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ABSTRACT

Kinetic stability properties of an intense relativistic electron ring in modified and

conventional betatron configurations are investigated using the linearized Vlasov-

Maxwell equations. Included is the important influence of intense equilibrium self

fields. It is assumed that the the ring is thin, and that v/yb < 1, where v is Budker's

parameter and ybmc2 is the characteristic electron energy. The stability analysis

is carried out for eigenfrequency w close to harmonics of the cyclotron frequency

W, in the vertical betatron field. Also included in the analysis is the influence of

transverse electromagnetic effects and surface-wave perturbations. Dispersion re-

lations for longitudinal perturbations are obtained, where it is assumed that the

ring is located inside a perfectly conducting toroidal shell. There are several note-

worthy points. First, transverse electromagnetic effects can completely stabilize the

negative-mass instability for sufficiently high-current rings when betatron focusing

forces exceed defocusing self-field forces (42 > w2/yl). Second, for w > /y2

with no charge neutralization or stabilizing spread in canonical angular momen-

tum (f = 0 and A = 0), surface-wave instabilities can be completely stabilized at

sufficiently low transverse beam temperature. Third, for w. < w 2 / y, sufficiently

low transverse temperature together with surface effects combine to drive a radial

kink instability. Finally, the dispersion relation is analyzed numerically for pa-

rameters representative of the Naval Research Laboratory's modified betatron and

the Los Alamos National Laboratory's Liner Driven Ring Accelerator and Phermex

Injected Conventional Betatron. Detailed stability results are presented for the pro-

jected operating regimes of these devices, including the effects of canonical angular

momentum spread, inverse aspect ratio, slowly varying accelerating fields, location

of the conducting wall, and radial elongation of the minor ring cross section.
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I. INTRODUCTION

High-energy accelerators capable of producing high-current electron beams have

been an active and growing area of research. In recent years, there has been consider-

able effort to improve and modify the technology of existing acceleration schemes' .

Cyclic induction accelerators appear to be very promising, which include the con-

ventional high-current betatron as well as the modified betatron (Fig. 1). In the

conventional betatron, a relativistic toroidal electron ring is confined by an exter-

nal mirror (or betatron) magnetic field, and the change of this magnetic field with

time is responsible for the acceleration. In the modified betatron, a strong applied

toroidal magnetic field is added to the mirror field of the conventional betatron- 14 .

This has the effect of considerably increasing the limiting beam current over that

of the conventional betatron. Denoting the applied fields at the beam center by

B0 , and Boo, it is found that the limiting beam current is increased by a factor of

(1/2)(Boo/Bo.) 2 , when Bo/Bo, > 114. Also, the stability of the accelerated beam

is substantially improved7 9" 2

Detailed analyses of the modified betatron configuration are relatively recent.

However, previous theoretical studies have been carried out using kinetic7- 9 , single-

particle10 ' 2, and macroscopic fluid13 models. This paper uses a kinetic model based

on the Vlasov-Maxwell equations to investigate longitudinal stability properties

over a wide parameter range. Included in the analysis are the important effects of

intense self-electric and self-magnetic fields.

Also included in the equilibrium and stability analysis are the important ef-

fects of slowly-varying accelerating betatron fields. In this regard, the major ra-

dius of the electron ring (Ro) is assumed to remain constant during acceleration.

Therefore, when including the effects of time-varying betatron fields, the 2:1 be-

tatron flux condition is assumed to exist5 -15. This flux rule provides acceleration

of particles at constant radius, and the notation 2:1 corresponds to the condition

that 2B.(r, t) =< B,(t) >. Here, B,(r, t) denotes the vertical field at radius r, and

< B,(t) > represents the space-averaged vertical field (averaged from the axis of

the torus out to the radius of circulation r).

A summary of kinetic equilibrium properties for both the modified and con-

ventional betatrons is presented in Sec. II. In Sec. III, the longitudinal kinetic

dispersion relations are obtained for (a) a betatron with a circular cross section
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beam (a = b) and without slowly-varying accelerating fields, and (b) a betatron

with a noncircular beam and slowly-varying accelerating fields. In both cases, the

equilibrium distribution function includes the effects of an immobile, partially neu-

tralizing ion background, and a spread in canonical angular momentum A. These

dispersion relations, derived in recent calculations 7 9 using the linearized Vlasov-

Maxwell equations, are fully electromagnetic, and lowest order toroidal effects have

been taken into account in calculating the perturbed charge and current densities.

In particular, surface-charge and surface-current perturbations, corresponding to

a kink-type perturbation of the ring (8/4_ 0), are incorporated in the analysis.

Perturbed quantities are assumed to have frequency w approximately equal to a

harmonic of the relativistic cyclotron frequency in the vertical betatron field we,.

Also, the eigenvalue equation has been solved in the limit of large aspect ratio.

In the present work, the dispersion relation is analyzed analytically in Sec. IV for

both the modified and conventional betatrons, and exact expressions are derived

describing the stability boundaries. In Sec. V, the dispersion relation is solved

numerically and the results are applied to the Phase I and Phase II betatrons at

the Naval Research Laboratory (NRL) and the Phermex and Liner betatrons at the

Los Alamos National Laboratory (LANL).

In Sec. IV, detailed stability properties are first investigated with emphasis on

the influence of a spread in canonical angular momentum, transverse electromag-

netic effects, and surface-wave perturbations. First, in Sec. IV.A, a small spread

(A) in canonical angular momentum is shown to have a strong stabilizing influence.

Second, in Sec. IV.B, the stabilizing influence of transverse electromagnetic effects

is illustrated when the conductor is close to the beam surface (a, :- a), allowing

surface-wave contributions to be neglected. In the conventional betatron regime

(w", > w /y), where betatron focusing forces exceed self-field defocusing forces,

the negative-mass instability in both the modified and conventional betatrons is

found to be completely stabilized by electromagnetic effects for sufficiently high

beam currents. However, in the modified betatron regime (w, < 2 /-y2), where

betatron focusing forces are exceeded by self-field defocusing forces, the traditional

criterion for negative-mass stabilization is recovered.

In Sec. IV.C, the influence of surface-wave perturbations on stability behavior is

investigated by assuming a moderate beam energy so that the stabilizing influence

of transverse electromagnetic effects can be neglected in the dispersion relation. For
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f = 0 and A = 0, the results divide naturally into two cases. First, when betatron

focusing forces exceed self-field defocusing forces (wZ > b/ys: conventional beta-

tron regime), it is found that the negative-mass instability for a moderate energy
modified betatron is absent for sufficiently low transverse beam temperatures. For
the conventional betatron in this regime, a sufficiently high density is required to

provide stabilization. Second, when betatron focusing forces are exceeded by self-

field defocusing forces (w2 < ' / y*: modified betatron regime), it is found that

reducing the transverse beam temperature to sufficiently low values results in insta-
bility. This instability originates from the inclusion of surface-wave contributions in
the dispersion relation and corresponds to a radial kink instability. Finally, in Secs.
IV.D and IV.E, exact analytical expressions that determine the stability boundaries
for the transverse beam temperature and the inverse aspect ratio are obtained from
the dispersion relation.

Section V presents a full numerical investigation of the dispersion relation. Equi-
librium and stability boundaries are calculated from the exact analytical expressions

in Sec. IV, including effects such as nonneutrality, noncircular minor cross section,
canonical angular momentum spread, and time-varying external accelerating fields.
Particular emphasis is placed on determining the equilibrium and stability behavior

for the projected operating regimes of three betatron devices of current interest.

These devices include the Naval Research Laboratory's (NRL) modified betatron

(Phase I and Phase II) in Sec. V.B, and the Los Alamos National Laboratory's

(LANL) Liner and Phermex conventional betatrons in Sec. V.C. The projected op-

erating parameters for these devices are listed in Table 1. The investigation shows,

in the modified betatron regime (wt < w'y), that surface-wave effects tend to be

dominant, and a sufficiently high transverse beam temperature is required for sta-

bilization. On the other hand, in the conventional betatron regime (w2 > W;/N),

surface-wave effects require a sufficiently low transverse beam temperature for sta-

bilization. However, when the beam energy is large and the current is sufficiently

high, it is found that the system is stabilized by electromagnetic effects for all values

of transverse temperature.

Of particular note in Sec. V, for the NRL modified betatron, it is found that

transverse beam temperature has a very strong influence on stability behavior. As

indicated earlier, in the modified betatron regime, the beam can be stabilized by

sufficiently large transverse temperature. Moreover, when a particular operating
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point is found to be unstable (e.g., at higher energy), the increase in transverse

beam temperature required for stabilization is very modest.

The influence of inverse aspect ratio a/Ro on stability behavior is also studied in

Sec. V for both the NRL modified betatron and the LANL conventional betatrons.

It is found that increasing the inverse aspect ratio a/Ro has a stabilizing effect on

the negative-mass instability, where stabilization is due to transverse electromag-

netic effects. Generally speaking, the aspect ratio has a weak influence on stability

behavior in comparison with the transverse beam temperature.

The stabilizing influence of a spread A in canonical angular momentum is also

investigated numerically in Sec. V. For the NRL modified betatron, it is found that

a very small spread A in canonical angular momentum has a strong stabilizing

effect.
The influence of noncircular beam cross section on stability behavior is also

analyzed in Sec. V for the LANL Phermex conventional betatron. It is found that

the negative-mass instability can be stabilized by radially elongating the ring in

the minor dimension. However, the degree of radial or axial elongation of the ring

is strongly limited by the condition for existence of equilibrium.

The influence of the location of the conducting wall (ac) is also investigated in

Sec. V. For the NRL modified betatron, as the conducting wall radius a, approaches

the beam radius a, it is found that the requirements on transverse beam tempera-

ture for stabilization of the radial kink instability decrease. Moreover, for ac = a,

surface-wave perturbations do not exist, and the radial kink instability is absent.

For the LANL Phermex conventional betatron, as a, approaches a, the ring can

become unstable. For Phermex, this is a weak influence on stability compared with

the inverse aspect ratio.

The final effect studied in Sec. V is the influence of slowly-varying accelerating

fields on stability behavior for the LANL Liner conventional betatron. It is found

that the largest (stabilizing) effect occurs when the acceleration process is just

beginning.
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II. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

This section gives a brief description of the theoretical model and self-consistent

equilibrium constraints derived from the Vlasov-Maxwell equations for the modified

and conventional betatron configurations.

A. Theoretical Model and Assumptions

The equilibrium configuration used to model the modified and conventional
betatrons is illustrated in Fig. 1. It consists of a relativistic electron ring lo-

cated at the midplane of an externally applied betatron (mirror) magnetic field

Bgt(r, z)i, + Bo5t(r, z)&. Moreover, there is an external toroidal magnetic field

Bgt(r, z)i,, together with the external betatron field, which act to confine the

electrons both axially and radially. The equilibrium radius of the electron ring is

denoted by Ro and the minor dimensions of the ring are denoted by 2a (radial

dimension) and 26 (axial dimension). In addition, the electron ring is concentri-

cally located inside a toroidal conductor with minor radius ac. The electron current

in the toroidal direction produces a poloidal self-magnetic field. Furthermore, for

B00(r, z) = 0, the conventional betatron configuration is recovered.

The equilibrium fields provide both focusing and defocusing forces on the elec-

trons in the ring. As indicated earlier, the electrons travel at relativistic velocities

in the positive -direction. This gives an associated ring current in the negative

9-direction, which produces a poloidal self-magnetic field B5(x) with the polarity

indicated in Fig. 1. This self-magnetic field, by virtue of the Lorentz force on the
electrons, produces a focusing force which acts to compress the ring in the minor

dimensions.
The electron ring is assumed to be partially neutralized by a positive ion back-

ground. The excess electrons form a potential well for the ions. For the electrons,
however, the electrostatic forces are repulsive. Thus, the self-electric field produced

by a nonneutral ring (f < 1) acts as a defocusing field which tends to increase the

minor dimensions of the ring.

The modified betatron equilibrium possesses an average equilibrium poloidal

rotation of the ring electrons. This rotation, together with the externally applied

toroidal magnetic field, provides an additional Lorentz focusing force acting to con-

fine the electrons.
To make the theoretical analysis tractable, we make the following simplifying

assumptions, which are consistent with the operating parameters for present and

planned betatron experiments [see Tables 1 and 2].
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1. The electron ring is immersed in an immobile (mi - oo), partially neutralizing

ion background. The equilibrium ion density is

n(r, z) = fn(r, z),(1)

where the fractional charge neutralization f is assumed to be constant, and

n*(r, z) is the equilibrium electron density. This approximation may be highly

idealized, but it provides a good qualitative indication of the effects of a

neutralizing ion background on equilibrium properties of the electron ring.

2. The minor dimensions of the electron ring and the conducting wall are small

compared to the major radius, i.e.,

a, b < Ro, a: < Ro. (2)

3. Furthermore, it is assumed that

Z/ N, e 2 1
-- < 1, (3)

b 27rRO mC2 -yb

where v is Budker's parameter, N, is the total number of electrons in the ring,

-e is the electron charge, m is the electron rest mass, c is the speed of light in

vacuo, e2/mc 2 is the classical electron radius, and ybmc 2 is the characteristic

energy of the beam electrons. For an electron beam with uniform density

f, = N,/27r2 abRo, it can be shown that

zi wab

(4)
Yb 4c2

wherew , = 47re25,/Ybm is the relativistic electron plasma frequency-squared.

4. The characteristic transverse (r, z) kinetic energy of the beam electrons is

small compared to the characteristic azimuthal energy, i.e.,

p22

2 -bm < Ybmc , (5)

where pq 2: ybmlbc is the characteristic azimuthal momentum.
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5. The spread in canonical angular momentum bPe = Pe - Po is assumed to be

sufficiently small that '5P'I < 'ybmbcRO. For the modified betatron, it is

further assumed that 7-9

I6PeI Be p1
-< - -- 1 (6)

'YbmObcRo B P,(

where p_ = (pr + pz)' 2 is the characteristic transverse momentum, pq is

the characteristic azimuthal momentum, and B. = Bgt (RO,0) and i3 =

Bg(RO, 0). For the modified betatron, Eq. (6) together with the assumption

of circular cross section, i.e.,

a =b

(7)

n 1/2,

are sufficient to assure that the poloidal canonical angular momentum PO is a

good approximate invariant. In Eq. (7), the external field index n is defined

by

r aBoe,(r, Y)

n Bof(r, z ) &r ] R,)(8

B. Self-Consistent Vlasov Equilibrium

A particular choice of Vlasov equilibrium which incorporates the essential prop-

erties of both types of betatron configurations is given b y7-

neRoA6( H - wPj mC2)f,*(H, PO, Pa) = .(- (9)2 7r2'Ybm [(P, - P)2 + a2]

Here, ie,, Ro, A, wb, Po, and j are constants, and Wb is the poloidal rotation frequency

of the ring electrons. In addition, the relativistic factors evaluated at the reference

orbit position (Ro, 0) are defined by

11 = _1(RO,0), 3b = (Ro,0), (10)
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where 3(r, z) = Vo(r, z)/c. Also, the canonical angular momentum at the reference

orbit is defined by

eB
Po = P,(Ro,0) =BR. (11)

2c.

For the modified betatron, the distribution function in Eq. (9) gives a ring equilib-

rium with uniform beam density, a constant toroidal current density, and a rigid-

rotor poloidal current density. For the conventional betatron, the poloidal rotation

frequency wb is set equal to zero in Eq. (9), and no poloidal current is included

in the analysis. Moreover, for both types of betatron configurations, a Lorentzian

spread in canonical angular momentum P, has been incorporated in the distribution

function in Eq. (9).

For the equilibrium configuration illustrated in Fig. 1, the total energy H and the

canonical angular momentum Pe are exact single-particle constants of the motion

in the equilibrium fields. Here, H and PS are defined by

H = [Mr2c4 + c2p2] 2  _ e4o(r, z),

(12)

Pe = r pe-- A,(r, z).

In Eq. (12), 4o(r, z) is the equilibrium electrostatic potential, Aoe(r,Z) = Ag'(r, z)+

A,(r,:) is the 9-component of the vector potential for the total equilibrium mag-

netic field, and p is the mechanical momentum, where

p p/rnP = - = (13)
-ym (1 + p2/m2c2)1/ 2 (

with p 2 = (p,2 + p + p2).

When a = b (circular cross section) and the inequality in Eq. (6) is satisfied,

an additional approximate single particle constant of the motion is the canonical

angular momentum PO in the poloidal direction. Here, PO is defined by

PO = pp - 2c 2  (14)
2c
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where po is the O-component of the mechanical momentum, and (p, 0) denotes the

coordinate transformation

r = r - Ro = pcosp,

(15)

= psind.

C. General Equilibrium Properties

The distribution function in Eq. (9) can be used to calculate several equilibrium

properties common to both the modified and conventional betatron configurations.

For example, the equilibrium electron density n'(r, z) = f dap fo obtained from Eq.

(9) for a thin electron ring is given by

1 _fr'2 + 2

n,"(r, z) = i, U -1 - (16)

where U-.1 (x) is the Heaviside step function defined by

1. if x > 0Ux<O). (17)1 , if X < 0.

From Eq. (16), the electron density is constant (Ft,) within the elliptical boundary

defined by r' 2 /a2 + Z2 /b 2 = 1 and equal to zero outside. The minor dimensions a

and b are defined by

a [ 12)c

(18)

b [2( -yb)c 2  2

where j > yb, f > 0, and f2 > 0 are required for existence of the equilibrium.

Here, the effective transverse focusing frequencies, 1,. and f., are defined by

(19)

f b?2 2 2U WUb +u:
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Moreover, the radial and axial betatron frequencies, W, and w., in Eq. (19) are

expressed as

2 2 b
- -I n) -r w b [ (1 f )1

(20)

The betatron frequencies, W, and w., correspond to the transverse oscillation

frequencies of the electron orbits in a conventional betatron. The first term on the

right-hand sides of Eq. (20) represents the focusing effect of the external betatron

fields, whereas the second term represents the defocusing ('3g < 1 - f) effect pro-

duced by the equilibrium self-fields. In Eqs. (19) and (20), W1,, = (47rize 2 /ybm) 1 / 2

is the relativistic electron plasma frequency, and w, and wce are the relativistic

electron cyclotron frequencies in the external vertical and toroidal magnetic fields,

respectively, i.e.,

ek ebe
Wc: , W09 e . (21)

bmc ymc

Here, Bz = Bo t (RO,0) and B BU'(Ro,0). Expressing the external field index n

in terms of the minor beam radii a and b, we find that Eq. (20) can be expressed as

w20; r2o, a(b - a)=a 2 +b 2 1 + - lb (1 - f) + b(ab)(1 - f)

(22)

(g2 a 2 2~ [0, b)-- =1 + [ -(1 f)] + b(a (-f)
w2 a2 +b 2  w a(a + b)

The above expressions for w2 and w2 allow the traditional limits of circular cross

section (a = b) and full nonneutrality (f = 0) to be taken easily.
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D. Modified Betatron Equilibrium

The results in Sec. 1I.C can be simplified further for the special case of a modified
betatron with circular cross section, i.e.,

(23)

a = b, n = 1/2.

In this case, the betatron frequencies in Eq. (20) can be expressed as Wj= =,.2

which gives S1 = = f in Eq. (19). Here, w2 and n2 are defined by

W 2/ O + 2wpe#- (24)

2 - L + WbW bW2. (25)

Additional equilibrium properties can also be calculated from Eq. (9). For

example, the average poloidal velocity of the electrons, Vo (r, z) = [f d p (p /ym) fol

/(f dap ff), can be approximated by

Vf(r,Z) = wbp, (26)

where p = (r'2 + :2)1/2. Moreover, the equilibrium pressure tensor can be shown to

be isotropic in the plane perpendicular to the toroidal axis of the ring. From Eq.

(9), the effective transverse temperature profile, To_(r, z) = [f d3p (p,+p2)f/2m)]

/(f d3pfO), can be approximated by (for p < a)

TO-L(p) = tL I 1 (27)
a2

where
1 ., 1
-YbMQ -2L a = --ybmwerL. (28)

In Eq. (28), rL is the characteristic thermal Larmor radius of the ring electrons in

the toroidal magnetic field Be. Making use of Eqs. (25) and (28) and the condition

that n2 > 0, the rotation frequency wb can be determined in terms of rL. This gives

Wb b - - 1 i 2 + ( - ) . (29)
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The two signs (i) in Eq. (29) represent fast (+) and slow (-) rotational equilibria.

For the equilibrium to exist, it follows from Eq. (29) that the inequality

(1 - f) -0] < 1+ 1- (2rL) (30)
2A-';'= a

must be satisfied.

E. Conventional Betatron Equilibrium

For the conventional betatron, we neglect beam rotation and set the toroidal
magnetic field equal to zero in Secs. II.B and II.C, i.e.,

0,

(31)
0.

From Eqs. (19) and (20), it readily follows that

r r w2(1 - n) + u a b

(32)

+ b # 1-f

where n is the external field index defined in Eq. (8). Making use of Eq. (20), the

condition for equilibrium to exist now reduces to the two conditions, w2 = n > 0

and w= > 0, which give

bn

(33)

2a [(1 - f)3bl < wn

From Eq. (22), it follows that Eq. (33) can be expressed in the equivalent form

.,[(1 f)_] + a(a - b)0 f) <W,
(P-C)- b(a + b) 7

(34)

[(1+ (- f) < a).(
PC a(a + b)CZ
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Depending on the sign of (a - b), we choose the stricter of the two conditions in

Eq. (34) as the condition for the equilibrium to exist. Therefore, for a > b, the first

equation from Eq. (34) is chosen. and the second equation is chosen for b > a. The

above equations relate the maximum allowable equilibrium beam density to f, 3b,

wZ, and n (or equivalently a and b). For the case of a circular beam with a = b and

n = 1/2, we note that the maximum allowable density for the modified betatron

in Eq. (30) is higher than the maximum allowable density for the conventional

betatron. This is due to the presence of the toroidal magnetic field in Eq. (30).

Therefore, the modified betatron allows a higher limiting beam current. For the

case where B/B, > 1, the ratio of the modified to conventional betatron limiting

currents is given by B,/2B .

Additional equilibrium properties of the conventional betatron can also be eval-

uated. For example, the effective transverse temperature within the electron beam

can be approximated by

To- (r, Z) = tL 2 - - (35)

where
- 1

L= NbmOa. (36)

Therefore, for the choice of equilibrium distribution function in Eq. (9), the trans-

verse temperature for the conventional betatron is constant on elliptical surfaces

that are concentric and confocal to the outer beam boundary.
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III. ELECTROMAGNETIC DISPERSION RELATION
FOR LONGITUDINAL PERTURBATIONS

In this section, we discuss the dispersion relation for small-amplitude per-

turbations about the equilibrium betatron configuration described in Sec. II.B.

First, in Sec. III.A, the longitudinal dispersion relation is presented in the cir-

cular beam limit, neglecting the effects of slowly varying external accelerating fields

(jb = 0 = sb). The resulting dispersion relation [Eq. (45)] includes the influence

of transverse electromagnetic effects, body-wave and surface-wave perturbations,
a spread in canonical angular momentum, and a finite transverse emittance of the

beam electrons. Then, in Sec. III.B, the longitudinal dispersion relation [Eq. (47)]

is presented for the case where the beam cross section is allowed to be noncircular,
and the effects of slowly varying external accelerating fields ('% 0 0, Yb # 0) are

included in the analysis.
In deriving the dispersion relation, a normal-mode approach is taken whereby

all perturbed quantities are assumed to vary according to

64(x, t) = 6i(r,) exp[i(16 - Wt)]. (37)

Here, w is the complex oscillation frequency, and I is the toroidal mode number. In

addition to the assumptions enumerated in Sec. II.A, the following assumptions are

made in the stability analysis.

1. First, it is assumed that Re(w) :- loe, and that the waves are far removed

from resonance with the transverse (r, z) motion of the electrons. This can be

expressed as7 .1 6

_ 11 , -y -- 1, ",, > , , (38)
\ W - lwez ) \W - IWe- W \ Ro Ro

where w, and w. are defined by

4 -yb 2 -Yb

(39)

2 W! (-b2 _1 (b4 -fb 2 'Yb

Note that w, and wy are similar to the betatron frequencies defined in Eq. (20),

modified by the effects of the slow time variation of the betatron accelerating

fields.
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2. Second, the toroidal mode number I is assumed to be sufficiently small that

I ac
<1. (40)

-Yb RO

A. Circular Beam without Slowly Varying Accelerating Fields

In this section, the dispersion relation is presented for both the modified and

conventional betatrons in the circular beam limit (a = b), neglecting the effects of

slowly varying external accelerating fields (ib = 0 = %). Therefore, w1 = w,. = w- =

o, = wy, and Q' = i2 = Q2. In this limit, the dispersion relation can be expressed

as7,8

1+ (21n ac + 1) k 2 c / m
'Yb a /(w luocz + i jykAj /-ybmRO)

x p4 (1 +1 --( w- =0, (41)
ck ')kac2 9wf2 ck al '

where k = I/Ro, Budker's parameter v is defined in Eq. (4), the betatron frequency

wo is defined in Eq. (24), the effective transverse oscillation frequency [s is defined

in Eq. (25), and y is the traditional negative-mass parameter defined by

= .(42)

It should be pointed out that transverse electromagnetic effects are included in the

terms proportional to (1 - wf3b/ck) in Eq. (41), and the terms proportional to At

and w(W - lwc=) represent contributions from body-wave perturbations within the

electron ring (p < a). On the other hand, the term proportional to (1 -a 2/ac) in Eq.

(41) represents the contribution localized at the surface of the electron ring (p = a).

The factor proportional to A in Eq. (41) arises from the spread in canonical angular

momentum. Moreover, because the effective transverse temperature is proportional

to 12, transverse thermal effects are incorporated in the last term on the left-hand

side of Eq. (41). Finally, the lowest-order effects of finite inverse aspect ratio a/Ro

are manifest in the factor V/y, which can be expressed as

-- (43)
'Yb 4
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It is convenient to introduce the normalized Doppler-shifted frequency x defined
by

6 --- (44)

Equation (41) can then be expressed in the equivalent form

x21G, 1- 4 G2r 2WjfjI y b2 b Y0 f3/

+, GV 1- 2 G2 +2iu
X[12y, N IYbmIbcRoj

+l2 G, ( .QG 2 -) 2 =2 ] 0, (45)(b b 2 2'Y6 " 3 YbmdbcRo

where G, and G2 are the geometric factors defined by

G= 2In ac + 1,
a

(46)

G2 = -\, a 2

and the definitions for v, w, fl,, and y are defined in Eqs. (4), (24), (25), and (42),
respectively. We note from Eq. (45) that x scales linearly with the toroidal mode

number 1.

B. Noncircular Beam with Slowly Varying Accelerating Fields

The effects of noncircularity and slowly varying accelerating fields are now in-

cluded in the dispersion relation. The appropriate generalization of Eq. (45) can be

expressed as 7

G2 v+ G 1 #2 U)G')]

G- + 2 ,2 G ' + 2im1LIY_ b -b 2Ywf-2 2~IYbM/3bcRoJ

+1I G 2 2 G'., - y2 2 ] = 0. (47)
b2yl b3( "I - -fbm/3cRO
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Here, the normalized Doppler-shifted frequency X is defined in Eq. (44), v is defined

in Eq. (4), and the geometric factors G' and G' are defined by7

1 2

G' = 2ln 2a+1,
a + b

(48)

G'b+b a(a + b)(2 + a2)
-a(a +b) 4a2

The betatron frequency w, is defined in Eq. (39), which includes modifications due

to the slowly varying accelerating fields and the noncircular cross section. The

noncircular contributions to w., are manifest in the definition of .,. in Eq. (20). In

addition, the negative-mass parameter p, which is modified by both effects, can be

expressed as

S 1 -(49)

Note also that the Q,. factor in Eq. (47) is modified by noncircular effects [see Eqs.

(19) and (20)].
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IV. STABILITY PROPERTIES: ANALYTICAL RESULTS

Stability properties for the modified and conventional betatron configurations

are studied analytically in this section for the circular, nonaccelerating case (a = b,

ib = 0 = Yb). First, in Sec. IV.A, an exact solution for the eigenfrequendy w is ob-

tained from the dispersion relation in Eq. (45). Then, Secs. IV.B, IV.C, and IV.D

address specific limiting cases which demonstrate the influence on stability behavior

due to a spread in canonical angular momentum, transverse electromagnetic effects,

and surface-wave perturbations, respectively. Finally, Secs. IV.E and IV.F address

the effects of transverse beam temperature and inverse toroidal aspect ratio, respec-

tively, and the corresponding stability boundaries are calculated analytically from

the dispersion relation.

A. Exact Solution to the Dispersion Relation

In this section, the exact solution to the dispersion relation in Eq. (45) is obtained

for both the modified and conventional betatron. The solution can be expressed in

terms of the dimensionless variables 1, yb, a, b, and p, where

=3 G 4 (21n +1>0,
4 RW a

(50)

The sign of b in Eq. (50) is determined by the sign of w4 tsee Eq. (24)). We define

the dimensionless coefficients occurring in Eq. (45) by

AX = 1 + 62- 4lgb

Bx = a 11-yl - 2 ) ,

(51)
a (At - b

A -2 '

YbmIdbcRo
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Solving Eq. (45) for the complex eigenfrequency w gives

(B,+ jipA ) (B' + 2i .yj A,) 2 -4A\ (C, - p2A2)]/2

(52)

where A., B,, C,, A., and y [Eq. (42)] are real-valued quantities.

For zero spread in canonical angular momentum (A = 0), the necessary and

sufficient condition for instability (Im[w] > 0) obtained from Eq. (52) is given by

B 2 - 4ACX < 0. (53)

This limiting case (A = 0) is investigated further in Secs. IV.C-IV.F. In addi-

tion, Sec. IV.B investigates stability properties allowing a small, non-zero spread

in canonical angular momentum (A $ 0).

B. Stabilizing Influence of a Small Spread in Canonical Angular

Momentum

The influence of a spread in canonical angular momentum on stability behavior

is investigated in this section. We assume sufficiently small A that

'A 2 < XA , (54)
4p2 (A, - 1)

where AX is defined in Eq. (51). It can be shown that the necessary and sufficient

condition for stability when B - 4A xC < 0 is given by

A (4AC, - B2)
b Ro >I, (55)

For typical betatron parameters, Eq. (55) can be approximated by

A > 8[2In(ac/a)+1] v )2 (&RI < 1. (56)
-ybm/3cRo ^_ VmJ a

Equation (56) states that a small spread (A) in canonical angular momentum in-

deed has a strong stabilizing effect in both modified and conventional betatron

configurations.

20



C. Stabilizing Influence of Transverse Electromagnetic Effects

This section addresses the influence of transverse electromagnetic effects on sta-

bility behavior 7 ,. The transverse electromagnetic effect contributions are present

in the terms in Eq. (45) proportional to w/ck. By rewriting the dispersion relation

using the dimensionless coefficients in Eq. (51), these contributions are included by

way of the solitary t term in the definition of A, as well as the a(1 - y;g) term in

the definition of B.. To emphasize this effect, we take the limit where A = 0 and

a :~ a,. The limit a ~ ac allows us to neglect the b terms from the coefficients in

Eq. (51) which represent surface-wave contributions. In addition, the assumption

that v/-yb < 1 allows us to neglect the a term in A.. Within the context of these

assumptions, it can be shown that two ranges of p [Eq. (42)] exist for which the

beam is stable: p negative, and p greater than some positive value.

For negative values of p, the condition for stability (p < 0) is the traditional

criterion for stabilization of the negative-mass instability". For the modified beta-

tron, the stability condition p < 0 combined with the condition for existence of the

equilibrium [Eq. (30)] become

1< . < 1 + 1 - -- (57)

where it has been assumed that f = 0. It is evident that the inequality in Eq. (57)

can be satisfied provided w2 /w is sufficiently large. Therefore, in the modified

betatron, the negative-mass instability can be completely stabilized provided the

equilibrium density and, thus, equilibrium self-field effects are sufficiently strong.

On the other hand, in the conventional betatron, the condition p < 0 and the

condition for existence of the equilibrium [Eqs. (33)] cannot be satisfied when f = 0.

However, for f 5 0, the condition y < 0 combined with the condition for existence

of the equilibrium can be expressed as

W_ C 2f - 1) > 2 2- 1. (58)

Equation (58) states that f > 1/-y2 is a necessary condition for both equilibrium and

stability when p < 0. Therefore, for A = 0 and a ~ a,, a partially neutralizing ion

- 21



background must be included in the conventional betatron to stabilize the negative-

mass instability. Assuming that sufficient charge neutralization is included, Eq. (58)

can be satisfied provided /wy is sufficiently large. Thus, the traditional negative-

mass instability is completely stabilized in a conventional betatron provided the

focusing effect of the equilibrium self-magnetic field exceeds the defocusing effect

of the self-electric field (f > 1/Y;), and the net self-focusing force is sufficiently

strong.

In the regime where y > 0, for the case where a = b and jb = 0 = Yb, there

is a radical departure from the traditional negative-mass stability criterion '8 . In

particular, due to transverse electromagnetic effects, we find from Eq. (45) that a

threshold value of y exists, above which the negative-mass instability is absent. For

a given positive value of 1L, the necessary and sufficient condition for stability can

be expressed as

V ~ 4p/(y~ -1)
- > -(59)

For an ultrarelativistic electron beam with yb >> 1, Eq. (59) can be satisfied easily

for both the modified and conventional betatron configurations provided the beam

current (proportional to v/yb) is sufficiently large.

D. Influence of Surface-Wave Perturbations on Stability Behavior

The influence of surface-wave perturbations on stability behavior is investigated

in this section. The surface-wave effects are manifest in the > terms in Eq. (51).

To emphasize the influence of these perturbations, it is assumed that the electron

ring is fully nonneutral (f = 0), with no stabilizing canonical angular momentum

spread (A = 0). In addition, a moderate beam energy is assumed such that the

stabilizing effect of transverse electromagnetic perturbations can be neglected. In

this case, the solitary a term in the definition of A,, is neglected, along with the

a(1 - yp) term in the definition of B, [see Eq. (51)].

The results fall into the two following categories: (a) the betatron focusing forces

exceed the defocusing self-field forces (w2 > 0), and (b) the betatron focusing forces

are exceeded by the defocusing self-field forces (w2 < 0). It should be noted that

case (b) excludes the conventional betatron, since an equilibrium does not exist
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when f = 0. Thus, case (b) (wo < 0) is referred to as the modified betatron regime.

Moreover, case (a) (w > 0) is referred to as the conventional betatron regime, since

it is traditionally the regime in which a conventional betatron accelerator operates.

(a) Conventional Betatron Regime (w2 > wx2/y2): For a modified betatron

operating in the conventional betatron regime, the necessary and sufficient condition

for instability in Eq. (53) can be expressed as

(rL)2 ( I ) ";,2 
60

- (60)
a a / w..2 27 - P2 1 + y 2

where f12a 2 = wcrj has been used. For the case of a high-current electron beam

with w,/-y 1, Eq. (60) shows that surface-wave perturbations are easily sta-

bilized for sufficiently small values of rL2/a 2. Therefore, when the betatron focusing

forces are greater than defocusing self-field forces in the modified betatron, the

surface-wave perturbations can stabilize the negative-mass instability provided the

transverse temperature of the electrons is sufficiently small.

For a conventional betatron operating in the conventional betatron regime, 0=

wo, and the necessary and sufficient condition for instability [Eq. (53)] can be

expressed as

W;2 2) 1/

<~ ++ _?y2 a -11275

-_2 1+ 1-- . (61)

When the electron ring is thin compared to the conductor radius (a < a.), the

instability condition can be further simplified to give

< [ 2[ -1 +2- - 1 - 2+1. (62)

For a nonrelativistic, fully nonneutral conventional betatron (yb ~. 1), the suffi-

cient condition for stability combined with the condition for the existence of the

equilibrium gives

V-1 < w /,2 < 1. (63)
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On the other hand, for an ultrarelativistic, fully nonneutral conventional betatron

(-y > 1), the sufficient condition for stability and existence of the equilibrium

becomes

1/2 < "4/ylw . < 1. (64)

These two conditions [Eqs. (63) and (64)] can be satisfied by sufficiently large values

of 4/y w2.. Therefore, for a fully nonneutral (f = 0) conventional betatron with

no spread in canonical angular momentum (A = 0), the negative-mass instability

can be completely stabilized provided the beam density is sufficiently large.

(b) Modified Betatron Regime (L2 < 2 /y2): Equilibrium does not exist

for the conventional betatron when f = 0. Therefore, only the modified betatron

configuration is considered here.

The instability condition [Eq. (53)] for a modified betatron operating in the

modified betatron regime can be expressed as

(rL)2< a C(65)
a ~a. W~ 279 - 1 +i W /1YbLVC

where fl2a 2 = wir2. Equation (65) shows that surface-wave perturbations can be

stabilized provided rL/a 2 is sufficiently large. Therefore., when the betatron focusing

forces are exceeded by the defocusing self-field forces in the modified betatron,
the surface-wave perturbations can be stabilized with a sufficiently large transverse

electron temperature. From Eq. (57), when a ~ ac (neglecting the effects of surface-

wave perturbations), it was shown that the negative-mass instability is completely

stabilized for sufficiently strong self-fields. Here, when surface-wave effects are

included (a < a.), we find that Eq. (65) is satisfied for sufficiently small values

of rL/a 2, and instability results. Therefore, for the case where wI < 2/,, we

conclude that a sufficiently low effective transverse temperature elicits instability

in a modified betatron. The surface-wave perturbation is manifest by the toroidal

variation of the azimuthal electron velocity. This produces a perturbed charge and

current density in the eigenvalue equation, resulting in a kink-type perturbation

of the electron ring. The instability is referred to as a mdial kink instability since

it originates from a radial surface-wave perturbation. Therefore, it is concluded

that the transverse temperature plays a major role in the stability properties of the

modified betatron, since increasing the effective transverse temperature provides

stabilization to the radial kink instability.
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E. Influence of Transverse Temperature on Stability Behavior

The detailed effect of transverse temperature on stability behavior is studied

in this section. To emphasize the effect, the influence of a spread in canonical

angular momentum is neglected (A = 0) and the instability criterion in Eq. (53) is

investigated without any limitations on beam current or size. This contrasts with

Sec. IV.D, which presented approximate stability criteria based on the assumption

of moderate energy.

The transverse temperature at the center of the minor cross section of the beam

in the modified and conventional betatron configurations can be expressed as '=

-ym(1a 2 /2 [see Eqs. (28) and (36)], where for the modified betatron 11'a 2 = w2r2

defines the transverse thermal Larmor radius (rL) of the electrons.

For the modified betatron, it can be shown from Eq. (53) and Eqs. (50)-(51)

that the necessary and sufficient condition for stability is given by

LOC a 4M - i [yb2 (_ b _1) - 2p (-yb + 1) +,3b

<  2 c 1 a2 (66)

In the modified betatron regime (4 < w /y'), when f = 0, both i and wj are

negative. Therefore, since the transverse temperature is proportional to wUr, Eq.

(66) shows that a sufficiently large transverse temperature is needed to stabilize the

beam. In the modified betatron regime, we note that the same conclusion was ob-

tained from Eq. (65) in Sec. IV.D, which neglects transverse electromagnetic effects.

Section IV.D showed that the destabilization was due to surface-wave perturbations.

Moreover, for a modified betatron operating in the conventional betatron regime

(4 > /yb), when f = 0, both p and u, are positive. The corresponding stabil-

ity analysis divides into two categories. For moderate beam current in a modified

betatron [see Eq. (60) in Sec. IV.Di, a sufficiently low transverse temperature is

required for stabilization. However, for beam current above some critical value, Eq.

(66) shows that the system is stable for all transverse temperatures.

For the conventional betatron, Ti is related to the beam density by Eq. (36).

Thus, in principal, a condition on beam density for stability of the conventional

betatron can be determined from Eq. (66).
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F. Influence of Inverse Aspect Ratio on Stability Behavior

In this section the influence of inverse aspect ratio a/Ro on stability behavior
is studied. To emphasize the effect, the stabilizing influence of canonical angular

momentum spread is neglected (A = 0). For both the modified and conventional
betatron configurations, it can be shown from Eq. (53) and Eqs. (50)-(51) that the
system is stable provided

4 (67)

where b is defined in Eq. (50).

For a fully nonneutral modified betatron operating in the modified betatron

regime (w < w/y'), p and b are negative and we find three different types of

behavior as the beam density is increased. First, for sufficiently low current that

wi/y7w~ ~ 1, it follows that (b - p) > 0, and the right-hand side of Eq. (67) is

negative; therefore, the beam is stable for all values of a/RO. At low currents, sta-
bilization at all aspect ratios results from the traditional mechanism for stabilizing
the negative-mass instability (Sec. IV.C). As the beam density is increased, a sec-

ond type of behavior occurs. The (b - p) term is now negative, and Eq. (67) shows

that a sufficiently large value of a/Ro, which increases monotonically with W2 /W2,

is required for stabilization. As the density is increased even further, a critical value
is approached above which the stability criterion in Eq. (67) is satisfied for no value

of a/RO.

However, for a modified betatron operating in the conventional betatron regime

(4c > w2,/yj) (this also applies to a fully nonneutral conventional betatron which

can only operate in this regime), both (b - p) and the term in brackets on the left

hand side of Eq. (67) are negative. Thus, Eq. (67) predicts that a sufficiently large

inverse aspect ratio a/RO is needed for stabilization. Moreover, the value of a/RO

required for stability increases with increasing density. This result is consistent with
the approximate analysis in Sec. IV.C.
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V. STABILITY PROPERTIES: NUMERICAL RESULTS

Stability properties for the modified and conventional betatron configurations

are studied numerically in this section by applying the dispersion relation in Eq. (47)

to three betatron devices of current interest. The first device, studied in Sec. V.B,
is the Naval Research Laboratory (NRL) modified betatron experiment. The NRL

experiment will operate in a Phase I regime and a Phase II regime, where Phase

II corresponds to higher current and higher energy. The second and third devices,

studied in Sec. V.C, are the Phermex and Liner conventional betatrons at Los

Alamos National Laboratory (LANL). The Liner device is presently a conceptual

design, whereas the Phermex device is under construction. The projected operating

parameters for these devices are shown in Table 1.

In Sec. V.A, the dimensionless parameters are identified that describe the mod-

ified and conventional betatrons within the context of the present analysis. In Secs.

V.B and V.C, numerical results are presented describing the stability characteris-

tics of the devices mentioned above. In particular, the regions of equilibrium and

stability are plotted for the projected operating regimes of the various devices. In

these plots, the region where both equilibrium and stability exist is represented as

a shaded region. The curve representing the stability boundary is drawn as a solid

line, whereas the curve representing the equilibrium boundary is drawn as a dashed

line. Accompanying plots are also presented which show the I = 1 normalized

growth rate Imw/wez over a range of equilibrium parameters.

A. Choice of Dimensionless Parameters

For convenience, we introduce the following sets of dimensionless parameters

which are sufficient to describe the betatron configurations within the context of

the present analysis. For the modified betatron with circular cross section (a = b),

the choice of dimensionless parameters is

c I c I ~'Yb a I a , a , f, , a F (Yb , b,ib,w e.), (68)
WCZ WC RD a, a -ybm/31cRo'

and for the conventional betatron (wb = 0, wce = 0), the choice of dimensionless

parameters is

,Yb, b , , f, , F(VYV, b, ib, ) (69)
wCe a Ro ac YbmIAcRO
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Here, F(yb, ib, Yb, Wcz) is defined by7

F(yb, j, b, ,c) = - ( - - (70)
WCZ [I (1 2 7 IQ)

The quantity F(yb, jb, ibi Wc) represents the modification to the betatron frequen-

cies due to slowly--varying accelerating fields [see Eq. (39)]. For the device parame-

ters chosen in Table 1, the corresponding dimensionless parameters are summarized

in Table 2. We note that the operating parameters specified in Table 2 correspond

to ideal conditions with no background neutralizing ions (f = 0), no stabilizing

spread in canonical angular momentum (A = 0), and no external betatron accel-

eration (F = 0). We also note that the values of the transverse thermal Larmor

radius terms (rL/a) for the NRL modified betatron have been arbitrarily chosen in

Table 2 to be just inside the stability boundary.

B. NRL Modified Betatron: Phase I and Phase II

The NRL modified betatron is presently operating in Phase I, the initial operat-

ing regime of the device. Phase II represents the second planned stage of operation,

which corresponds to substantially increased current and energy (see Table 1). This

section presents numerical results obtained from the dispersion relation in Eq. (45)

(a = b and F = 0) for both the Phase I and Phase II modified betatrons, with

primary emphasis on Phase II. The dimensionless parameters used in the stability

analysis are summarized in Table 2. The influence of transverse beam temperature

(rL/a) on stability behavior is first studied, followed by an investigation of the in-

fluence of inverse toroidal aspect ratio (a/Ro) on stability behavior. Finally, the

stabilizing effect of a spread (A) in canonical angular momentum is examined.

Influence of Transverse Beam Temperature on Stability Behavior: In

this section, the influence of transverse beam temperature on stability behavior is

illustrated in Figs. 2-7. In these plots, the regions of equilibrium and stability are

presented for rT/a versus wee/WcZ, wp/lcz, yb, a/ac, and f. The equilibrium and

stability boundaries are determined from Eqs. (30) and (66), respectively. The

growth rate curves are then determined from Eq. (45) for values of rL/a typical of

the corresponding equilibrium and stability plots.

28



For Phase II, the regions of equilibrium and stability for rL/a versus wce/wcz are
illustrated in Fig. 2(a). The parameter regime in Fig. 2(a) represents the modified
betatron regime (c, < W/ ), and for the values rL/a = 0.15 and oe8/,o= = 20
chosen in Table 2. stable operation is predicted for the Phase II operating point.
The analysis in Sec. IV.D predicts, for the modified betatron regime (w 2 < w2/ y),
that surface-wave perturbations exist which can be stabilized only by sufficiently
large transverse beam temperature. Exactly this effect is seen in Fig. 2(a). Also, the
stability boundary [from Eq. (66)] for rTL/a versus ue,/le, coincides exactly with

a constant transverse beam temperature T = YbmwLri/2 (when Yb is constant).
The same qualitative behavior is found for Phase I parameters. Growth rate curves
for the I = 1 mode are plotted versus wee/uc, in Fig. 2(b) for several values of
rL/a selected from Fig. 2(a). It can be seen that the maximum growth rate of the
instability is modest, with values well below 1% of the cyclotron frequency we, in
the vertical field.

The influence of beam density for Phase I parameters is shown in the equilibrium
and stability plot of rL/a versus w,/wc in Fig. 3(a). The transition point at

wp,/wc = 3 corresponds to - w1 /y2 changing sign. As u&./we is increased, the

system changes from a conventional betatron regime to a modified betatron regime.
The surface-wave analysis in Sec. IV.D predicts, in the conventional betatron regime
(W'. > o&/-y), that the transverse beam temperature (proportional to rL/a for

we/we, constant) must be sufficiently small for stability. For the modified betatron

regime, the opposite is predicted. Precisely this effect is seen in Fig. 3(a). The

abruptness of the behavior about the transition point at 2 = / is due to

the fact that the negative mass parameter p is not defined at this point [see Eq.
(49)]. Curves of normalized growth rate versus w,/we for selected values of rL/a

are presented in Fig. 3(b). As can be seen from Fig. 3(b), for Phase I parameters

the normalized growth rate in the conventional betatron operating regime near

transition can be well over 10%. However. in the modified betatron operating

regime, Imw/we. never exceeds 7% as o,/wc_ is varied.

The influence of beam density on equilibrium and stability properties for the

higher-current, higher-energy Phase II device is shown in Figs. 4(a) and 4(b). The

transition point from the conventional to the modified betatron regime occurs at

w,/we., = 7.5 for yb = 7.5. From Fig. 4(a). it is evident that a sufficiently high trans-

verse beam temperature is also required to stabilize surface-wave perturbations in
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the Phase II modified betatron regime. However, for operation in the conventional

betatron regime (wp/we, < 7.5), the region just below the transition point is now

altered. The result that requires a sufficiently small transverse temperature for

stabilization is still evident for w,/we, < 6.1; however, a stable region appears for

6.1 < WL/ we, < 7.5, which corresponds to stabilization at any transverse tempera-

ture. This stable region is a consequence of the transverse electromagnetic effects

discussed in Sec. IV.C. The stable region evident in Fig. 4(a) (6.1 < w,/we' < 7.5)

coincides precisely with values predicted in Eq. (59). Thus, for a high energy beam,

a stable region occurs in the conventional betatron regime of operation of the mod-

ified betatron due to the stabilizing influence of transverse electromagnetic effects.

Corresponding growth rate curves for selected values of rL/a are shown in Fig. 4(b)

as a function of w,/we. As illustrated in Fig. 4(b), Phase II also exhibits rela-

tively large (::z 3%) normalized growth rate in the conventional betatron regime

near transition compared with the growth rate in the modified betatron regime

(< 0.75%).

The regions of equilibrium and stability for rL/a versus yb are illustrated in Fig.

5(a) for Phase II parameters. In this case, the transition point from the modified

to the conventional betatron regime occurs when 'Yb = 38, and corresponds pre-

cisely to the point where the stability curve approaches zero. [This is not evident in

Fig. 5(a) due to the scale.] The modified betatron regime corresponds to 'yb < 38,

where the influence of surface-wave perturbations requires that the transverse beam

temperature be sufficiently large for stability. For yb > 38 (conventional betatron

regime), Sec. IV.C predicts stability due to the influence of transverse electromag-

netic effects. The stability boundary in the modified betatron regime shows that

rL/a oc -y for small values of yb, whereas, for yb approaching the transition energy,

rTL/a oc 1/ 7 g. This follows from Eq. (65). The corresponding growth rate curves

are plotted versus Yb in Fig. 5(b). Note the rapid increase in growth rate at low

energy as rL/a is decreased. Although the growth rate can be high for low energies,

increasing rL/a above 0.15 yields moderate growth rates (Imw/we, < 2%). [Note

from Fig. 5(a) that there is no instability for rTL/a > 0.18.]

Figure 6(a) illustrates how the equilibrium and stability regions are affected by

the location of the conductor radius ac. In particular, shown are plots of rTL/a

versus a/a, for Phase II parameters. The quantity a/ac does not affect the sign of
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w, -w . Therefore, Fig. 6(a) represents only the modified betatron regime and

shows the minimum value of transverse beam temperature required for stability.

The minimum beam temperature required for stability is found to be proportional

to 1 - a2/a2, as predicted by Eq. (65). Thus, the destabilizing influence of surface

perturbations is reduced as the conductor radius (a,) approaches the outer beam

radius (a). The corresponding normalized growth rate is plotted versus a/ac in Fig.

6(b) for several values of rL/a. For the values of rL/a chosen, the growth rate is

modest with Imw/we; less than 1%.

Next, the influence of charge neutralization is investigated. As a reminder, f
represents the fraction of positively charged background ions present in the beam

(f = 0 corresponds to no ions, f = 1 corresponds to complete charge neutrality).

For Phase II, the regions of equilibrium and stability for rTL/a versus f are illustrated

in Fig. 7(a). The point where the stability boundary approaches zero at f = 0.017

corresponds to the transition from the modified to the convention betatron regime.

Because nonzero values of f are under consideration for Phase II, the transition

point defined by w, = 0 must be calculated from the expression in Eq. (24). Thus, for

the modified betatron regime (f < 0.017), the usual surface-wave effect dominates,

and the transverse beam temperature must be sufficiently large for stabilization.

However, the conventional betatron regime divides naturally into three regions. For

0.017 < f < 0.024, due to the high current in Phase II, a stable region exists

due to the influence of transverse electromagnetic effects and the fact that / is

positive and sufficiently large to satisfy Eq. (59). This stable region does not

occur in a corresponding plot for Phase I. For 0.024 < f < 0.089, p is positive,
but not large enough for Eq. (59) to be satisfied; in this case, electromagnetic

effects do not stabilize the negative-mass instability. Thus, the stability boundary

is determined in this region by surface-wave contributions, and a sufficiently low

transverse beam temperature is required for stabilization. The remainder of the

conventional betatron regime (f > 0.089) corresponds to t < 0, and stabilization

is provided by the traditional negative-mass stability condition, y < 0. Several

plots of growth rate versus f are presented in Fig. 7(b). The very rapid increase

in growth rate for rL/a = 0.275 and rL/a = 0.280 correspond to the minimum of

the unstable region in Fig. 7(b) for f in the range 0.024 < f < 0.089. However, for

operation in the modified betatron regime, Imw/we. stays below 0.5%.
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Influence of Inverse Toroidal Aspect Ratio on Stability Behavior: The

influence of inverse aspect ratio (a/Ro) on equilibrium and stability behavior is

illustrated in Figs. 8(a) and 9(a) which show plots of a/RO versus vp,/Wc and Yb,

respectively. The equilibrium and stability boundaries are determined from Eqs.

(30) and (67), respectively. The corresponding growth rate curves in Figs. 8(b) and

9(b) are determined from Eq. (45) for several values of a/Ro.

In Fig. 8(a), the equilibrium and stability boundaries for a/Ro versus w,/,

are plotted for Phase II parameters. The point where the stability boundary first

intersects the abscissa (w,/wc = 7.5) corresponds to the transition point from

the conventional betatron regime to the modified betatron regime. Values below

We/"CZ = 7.5 correspond to the conventional betatron regime (11 > 0), and stabi-

lization is provided by transverse electromagnetic effects when a/Ro is sufficiently

large. By expressing v/y in terms of a/Ro as in Eq. (43), it can be shown that the

stability boundary for w, /w < 7.5 corresponds to values of a/Ro which provide the

current required to satisfy the stability condition in Eq. (59). The modified betatron

regime corresponds to w,/w; > 7.5. From the transition value at = 7.5

to we/wc = 33, the transverse beam temperature (corresponding to the choice of

parameters in Table 2) is large enough to provide stabilization for all values of a/Ro.

However, when 33 < w,/wcz < 44, thermal effects are not sufficient for stabilization,

and larger values of a/Ro are required for stabilization. This is a consequence of the

higher energy of Phase II and does not occur in a corresponding plot for Phase I.

For wp/we, > 44, an increase in the inverse aspect ratio is not sufficient to provide

stabilization. Plots of the normalized growth rate versus w,/we- are presented in

Fig. 8(b) for several values of a/Ro. Evidently, in the modified betatron regime,

Imw/we, stays below 2%.

Figure 9(a) illustrates the energy dependence in Phase II by plotting the regions

of equilibrium and stability for a/Ro versus yb. The transition energy occurs at

Y = 38, with the conventional betatron regime corresponding to yb > 38. Sta-

bility in this region is provided by transverse electromagnetic effects when a/Ro

corresponds to a sufficiently large current to satisfy Eq. (59). For the modified

betatron regime (yb < 38), except in the region 3.1 < yb < 8.4, the transverse

beam temperature (prescribed in Table 2) is sufficiently large to stabilize surface-

wave perturbations. This unstable range corresponds to the values predicted by
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Eq. (62). Within this range, an increase in a/Ro is not sufficient to stabilize the

beam. Thus, the transverse beam temperature is too low in the modified betatron

regime, the relatively weak stabilizing influence of toroidal aspect ratio may be too

small to effectively stabilize the beam. The growth rate curves in Fig. 9(b) show

how a decrease in the inverse aspect ratio (a/Ro) decreases the growth rate of the

instability. Also, Imw/wo is below 3% for any values of a/Ro considered for the

modified betatron.
Stabilizing Influence of a Spread in Canonical Angular Momentum:

For Phase I parameters, we now consider the stabilizing effect of a spread A in

canonical angular momentum. (Keep in mind that A = 0 has already been consid-

ered in Figs. 2-9.) The minimum value of A required for stabilization is evident

from Fig. 10(a), which shows a plot of the stability boundary for A/ybm3bcRo versus

w,/wc2. It can be seen from Fig. 3(a) that Phase I operation at a/Ro = 0.065 with

A = 0 is unstable below WC/w,, a 3. On the other hand, Fig. 10(a) shows that very

modest values of canonical angular momentum spread (A) can stabilize the beam

in this region. Our a priori assumption that A/ybmbcRo be small is well justified

in this case. Several growth rate curves are plotted versus UL,/we in Fig. 10(b).

Evidently, the growth rate decreases rapidly with increasing (but small) values of

A/ybmbcRo, and a modest spread in canonical angular momentum (> 0.4%) keeps

the growth rate below 1% of the cyclotron frequency We:.

C. LANL Conventional Betatrons: Liner and Phermex

This section presents numerical results obtained from the dispersion relation

in Eq. (47) for both the Liner and Phermex conventional betatron parameters.

Presently, the LANL Liner conventional betatron is a conceptual design, whereas

the Phermex conventional betatron is under construction. The "Liner" betatron

is a liner driven electron ring accelerator, whereby an electron ring is injected az-

imuthally into a betatron magnetic field enclosed within a cylindrical conducting

shell1 . The conductor is then imploded, trapping the magnetic flux and accelerat-

ing the beam by the increasing vertical magnetic field. The "Phermex" betatron,

which is the main emphasis of this section, corresponds to a conventional betatron in

which an electron beam is injected into a betatron by the LANL Phermex electron

linear accelerator 9 . The dimensionless parameters assumed in the present analysis
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are listed in Table 2. The influence of inverse toroidal aspect ratio (Va/RD) on

stability behavior is first studied. Then. for the Liner device only, the influence of

slowly varying accelerating fields on stability behavior is investigated.

At the outset, it should be noted that the analysis predicts instability for the

Liner parameters and stability for the Phermex parameters assumed in the present

analysis (Table 2). The Liner design continues to evolve, and the parameters con-

sidered here only represent those used in the current studies.

Influence of Inverse Toroidal Aspect Ratio on Stability Behavior: In

this section, the influence of inverse aspect ratio (v'a>/RD) on stability behavior is

illustrated in Figs. 11-14. In these plots, the regions of equilibrium and stability

are shown by plotting vab/Ro versus wp/we, Yb, b/a, and a/ac. The equilibrium

and stability boundaries are determined from Eqs. (34) and (47), respectively. The

growth rate curves are then calculated numerically from Eq. (47) for the I = 1 mode

for several values of v/ab/Ro.

Figure 11(a) illustrates the regions of equilibrium and stability for V/6/RO versus

w,/we, for Phermex. Because this is a conventional betatron with f = 0, it follows

that w 2> /y2 and equilibrium does not exist for wu /ac, > 60. From Sec. IV.D,

Eq. (61) predicts that the region 43 < wp/wc < 60 is stable to the radial kink

instability. This region of stability is evident in Fig. 11(a). For w,/We < 43, as

predicted by Eq. (59), a larger inverse aspect ratio is required for stabilization of the

negative-mass instability by transverse electromagnetic effects. The corresponding

growth rate curves versus are presented in Fig. 11(b) for several values of

VaI>/R 0 . Note that the growth rates are extremely low (Imw/we, below 0.035%) in

this case.
For Phermex, the scaling with energy is illustrated by the equilibrium and sta-

bility plot of v'&/Ro versus lb in Fig. 12(a). From the condition wc > ' / "

(because a = b is assumed), equilibrium does not exist for yb < 1.22. A stable

region exists for 1.22 < -yb < 1.73 because of the influence of transverse electromag-

netic effects. This is predicted by Eq. (61). On the other hand, for Yb < 1.73, the

inverse aspect ratio must be sufficiently large for stabilization by transverse electro-

magnetic effects. The corresponding plots of normalized growth rate versus Yb are

presented in Fig. 12(b) for several values of vab/Re. It is evident that Imw/wcz can
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increase to a relatively high value (10%) as the inverse aspect ratio increases above

0.10.
The effect of cross sectional beam shape on stability behavior is illustrated for

Phermex in Fig. 13(a) where the regions of equilibrium and stability are plotted

for va/Ro versus b/a. Evidently, elongating the minor cross section of the beam

radially (decreasing b/a) has a stabilizing effect. As stated in Sec. LII.B, noncircu-

larity enters the problem mathematically in the w; term defined in Eq. (39). Also,

the equilibrium boundaries in Fig. 13(a) [calculated from Eq. (34)] determine the

limiting values of noncircularity for equilibrium to exist. Corresponding plots of

the growth rate versus b/a are presented in Fig. 13(b) for several values of Va'b/Ro.

Note that the growth rate remains very low (Imw/oc below 0.03%) as b/a is varied.

Influence of Slowly Varying Accelerating Fields on Stability Behavior:

The influence on stability behavior by slowly varying accelerating fields is investi-

gated here for the Liner. As shown in Sec. III.B, this effect enters the dispersion

relation in Eq. (47) through the w' term defined in Eq. (39). The quantity F defined

in Eq. (70) represents the contribution to w. from slowly varying accelerating fields.

Therefore, for a beam that satisfies the 2:1 betatron flux condition (constant radius

acceleration) discussed in Sec. I, the effect of slowly varying accelerating fields can

be determined by a detailed knowledge of the beam energy (Yb) as a function of

time (t). For the Liner, typical time histories of -y)(t) have been investigated7 , and

the most dramatic effect (corresponding to a maximum of F) is found to occur just

as the betatron acceleration process begins. In this regime, F = -0.2 represents a

typical value. Figure 14 shows the effect on the stability region by plotting /a,//Ro

versus V' /ac for F = -0.2 (solid line), and for F = 0 (dashed line). Evidently,

for F = -0.2, the value of Va~5/Ro necessary for stability at the operating point

of the device is decreased approximately by 25%. Thus. just as the acceleration

process begins, the slowly varying accelerating fields have a stabilizing influence

which is found to be significant. This is fortunate because the initial phase of the

acceleration process is more likely to be unstable due to the lower beam energy.
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VI. CONCLUSIONS

In this paper, equilibrium and stability properties have been investigated for

an intense relativistic electron ring located at the midplane of an externally ap-

plied betatron field. In particular, the analysis is applicable to both modified and

conventional betatron accelerators. The analysis was carried out within the frame-

work of the Vlasov-Maxwell equations, including the important influence of intense

equilibrium self fields. Two dispersion relations were presented for longitudinal per-

turbations and analyzed analytically and numerically. The first dispersion relation

[Eq. (45)] is applicable to betatrons with circular beam cross section and does not in-

clude the effects of slowly varying accelerating fields. The second dispersion relation

[Eq. (47)] includes the effects of noncircular cross section and slowly varying accel-

erating fields. The numerical investigations included studies of the Naval Research

Laboratory's (NRL) modified betatron, and the Los Alamos National Laboratory's

(LANL) Liner and Phermex conventional betatrons.

Section II summarized the equilibrium properties and basic assumptions, and

Sec. III described the two dispersion relations for longitudinal perturbations. The

formal stability analysis was carried out in Secs. IV and V. Stability properties for

an intense relativistic electron ring in both the modified and conventional betatrons

were investigated within the framework of the linearized Vlasov-Maxwell equations.

The stability analysis was carried out for eigenfrequency a close to harmonics of the

relativistic cyclotron frequency w,. Also included in the analysis was the influence

of transverse electromagnetic effects and surface-wave perturbations. Detailed sta-

bility properties were investigated numerically in Sec. IV, leading to the following

two main conclusions. First, for high-current and high-energy beams, neglecting

surface-wave effects, it was found that transverse electromagnetic effects can sta-

bilize the negative-mass instability when 4f_ > for both the modified and

conventional betatrons. Second, the influence of surface-wave perturbations was in-

vestigated, neglecting the stabilizing influence of transverse electromagnetic effects

(moderate energy beams). For f = 0 and I = 0, two cases were considered: beta-

tron focusing forces exceed defocusing self-field forces (W42 > w2/y : conventional

betatron regime); and betatron focusing forces are weaker than the defocusing self-

field forces (4c, <. "/; : modified betatron regime). For w;, > w;/y;, it was

found that the ring can be stabilized by sufficiently low transverse beam temper-

ature. However, for w;2 < 2 /yg, it was found that a sufficiently large transverse
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temperature is required for stabilization of the radial kink instability. In addition,

in Sec. IV, exact expressions were derived which describe the stability boundaries

for the transverse beam temperature and the inverse aspect ratio.

Finally, Sec. V presented a full numerical investigation of the dispersion relation,

where effects such as nonneutrality, noncircular beam cross section, canonical an-

gular momentum spread, and slowly varying accelerating fields were included. The

results were applied to three betatron devices. These included the NRL modified

betatron (Phase I and Phase II) and the LANL Liner and Phermex conventional

betatrons. The numerical investigations particularly emphasized the influence of

transverse electromagnetic effects and surface-wave perturbations on stability be-

havior. The analysis showed, in the mhodified betatron regime (w2 < w2/_y6), that

surface-wave effects dominate, and a sufficiently high transverse beam tempera-

ture is necessary for stabilization. On the other hand, in the conventional betatron

regime (w4 > w / ), surface-wave effects require a sufficiently low transverse

beam temperature for stabilization. However, for sufficiently high-current beams,

the system is stable at all transverse temperatures.

Other effects investigated numerically in Sec. V included: the stabilizing influ-

ence of a small spread A in canonical angular momentum; the influence of inverse

aspect ratio a/Ro; the effect of the location of the conducting wall (a,); the stabiliz-

ing effect in the conventional betatron of radially elongating the beam in the minor

cross section; and the effect of slowly varying accelerating fields. Finally, stability

behavior was investigated for the NRL modified betatron as the charge neutrality

factor f is increased from f = 0 (pure electron beam) to f = 1 (fully neutralized

beam).
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TABLE CAPTIONS

Table 1. Modified and conventional betatron machine parameters.

Table 2. Modified and conventional betatron dimensionless parameters.

40



NRL LANL

Machine Phase Phase Liner Phermexi
parameter I I _

Energy E (MeV) 1 3.3 4.6 301

Current I (kA) 2.5 10 0.2 1.7

Ring radius a (cm) 1.5 1.5 0.5 1

Major radius R0 (cm) 100 100 5 15

Torus radius ac (cm) 15 15 1.5 4

Vertical field Bz (G) 50 128 3,400 6,800

Toroidal field BO (kG) 2.3 2.5 - -

Table 1
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Dimensionless
parameter

Wpe wcz

WCO/Wcz

7b

a/ac, vGb/ac

b/a

rL/a

f

A1/Ybm/bcRO

F(b, Yb cb ) WC)

NRL

Phase
I

33

49

3.0

0.015

0.10

1

0.0651

0

0

0

T .4

Phase
II

Liner

0.69

10

0.10

0.33

1

38

20

7.5

0.015

0.10

1

0.15

0

0

0

+

0

0

0

Phermex

1.2

60

0.067

0.25

1

0

0

0

Table 2
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FIGURE CAPTIONS

Fig. 1. Equilibrium ring geometry for the modified and conventional betatrons.

Fig. 2. (a) Regions of equilibrium and stability for rL/a versus WO/W,, for the NRL

Phase II modified betatron. The stability boundary (solid line) is obtained

from the dispersion relation in Eq. (66) and the equilibrium boundary (dashed

line) is obtained from Eq. (30) for wu/w, = 38, yb = 7.5, a/R& = 0.015,
a/ac = 0.1, f = 0, A/ybm/3 bcRo = 0. and F = 0 (E = 3.3MeV, I = 10kA,
a = 1.5cm, RD = 100cm, and ac = 15cm). (b) Curves of normalized growth

rate Imw/we, versus we/w, for rL/a = 0.01, 0.03, 0.075, 0.15, and 0.225 for

the NRL Phase II modified betatron. The growth rate curves are determined

from the dispersion relation in Eq. (45) for o,/we, = 38, yb = 7.5, a/Ro =

0.015, a/ac = 0.1, f = 0, A/-ybmIbcR = 0, and F = 0 (E = 3.3MeV,
I = 10kA, a = 1.5cm, Ro = 100cm, and ac = 15cm).

Fig. 3. (a) Regions of equilibrium and stability for rTL/a versus o,/we, for the NRL

Phase I modified betatron. The stability boundary (solid line) is obtained from

the dispersion relation in Eq. (66) and the equilibrium boundary (dashed line)

is obtained from Eq. (30) for wee/we, = 49, -yb = 3, a/Ro = 0.015, a/ac = 0.1,

f = 0, A /ybmbcR = 0, and F = 0 (E = 1MeV, a = 1.5cm, Ro = 100cm,

a= 15cm, and B = 2.3kG). (b) Curves of normalized growth rate Imw/we,

versus w,/we, for rTL/a = 0.01, 0.015, 0.045, 0.055, and 0.060 for the NRL

Phase I modified betatron. The growth rate curves are determined from the

dispersion relation in Eq. (45) for wce/we, = 49, yb = 3, a/R& = 0.015,

a/ac = 0.1, f = 0, A/ybm#bcRo = 0, and F = 0 (E = 1MeV, a = 1.5cm,

Ro = 100cm, ac = 15cm, and B, = 2.3kG).

Fig. 4. (a) Regions of equilibrium and stability for rTL/a versus w,/we, for the NRL

Phase II modified betatron. The stability boundary (solid line) is obtained

from the dispersion relation in Eq. (66) and the equilibrium boundary (dashed

line) is obtained from Eq. (30) for we/w, = 20, yb = 7.5, a/Ro = 0.015,

a/ac = 0.1, f = 0, A/%bm#bcRo = 0, and F = 0 (E = 3.3MeV, a = 1.5cm,

RD = 100cm, ac = 15cm, and B, = 2.5kG). (b) Curves of normalized growth
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rate Imw/ow2 versus w /wc, for rTL/a = 0.01, 0.03, 0.075, and 0.15 for the NRL

Phase II modified betatron. The growth rate curves are determined from the

dispersion relation in Eq. (45) for wc,/1eo = 20, yb 7.5, a/Ro = 0.015,

a/ac = 0.1, f = 0, A/ybmbcRo = 0, and F = 0 (E = 3.3MeV, a = 1.5cm,

Ro = 100cm, ac = 15cm, and Be = 2.5kG).

Fig. 5. (a) Regions of equilibrium and stability for rL/a versus Yb for the NRL Phase

II modified betatron. The stability boundary (solid line) is obtained from the

dispersion relation in Eq. (66) and the equilibrium boundary (dashed line)

is obtained from Eq. (30) for w,/we, = 38, we/w, = 20, a/Ro = 0.015,

a/ac = 0.1, f = 0, A/ybmbcRO = 0, and F = 0 (I = 10kA, a = 1.5cm,

R& = 100cm, ac = 15cm, and Bo = 2.5kG). (b) Curves of normalized growth

rate Imw/we, versus yb for rL/a = 0.01, 0.03, 0.075, and 0.15 for the NRL

Phase II modified betatron. The growth rate curves are determined from the

dispersion relation in Eq. (45) for w,/wc = 38, wce/we, = 20, a/Ro = 0.015,

a/a. = 0.1, f = 0, A/Ybm/ 3bcRo = 0, and F = 0 (I = 10kA, a = 1.5cm,

RD = 100cm, a, = 15cm, and B, = 2.5kG).

Fig. 6. (a) Regions of equilibrium and stability for rTL/a versus a/ac for the NRL

Phase II modified betatron. The stability boundary (solid line) is obtained

from the dispersion relation in Eq. (66) and the equilibrium boundary (dashed

line) is obtained from Eq. (30) for / = 38, we./we = 20, Yb = 7.5,

a/Ro = 0.015, f = 0, ZA/ybm~3bc& = 0, and F = 0 (E = 3.3MeV, I = 10kA,

a = 1.5cm, R0 = 100cm, and B. = 2.5kG). (b) Curves of normalized growth

rate Imwc/we, versus a/a, for rL/a = 0.03, 0.075, 0.125, and 0.140 for the NRL

Phase II modified betatron. The growth rate curves are determined from the

dispersion relation in Eq. (45) for ,/e = 38, e/wz = 20, yb = 7.5,

a/Ro = 0.015, f = 0, A/ybmbcRo = 0, and F = 0 (E = 3.3MeV, I = lOkA,

a = 1.5cm, RD = 100cm, and B. = 2.5kG).

Fig. 7. (a) Regions of equilibrium and stability for rL/a versus f for the NRL Phase

II modified betatron. The stability boundary (solid line) is obtained from

the dispersion relation in Eq. (66) and the equilibrium boundary (dashed

line) is obtained from Eq. (30) for , = 38, we/we, = 20, yb = 7.5,
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a/Ro = 0.015, a/a, = 0.1, A/ybmbcRo = 0. and F = 0 (E = 3.3MeV,

I = 10kA, a = 1.5cm. Ro = 100cm, ac = 15cm, and B. = 2.5kG). (b) Curves

of normalized growth rate Im/we, versus f for rL/a = 0.03, 0.075, 0.125,

0.275, and 0.280 for the NRL Phase II modified betatron. The growth rate

curves are determined from the dispersion relation in Eq. (45) for wP/Wc, = 38,

/weol = 20, Yb = 7.5, a/RO = 0.015, a/a, = 0.1, A/bm/b~cRo = 0, and

F = 0 (E = 3.3MeV, I = 10kA, a = 1.5cm, Ro = 100cm, a, = 15cm, and

be= 2.5kG).

Fig. 8. (a) Regions of equilibrium and stability for a/Ro versus wpw,, for the NRL

Phase II modified betatron. The stability boundary is obtained from the

dispersion relation in Eq. (67) and equilibrium exists everywhere within the

figure from Eq. (30) for wce/w, = 20, yb = 7.5, a/a, = 0.1, rL/a = 0.15,

f = 0, A/ybmIbcRO = 0, and F = 0 (E = 3.3MeV, a = 1.5cm, ac = 15cm,

and be = 2.5kG). (b) Curves of normalized growth rate Imw/wc versus

wp/wc for a/Ro = 0.0075, 0.015, and 0.03 for the NRL Phase II modified

betatron. The growth rate curves are determined from the dispersion relation

in Eq. (45) for woe/weI = 20, yb = 7.5, a/a, = 0.1, rL/a = 0.15, f = 0,

A/ybm 3 bcRo = 0, and F = 0 (E = 3.3MeV, a = 1.5cm, ac = 15cm, and

Be = 2.5kG).

Fig. 9. (a) Regions of equilibrium and stability for a/Ro versus yb for the NRL Phase

II modified betatron. The stability boundary (solid line) is obtained from

the dispersion relation in Eq. (67) and the equilibrium boundary (dashed

line) is obtained from Eq. (30) for w,/we, = 38, c/we = 20, a/a, = 0.1,

rL/a = 0.15, f = 0, A/ybm/3bcRo = 0, and F = 0 (I = 10kA, a = 1.5cm,

ac = 15cm, and Be = 2.5kG). (b) Curves of normalized growth rate Imw/we=

versus Yb for a/Ro = 0.0075, 0.015, 0.03, and 0.10 for the NRL Phase II

modified betatron. The growth rate curves are determined from the dispersion

relation in Eq. (45) for wu/we = 38, we/we = 20, a/ac = 0.1, rL/a = 0.15,

f = 0, A/-ybmf3cR = 0, and F = 0 (I = 10kA, a = 1.5cm, ac = 15cm, and

be = 2.5kG).

Fig. 10. (a) Regions of equilibrium and stability for A/ybmbcRo versus W,/we, for

the NRL Phase I modified betatron. The stability boundary is obtained from

45



the dispersion relation in Eq. (45) and equilibrium exists everywhere within

the figure from Eq. (30) for wee/wc, = 49, rnj = 3, a/Ro = 0.015, a/ac = 0.1,
rL/a = 0.065, f = 0, and F = 0 (E = 1MeV, a = 1.5cm, RO = 100cm,

ac = 15cm, and E, = 2.3kG). (b) Curves of normalized growth rate Imw/we,
versus w,/we for A/ybm3bcRo = 0.001, 0.002, 0.003, and 0.004 for the NRL

Phase I modified betatron. The growth rate curves are determined from the

dispersion relation in Eq. (45) for wo/w, = 49, yb = 3, a/Ro = 0.015,
a/ac = 0.1, rL/a = 0.065, f = 0, and F = 0 (E = 1MeV, a = 1.5cm,

RO = 100cm, a, = 15cm, and be = 2.3kG).

Fig. 11. (a) Regions of equilibrium and stability for vab/R* versus wp,/uc for the

LANL Phermex conventional betatron. The stability boundary (solid line) is

obtained from the dispersion relation in Eq. (47) and the equilibrium bound-

ary (dashed line) is obtained from Eq. (34) for -Yb = 60, v'S/ac = 0.25,
b/a = 1, f = 0, F = 0, and A/-ybmbcRO = 0, (E = 30MeV, a = b = 1cm,
and a, = 4cm). (b) Curves of normalized growth rate Imw/we. versus w,/w,

for v/ab/Ro = 0.001, 0.010, 0.030, 0.0666, and 0.10 for the LANL Phermex

conventional betatron. The growth rate curves are determined from the dis-

persion relation in Eq. (47) for yb = 60, \/b/ac = 0.25, b/a = 1, f = 0, F = 0,
and A /ybmbcRo = 0 (E = 30MeV, a = b = 1cm, and a, = 4cm).

Fig. 12. (a) Regions of equilibrium and stability for Vl/Ro versus yb for the LANL

Phermex conventional betatron. The stability boundary (solid line) is ob-

tained from the dispersion relation in Eq. (47) and the equilibrium boundary

(dashed line) is obtained from Eq. (34) for wp/we,, = 1.2, V'a/ac = 0.25,
b/a = 1, f = 0, A/ybm3bcRD = 0, and F = 0 (I = 1.7kA, a = b = 1cm,
and a, = 4cm). (b) Curves of normalized growth rate Imw/we, versus Yb for

b_/RD = 0.010, 0.030, 0.066, 0.10 for the LANL Phermex conventional be-

tatron. The growth rate curves are determined from the dispersion relation in

Eq. (47) for w, 1/w, = 1.2, V'/a, = 0.25, b/a = 1, f = 0, A/Ybm8bcRo = 0,

and F = 0 (I = 1.7kA, a = b = 1cm, and a, = 4cm).

Fig. 13. (a) Regions of equilibrium and stability for v'S/Ro versus b/a for the LANL

Phermex conventional betatron. The stability boundary (solid line) is ob-

tained from the dispersion relation in Eq. (47) and the equilibrium bound-

ary (dashed line) is obtained from Eq. (34) for w 1/we, = 1.2, Yb = 60,
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/a = 0.25, f = 0, A /ybmbcRo = 0, and F = 0 (E = 30MeV, I = 1.7kA,

and ac = 4cm). (b) Curves of normalized growth rate Imw/we, versus b/a

for V'N/Ro = 0.001, 0.010, 0.020, 0.0250, and 0.0275 for the LANL Phermex

conventional betatron. The growth rate curves are determined from the dis-

persion relation in Eq. (47) for w,/we, = 1.2, yb = 60, v/_/a, = 0.25, f = 0,

A/ybmbcRo = 0, and F = 0 (E = 30MeV, I = 1.7kA, and a, = 4cm).

Fig. 14. Stability regions of v'b/Ro versus /al/ac for F = -0.2 and F = 0 for the

LANL Liner conventional betatron. The stability boundaries are obtained

from the dispersion relation in Eq. (47) and the equilibrium is defined ev-

erywhere in the region shown. The parameters chosen are = 0.69,

Yb = 10, b/a = 1, f = 0, and AL/ybm3bcRo = 0, where F = -0.2 corresponds

to the solid curve and F = 0 corresponds to the dashed curve (E = 4.6MeV,

I = 0.2kA, and a = b = 0.5cm).
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