the linear kink instability can be obtained

by integrating (133) over the minor cross section of a toroidal plasma. The

instability threshold condition then is

L
q(a) < 2 (134)

where, q is the "safety factor" and R is the major radius of the plasma.

Equation (134) is the turbulent, nonlinear clump analogue of the Kruskal-

Shafranov condition, q(a) < 1.29 Instability results when the connection

length is less than the sochasticity length. Expressed this way in terms of

characteristic spacial scales of the stochastic fields, it is the spacial

version of the temporal instability condition l/T > 1/T. Physically, after

island overlap, clumps cannot regenerate if, as one moves along a magnetic

field line, neighboring field lines inside a clump diverge radially by xd

(the clump scale size) before the distance z-Rq characterizing the shear

strength is reached. Since the field lines diverge by xd after a distance

traversed in z of Lc, the stability condition is Rq>Lc. For L,>Rq, a

connection length can be traversed before Lc is reached, the clumps can

regenerate and instability results. With the dynamical constraint of

magnetic helicity conservation, (133) gets replaced with J0o > P

At island overlap, the initial region of stochasticity will be small

and confined to the island seperatrices. For such a small xd at instability

onset, 2 Lc can easily be larger than R. Then, (134) implies a nonlinear

stability boundary below the Kruskal-Schafranov limit, i.e., subcritical to

the stability boundary of the linear kink mode. We note that the threshold

for the Vlasov clump instability is also subcritical to the corresponding
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linear instability boundary."'

VIII. COMPARISON WITH VLASOV HOLE GROWTH

It is interesting to compare the growth rate of MHD current holes to

that of phase space density holes in a Vlasov plasma. Consider the growth

of a current hole in a stochastic bath of background holes. In the fully

stochastic case (YT < 1), the background stochasticity, as we've seen, can

be modeled as an anomalous resistivity D. Inserting D into Faraday's law,

we obtain (24) for the evolution of the poloidal flux function. The

resulting growth rate (25) can be rewritten as YH - (4xd)/T. Expressing T

in terms of xd, this becomes (in dimensional units)

YH A (x/Ay) IBI /Bo ( Xd) (135)

where k-' = Ay is the poloidal scale length of the hole. The first two
0

factors in (135), coming from the reconnection rate T~ - D/x2, determine

the characteristic growth time. Reconnection occurs as field lines bend

stochastically at island overlap. This course-grained reconnection is

driven by the stochastic Joz x 6B, or field line tension force. The

instability is current driven. The rate at which the reconnection occurs is

given by the shear Alfven wave frequency VABo/Boz - VAk B xd/BOZ - T in

a resonant stochastic layer of width xd about the .island. Larger island

fluct.uations grow faster because the width of the stochastic or reconnection

region xd.increases with amplitude as in (80). The free energy source for

growth comes from the shielding function Akxd, i.e., the current density

gradient in the region outside the island. For A >0, there is a positive

discontinuity or jump in the perturbed magnetic field across the island, and

the island grows.

The growth rate of an isolated ion hole in the Vlasov plasma7 is
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Y ~ - (Av/Ax) (v f ) (v ft ) (136)
i1 01 ee

where vi, ve are ion and electron thermal velocities and fi = afoi/3v, fe

Safoe/3v are the velocity gradients of the ion and electron mean

distributions. Equation (136) describes the growth of an ion hole of

velocity width Av and spatial width Ax. The hole grows in depth as it

decelerates to regions of larger ion phase space density--hence, the second

factor in (136). The free energy for the deceleration is provided by the

electron gradient (the third factor in (136)). Electrons are resonantly

reflected by the ion hole potential and exchange momentum with the hole.

For foe > 0, i.e., more electrons going faster than slower than the hole,

the hole is accelerated by an electric field created by the reflecting

electrons. The electric field or potential drop across the hole is

2 '
proportional to Ve foe ~ Imee, where ImEe is the imaginary or resonant part

of the dielectric function due to the electrons. The potential drop

structure is frequently referred to as a double layer.1 0''' The growth rate

is amplitude dependent through the hole trapping time Ax/Av. As the hole

potential increases, the hole growth rate increases since more resonant

electrons are reflected and each electron transfers more momentum to the

hole.

Despite the similarities in (135) and (136), there are several

important differences. While the MHD hole grows in amplitude at a fixed

resonant, position (i.e., mode rational surface) the Vlasov hole grows by

decelerating to different resonant velocities where fo0 is larger. The free

energy in the Vlasov case is resonant--coming from electrons within a

velocity trapping width (-Av) of the hole. In the MHD case, the free energy

for growth derives from the nonresonant region. Consequently, free energy

comes from the imaginary part of the shielding function (Imc) in the Vlasov
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case, but from the real part of the shielding function (Rev ) in the MHD

case. However, in each case, growth is due to a jump or discontinuity in

the field. [Note that the Kadomstev bubble also grows by a discontinuity in

the field (see Ref. 30). The opposite signs of 6ip' at the bubble and plasma

boundaries generate opposing currents which force the bubble boundary into

the plasma]. While the Vlasov hole can grow in isolation, the MHD hole

requires the stochasticity (i.e., the turbulent resistivity D) produced by

the overlap with other hole resonances. Since an additional effect of the

stochasticity is the destruction of coherent islands by the exponential

divergence of neighboring field lines, net growth must be achieved by the

creation of new fuctuations by mixing. The MHD instability is, therefore, a

clump instability rather than an isolated hole instability, i.e., the

relevant growth rate is (28) rather than (25).
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