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Neoclassical Flux-friction Relations In Arbitrary
Closed-end Plasmas

Y. T. Lau

Plasma Fusion Center
Massachusetts Institue of Technology

Cambridge, MA 02139

October 1986

By following the moment approach of neoclassical transport theory, flux-friction rela-

tions in arbitrary closed-end plasmas are derived. As a simple application, the Pfirsch-

Schliiter fluxes are obtained for arbitrary closed-end plasmas. In particular, the Pfirsch-

Schliiter fluxes for a nonaxisymmetric toroidal plasma are calculated. The resonance effect

for a model toroidal magnetic field is reproduced straightforwardly. The ambipolar poten-

tial and the parallel flows in the Pfirsch-Schliter regime are also determined for arbitrary

closed-end plasmas, showing that the fluxes associated with them are generally negligible

in this regime.

1



I. INTRODUCTION

The moment approach of neoclassical transport theory has originally been developed

by Hirshman and Sigmar for axisymmetric tokamaks.1 This approach was then general-

ized to nonaxisymmetric toroidal systems.2 '3 Based on these works, neoclassical transport

coefficients for nonaxisymmetric toroidal systems in various collisionality regimes were

calculated.' 5 The advantage of the moment approach, i.e., the parallel momentum conser-

vation and the ambipolarity condition being considered at the fluid moment level, was also

discussed.6 In all these studies, flux coordinates were employed to express the magnetic

field in a contravariant fashion. Subsequent formulas were then closely tied to the flux

coordinates. However, these coordinates may not be convenient, since the magnetic field

may either be expressed in a covariant fashion (as the gradient of a scalar field) or by

its magnitude and field lines. Besides, for general closed-end systems with complicated

magnetic axes, such as helical solenoids7 and DRAKON,, 9 they are not applicable. There-

fore, it is desirable to formulate the moment approach by keeping the vector form of the

magnetic field and merely assuming the existence of flux surfaces. The formulas derived

in this way are applicable to arbitrary closed-end plasmas and another advantage of the

moment approach-separation of the geometric effects from the kinetic ones-is manifest

from the derivation.

In Sec. II, the first-order flows are solved from four lowest-order moment equations,

leaving some flux functions undetermined. Then in Sec. III, by introducing a vector field

D, the higher-order fluxes are related to the friction forces, viscosities, inductive electric

field, and external sources. After solving for the vector field D in Sec. IV, we follow the

conventional way to split the fluxes into different pieces to obtain the flux-friction relations

in Sec. V. Corresponding relations for toroidal plasmas are derived in Sec. VI. In Sec. VII,

Pfirsch-Schliter fluxes are calculated for arbitrary closed-end plasmas. In particular, the

effective safety factor for a model toroidal field is obtained, reproducing the resonance

effect. The ambipolar potential and the parallel flows in the Pfirsch-Schliiter regime are
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determined in Sec. VIII. Finally, conclusions are given in Sec. IX.

II. LOWEST-ORDER SOLUTIONS

Expanding the four moment equations' to lowest order in 6(= p/L, where p is the

Larmor radius and L the scale length). we have for each species 0 (the species index a- is

omitted),

C
-nou xB = VPo + noeV,%, (la)

e 5
-qixB = PVT, (1b)c 2

' V-noui = 0, (2a)

V.q = -noul- 5VT + eVIo), (2b)

where ul and q, are the first-order velocity and heat flows. Assuming the existence of flux

surfaces labeled by T and charge neutrality F , noe, = 0, we readily obtain from Eqs. (1)

the temperature, pressure, density, and electric potential as functions of the flux variable

only,

T = T(T),

Po = PO(P),

no = no(T),I

'Po = 'Po(q).

Among these flux functions, 4)o are to be determined by the higher-order equations while

the others are assumed to be given. Now Eqs. (1) imply that the first-order velocity and

heat flows are vector fields lying within flux surfaces and their purpendicular components

are azimuthal, i.e.,

cb xVPO cb x V4)

uu= +

Ui--enoB I B

bxVPc b'b I +e o ,(3a)
B e no
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bxV' T5c
q --- POT, (b

B 2e (3b)

where b = B/B is the unit vector along field lines. Also, Eqs. (2) indicate that the first

order flows are divergence-free, i.e., V-ul = V-qi = 0. Therefore, if we write

u1 = un + (U + Oi('I))B, (4a)

q1 = q+ - (Q + Qj('I))B, (4b)

we get two magnetic differential equations for U and Q,

B-VU = -V.- +xH- e' 0 (5a)
B (no

bVW 5c
B.VQ=-V-bx -PT'. (5b)

B 2e

Noting that J satisfies J = cV xB/4r_ I VIP, we can solve Eqs. (5) to obtain

u= -(d.-Vp xVB-2C(O + e', (6a)
/e no /

Q = -(dt.Vi'xVB-2 PoT. (6b)

The constants from the line integrals in Eqs. (6) will be included in the flux functions

Uli(T) and Qil(T), which remain indefinite in this order and can be determined by the

parallel balance equations of higher order.

III. HIGHER-ORDER SOLUTIONS

The exact momentum equation can be written as'

-nuXB= ne(V - EA) +VP+V-r - F1 - K1 + [nm( -+u-Vu), (7a)

where 7r = P - PI is the viscosity tensor and E = -V4 + EA the electric field (static and

inductive). F1 is the friction and K 1 is an external force. The heat flux equation is

eq maq 5u aP 5-xB =VE + V-0 - F 2 - K2 + T- + - - -nmu-Vu
cT IT & 2t 2
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\2 E-u -r - uumn), (7b)

where 01 + 0 = mr/T - 5P/2 is the heat viscosity tensor, and F 2 = mG/T - 5F 1 /2 the

heat friction. (r, P, G are the energy-weighted stress tensor, pressure tensor, collisional

rate of heat flux. as defined in Ref. 1) The external heat power flux P*x is combined with

K1 to form K 2 = mPex T -5K 1 /2. Next we observe that the terms in the square brackets

of Eqs. (7) are of higher order than the other terms, thus to first order in b, we have

e- -
-nou-xB = noeV - VP - V-7r - F 1 - noeEA - K 1 , (8a)
c

eq2 xB = V± + V-0 - F2 - K2 , (8b)
cT

where = < - -o, P = P - Po are the quantities that describe variations within flux

surfaces. Also note that we have treated the external sources as first-order quantities.

Now we are in a position to solve for u 2 and q 2. In order to do this, we must know the

various moments on the right hand sides of Eqs. (8). However, some of these moments

(like 4) are not easy to obtain unless we go to even higher order equations. Thus we seek a

way to eliminate these scalar functions at the cost of losing some unnecessary information.

Recall that we have assumed the existence of flux surfaces, thus for closed-end systems,

the only dangerous fluxes are the flux surface averages of the cross-surface fluxes, i.e.,

r, = (nou 2 -V'P), (9a)

qk = (q 2 -V4f) . (9b)

The flux surface average () is defined in Appendix B. Now if we construct a vector field

D that satisfies

V-D = 0, (10a)

B x D = VG(T), (10b)
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then we immediately have (using Eq. (B5)) (D-V<~) = (D-VP) = (D.VO) = 0, and the

dot products of Eqs. (14) with D yield

I',, (V-7r - F1 - enoEA - K1)-D). (Ila)

q, CIb)
T eG'

Note that G is an arbitrary flux function. Since D is always divided by G', the cross-surface

fluxes are actually independent of this free function.

Taking the dot products of Eqs. (8) and B, we get the parallel balance equations,

((V -7r - F1 - enoE A - K1 )-B) = 0, (12a)

((V-0 - F2 - K 2 )-B) = 0. (12b)

Summing up Eq. (12a) over all N species and applying momentum conservation 7, Fic =

0 and charge neutrality E, naec = 0, we obtain the parallel momentum conservation

equation

Z(B-V-7ra)--(Ki -B) = 0. (13)

Furthermore, the ambipolar condition E, IF = 0 leads to

Z(D.V-7rc) -(Ki-D) =0. (14)
a

These 2N +1 independent equations are just enough to determine the ambipolar potential

and the undetermined parts of the first-order flows (U11 and Q11). In some special cases,

Eqs. (13,14) together can determine the ambiploar potential, as will be shown in Sec. VIII.

IV. THE VECTOR FIELD D

The vector field D defined by Eqs. (10) has exactly the same geometric structures as

the first-order flows: it is divergence-free and lies within the flux surfaces. Thus we can

proceed in exactly the same way. The azimuthal component is

bxV'I
DB = -G' . (15)

B
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If we write

D = D - (D + D11 ())B, (16)

we get a magnetic differential equation for D,

B-VD = G'V- bxV)
B

= G'B-V'I'xVB 2 . (17)

Where again, J.IVP has been used in the last step. The solution for D is

D= G' df-VT xVB-2, (18)

which is completely determined by the magnitude of B and its field lines. Note that in

general fdt-VI xVB-2 : 0, hence this integral determines D up to an arbitrary flux

function i. However, because of the parallel balance equations (Eqs. (12)), it does not

contribute to the net cross-surface fluxes. Therefore we can absorb it into D and write

D bxV' DB

GI B + G(19)

This equation is purely geometric and will be called "general geometric relation". It will

be shown later that it reduces to the corresponding relations in toroidal systems. Taking

the curl of Eq. (10b), we obtain another geometric relation,

B-VD = D-VB. (20)

An alternative way of finding D is to construct it from different components of B while

keeping Eqs. (10) satisfied. This method will be illustrated in Sec. VI.

Finally, we can relate U and Q in Eqs. (6) to their counterpart D by

U = -- cP' , (21a)
G' e no

D 5c
Q = --- PoT'. (21b)

G'2e



And the first-order flows are related to D by

U e = -- -\fl + e.Q ' - + U1 B, (22a)
e no 0G'

oc D
q1= - PoT +Q 11B. (22b)

V. FLUX-FRICTION RELATIONS

As in Ref. 1 and 2, the fluxes np and qT can be separated into different pieces according

to their different physical origins. Except for those due to external sources and inductive

electric field, all other fluxes are directly related to the friction forces and viscosity tensors.

These relations are the flux-friction relations.

The particle flux is divided into

= Pci + re + rna + rPs + Pbp + Fi.,

i.e., classical, external, nonaxisymmetric, Pfirsch-Schliiter, banana-plateau, and inductive

fluxes respectively. Using the general geometric relation (Eq. (19)), we can express them

as

ci - -Fi) , (23)
e B

r = -- (D-K 1 ) , (24)eG'

=.a = (D -V -7r) , (25)

c B(FB2)
ps = -- (BD - DB , (26)

eG' (B2)

rbp - G (B2) (B(Fil + noeEfA)), (27)

in - noeE(B(B 2 ) -DB + - noeE .bx7). (28)
eG' 1 ( (B2) e _L B
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Note that due to momentum conservation and charge neutrality the classical, Pfirsch-

Schuiter, banana-plateau, and inductive fluxes are intrinsically ambipolar. The ambipolar

potential 4 is therefore determined by balancing the other fluxes of different species.

Likewise, the heat flux is divided into

q, = qc1 + q + q. + qn + qbp,

and the various fluxes are,

qc c/bxVJ\

_= e\ B -F 2 1 2 , (29)

qex c (D-K2) (30)
T eG'

qn -(D-V-e). (31)
T eG' (1

S<F, (B(DB 2 -DB (32)
T eG c (B 2 )

GG (DB2) (BF 211). (33)
T eG' (B 2 )

Since Q-1 is much smaller than any other characteristic time, we can use the CGL

forms" for the viscosity tensors, i.e., 7r = 6P(bb - 1/3), and 0 = 60(bb - 1/3) with

6P = (Pi - PL), and 6 = (eil - 0±). Applying Eq. (B4) with A replaced by bPbb and

f by D, we obtain

(D.V.Pbb) = bB: VD
B

The double dot product is defined by AB: CD E Lj AiBCDi. Then Eq. (20) readily

gives us

rrm c bpD-VB).(4I'm --- SP .(34)
eG'( B

Similarly, the nonaxisymmetric heat flux

qn8  c / D-v B\ (5
TE6 B). (35)
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VI. FORMULAS FOR TOROIDAL PLASMAS

We now show that with appropriate choices of D, the general flux-friction relations

reduce to the conventional expressions for toroidal plasmas. For nonaxisymmetric toroidal

plasmas, the coordinates (IF. 9, C) are employed with 9 and C as the poloidal and toroidal

angles. The magnetic field can be expressed in a contravariant fashion (see Appendix A),

B = X'(9V~x VI 4'()V'x V9

=Bp + Bt

= B 2e2 + B3e3 . (36)

where B 2  X'/y/5, B 3 =4-'/ are the contravariant components of B and the Jacobian

is

=(V-V6x V). (37)

Now if we choose

D = ajBt + a 2 Bp, (38)

where a, and a2 are arbitrary flux functions, then D is evidently divergence-free and

through Eq. (10b) we find that

a120G = / , (39)

where a 12 = al -a 2. Since G is required to be a flux function, we must choose a coordinate

syst'em such that 9 is a flux function too. A convenient one is the Hamada coordinates 2

(V, 0, (), whose g = 1. (V is the volume enclosed by each flux surface) Using these coordi-

nates and defining I by

D -B I
'D = (40)

B 2 B 21

we have the following form of the general geometric relation (Eq. (19)),

D bxV'I Ib

B=20Y - +a 2 0 (41)
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The neoclassical particle fluxes then take the forms,

Fex = - (D -KI) (42)

Fna= - 6P , (43)
ea1 'x' B

17P C Fi(B ) -1 (44)

c (I)7,, B2 )

Fbp = c (K B(F1| + noeE A)) , (45)
Ea12V"'(B 2)

Kin = noeE (BI - +)) - cKnoeEA. b .x (46)eaL1'x' (B 2) B e B

The neoclassical heat fluxes are,

qex _ C
-(D-K), (47)

T ea120Yx

qna c /0DVB\ (48)
T Beai b'x' \B '

-= F2|B()| (49)T ea12'x' (B 2) B ))

-bp c g BF211). (50)
T eal20'X'(B2)

Writing D = a 2Bt + a 2B = a 1B - a12BP and recalling the parallel balance equations, we

can easily see that the net total fluxes are independent of the free functions a, and a 2 .

Different forms of the fluxes given in Ref. 2 can also be reproduced easily from the forms

given above.

For axisymmetric toroidal plasmas, we use the coordinates (AP, 6, () and express B as'

B = x'(T)V( X VT + I(', 6)V(

Bp + Bt. (51)

Where 2 7rx is the poloidal flux and T the toroidal flux. Choosing

D = R 2V, (52)
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with R being the major radius and noting that VT-VC = 0 and iVC| = 1/R we

have from Eq. (10b),

G= ' 1/27rq('), (53)

where q is the safety factor. Then since

I('P'.9)
B 2 ,

the general geometric relation reads as follows,

R2 VC bxV

B

Ib

x'B

The fluxes are then reduced to the familiar forms,'

(54)

(55)

F_ = -/KR2VC-K,),
ex

exC

Ps =c

P V=-VB) 0

bp = -- ( B(Fi 11 + noeEA)),ex'(B 2 ) 11 H

nOeE~ AB(I)

11{B2)
) + -noeEA. bXV,B e B

qex R2V(-K2
T ex

6e R2 V(-VB)
B ,

T ex \ (B(I)
(B2)

qbp c ( BF2).
T exB2

12

in = --

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

B1 ( - ,W

I 0
B'



Note that for this particular choice of D, the nonaxisymmetric fluxes are identically zero

because B has no C dependence for axisymmetric plasmas. In general, we can have

D = a 1R2V( + a 2 R 2 B,/I(', 0)

with G' = l2X'., then the nonaxisymmetric fluxes will no longer be zero.

VII. PFIRSCH-SCHLUTER FLUXES

As a simple application of the flux-friction relations presented in Sec. V, we consider

here the Pfirsch-Schliter fluxes. For a simple electron-ion plasma with T T and me <

m , the friction-flow relations derived in Ref. 1 are simplified to2

F1e =.-F 1 = l (u. - u') + l], (65a)

F 2 e = 11 [(ue - ui) - 1.86k] (65b)

F2i = - 2  . (65c)
522 Pi

where lie= nemeve, l22 = V'nimyv and the collision frequency

4i4ref eingln A
3 = . (66)

=3/fr m~v±i

Since we are calculating the second-order fluxes, we can use the first-order flows in Eqs. (4)

for u and q in these equations. From the definitions of the Pfirsch-Schliter fluxes Eqs. (26)

and (32), we find that and Qdo not contribute to these fluxes, thus we can obtain

the Pfirsch-Schliter fluxes without resorting to the parallel balance equations. Plugging

Eqs. (21) with no = no = no and e = ej = -ee into Eqs. (65) and then using the definitions

of the Pfirsch-Schliter fluxes, we obtain

- es = =rs,=(- 2B2 meve (' noT' , (67a)
-B -( ' '+ (B) (

e
q__ C _ 2 (c (2B2) 3 (DB) 2 x / + /i 5.6no~
T e'(B 2) 2 rn0 +1.86~ 2~ +o, (67b)
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qP (( ' 2 D2

___ - _ (Om/D2B2\ \DB (67c)

T eG ' KB2) )
Notice that the geometric effects are completely separate from the kinetic ones. Letting

S= rr2Bo, we can define an effective safety factor that contains all the geometric infor-

mation,

1 (DB21
qi =(7r) $DB9 - .B1  (68)

Now if we set Te =T = T, the Pfirsch-Schliter fluxes become

Fe s -2q 2 De l(o + I 8T (69a)P ef C ( r 4 Tar)

(q,2 0.825ci' -3K, /2 aT/ar
2 .1 (69b)

q , qff K' i/F 0 T-) no/r

There D' vei(2T/me, ) is the classical diffusion coefficient and , = novej(2T/mQ2),

Kc = novi/(2T/mfjQ) are the classical thermal conductivities.

These results of the Pfirsch-Schliiter fluxes have different numerical factors compared

with those obtained in Ref. 10 for toroidal systems. This is because we have used a

simplified form of friction-flow relations (Eqs. (65)), where only the first two velocity mo-

ments (u, q) are included. If we take one more velocity moment and then find the linear

relation between it and the previous two, as was done in Ref. 1, we will find that in

the low-collisionality regimes, Eqs. (65) is still correct, while in the collisional regimes

(Pfirsch-Schliter and classical), the coefficients of their parallel parts are different. How-

ever, observing that the geometric effect is completely separated from the kinetic one, we

can simply take the results from Ref. 10 and replace the geometric factor by the effective

safety factor to obtain (with ion charge number Zi = Zeff = 1)

2 ano nnaT
rIs = -2qD ( 0.656 + 0.385 ), (70a)C1 r Tar

q (0.431K' -0.543Ki ( T/ar
-2q'f C1 . (70b)

qP 5 ) 0.566K" 0 TIn no/Or

These results are valid in the collisional regimes for arbitrary closed-end plasmas.
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As an example, let us consider a toroidal plasma with the model magnetic field

B=BO 1 'bIm cos(10 - m< + cim) , (71)

where the prime means 1, m cannot be zero at the same time. 1bimI < 1 are functions of r

only, they describe the inhomogeneity of the field. The phase factors cIm are also functions

of r only. Besides the magnitude of the field, we use an approximate field line equation,

q9 + (o, (72)

where q is the safety factor and (0 a constant. Using Eq. (18) with G = I = irr2 Bo, we

obtain to 0(bim)

1 + lmr2/qR2
D = -27rr-q '2bm ( + 0 cos(l9 - mC + cim), (73)

Bo (l-mq)

where RO is the average major radius. Keeping terms to O(bm) in Eq. (68) and applying

Eq. (B6), we get

q2ff = q21I Robim ) ( ±rn2/lRg) 2  (74)
Im(r 1 -Mq

This result exhibits resonances at rational surfaces 1 = mq. From its derivation, we know

that the origin of these resonances is the following: when we travel along the field lines on

these rational surfaces, we see a constant rather than an alternating field gradient. This

spatial secularity adds up to a resonance of infinity. However, remember that our field

line equation (Eq. (72)) is approximate, the spatial secularity should not be there had we

use the exact field line equation. Therefore, we expect that in practice resonances of finite

values rather than infinity will occur. Finally, without the term mr2 /qR2, which is usually

small except for large m, equation (74) is the same as the geometric factor obtained by

Boozer in Ref. 13.
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VIII. AMBIPOLAR POTENTIAL AND PARALLEL FLOWS

If there are no external sources. the ambipolar condition Eq. (14) and the parallel

momentum conservation Eq. (13) are

/ 6aD-'7B\ 0
(D7 -g = -7 7P,,B / = , (75)

Ct ~ QB

(B-V-7r,; =- SPb-VB= 0, (76)
Ck 0

where the same arguments for obtaining Eq. (34) have been used. Now suppose in a certain

collisionality regime 6P and 60 take the following forms for species a, (we will omit the

subscript zero in P0 , no and P, n are understood to be flux functions)

SP, = -3 (~ua + -, H(x), (77a)

6e, = -3(Auia + A- - H(x), (77b)

where A7 are flux functions that contain kinetic effects and H(x) is a species-independent

vector field determined by the magnetic field geometry. Note that both equations have

the same A' is a consequence of the self-adjointness of the Coulomb collision operator.'

Plugging Eq. (77a) into Eq. (75) and using Eqs. (22), we get

-'T D-VB)-3c [Al -"+ 4O +A2- D-H
en e Q( G'B

[2Q6 ]/ D-VB+32 1 A 6+ A2  \ G'BH / = 0, (78)
5P G'B

where [], means that relevant terms inside the bracket are those of species a. For Eq. (76)

we get an equation of the same form except that D-VB/B is changed to B-VB/B. So we

arrive at two mutually exclusive equations and since D / B, the only solutions are

-+ b + ) 2--A = 0, (79)en e

1[ &_21 =|. 5P (8-0)

16



Therefore an ambipolar potential that is independent of geometry is obtained as follows

1V - P' T' c
'= E I- + 2A. (81)

This is a direct consequence of the particular form of Eq. (77a).

Next we specialize to the Pfirsch-Schliter regime, in which Eqs. (77) become

6P = - P,, lU1 + P2 22, , (82a)
Vla 5P , B

-3Pa 2q1  VB60 = PP2U + A B (82b)
va 5P B

where va are self-collision frequencies and pj are constants. For an electron-ion plasma,

= .733, = 1.51, L4 = 6.06, and pi = 1.365, pt 2.31, I' = 8.78. Equations (82) have

been derived in Ref. 2 for nonaxisymmetric toroidal systems but they are generally true for

arbitrary systems. Note that now Aj = Pyj/v and H = VB/B. Since v/vi - mi/me,

we can ignore the electron term in Eq. (79) and obtain

0 (PI + (83)
en ttie

Thus to zeroth order in me/mi, the ambipolar potential is completely determined by the

kinetics of ions.

Having obtained ', we can use Eq. (80) together with the parallel balance equations

(Eqs. (12)) to calculate the flux functions U11, Q1 of the first-order flows. An iterative

method involving two small parameters will be used.2 With EA = Kl = K 211 = 0, Eqs. (12)

now read

(BF111) =(B.V.ir) = -(SPb.VB), (84a)

(BF 211) =(B-V-0) = -(5&b-VB). (84b)

In the Pfirsch-Schlilter regime, vta/vL 2 < 1 (vt = 2T/m is the thermal velocity and

L the longitudinal scale length such as the connection length qRo), the right-hand sides

17



of Eqs. (84) are much smaller than the left-hand sides and therefore to zeroth order in

V./7)L2, we have

KBF 1Ii) = (BF,) = 0. (85)

Equations (65) then yield (the difference in the numerical factors due to the omission of

the third velocity moment will not matter in this order)

ziB> (86a)

(q: B) =(q 11B) = 0. (86b)

Putting the parallel parts of Eqs. (4).into these two equations, we get

(DBB2 ) c

' = -5 PT' (87b)
11 G'(B2) (2e ) C

where P+e P + P, and a = e, i. Furthermore, the zeroth-order approximation (ignoring

the electron term) of Eq. (80) gives

-(22Qi

(DB2) (Y2cTI 
(88)

G'(B2 ) yLIe

0= ( ) T' '.C (89)
G'(B2) 1l e + elntJ(9

Therefore, by expanding the two small parameters me/mi and vt/vlL2, we have com-

pletely determined the first-order flows.

Substituting the above results into bPe with n = ne = ni, lel = ej = -e, yields the

first-order (D- V-. 7r), which are

(D.V.-ri) = -(D-V-re)

3Pyc + Pe TI' +peT, GPs, (90)
v e e 1 n yp1

is



where the geometric factor is

KD.VBD B\ (DB2)Gps()= B D-VlnB - (b-VBD-VlnB). (91)G'B G'(B 2)

Similarly.

3PIc 2P' Gs
DV - " T' ' (92)

(D -77-0j) =3P"ic P2 T'Gps. (93)

The expressions for KB. V- 7r) and \B-V- ) are the same except that D-Vin B is changed

to b-VB inside Gps.

With these results, it is straightforward to calculate the nonaxisymmetric fluxes. The

banana-plateau fluxes can be obtained from

c (DB2)
P = _(B-V-7r)'eG' (B 2)

qbp c (DB2)(BVO)
T eG' (B 2)

If Eq. (18) is used to calculate D, then in general the first term of Gps will dominate, since

D itself contains the gradient of B. Thus we can estimate the relative sizes of different

fluxes as follows

rPS : na: rbp 1 (vte/vL): (vte/veL) 2 (r/L).

Note that this remains true for axisymmetric toroidal plasmas if D is calculated from

Eq. (18). But if we choose D = R 2V(, then r, 8 = 0 and D is no longer proportional

to VB. We have in this case bs p 1 : (vte/veqRo)2 . The sum rna + Fbp is of

course independent of the choice of D. Therefore, in the Pfirsch-Schliiter regime, the

Pfirsch-Schliiter fluxes calculated in Sec. VII always dominate, no matter what shapes the

closed-end plasmas take.
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IX. CONCLUSION

Flux-friction relations have been derived by following the moment approach of neoclas-

sical transport theory. The introduction of the vector field D enables us to extract the

geometric effects from the kinetic ones and the formulas obtained thereby are applicable

to arbitrary closed-end plasmas. This advantage of the moment approach-separation of

geometric effects from the kinetic one-is most evident in the Pfirsch-Schliter fluxes, for

which we can define an effective safety factor that contains all the geometric information.

For a model toroidal magnetic field (Eq. (71)), this effective safety factor exhibits reso-

nances at certain rational surfaces. These resonances are due to spatial secularities of the

field gradient and will actually be finite in practice.

For regimes in which the geometric and kinetic effects are separable, the ambipolar

condition and the parallel momentum conservaton together determine a general ambipolar

potential that is independent of the magnetic field geometry. First-order parallel flows can

be obtained by solving the parallel balance equations iteratively, as have been illustrated in

Sec. VIII. In the Pfirsch-Schliiter regime, the nonaxisymmetric and banana-plateau fluxes

associated with these flows are in general negligible.
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Appendix A. Gerneral Coordinate System

The general coordinates (XI, X2. X3 ) are employed to describe closed-end plasmas. x1

labels the flux surfaces, 92 measures the poloidal angle, and x specifies the longitudi-

nal position. Note that any physical quantities should be periodic in x2 and x. The

contravariant bases are e' = Vx. from which we generate the covariant bases ej, and

ei= E1 kei x ek g, (Ala)

ei = Eke x e/V/ , (Alb)

where the Jacobian is

X/I = (VX' -VX2 x Vx')-. (A2)

The volume element is

dx = v/gdxdx 2dX. (A3)

Suppose we have a divergence-free vector field A that lies within flux surfaces, i.e.,

V.A = 0, (A4a)

A-Vx = 0, (A4b)

then we can construct a contravariant representation for A'

A = x'(X )VX3 X VX1 + g'(Xl)VXI x VX2

= A 2e2 + A3 e3 . (A5)

where A2 = x'//g-, A3 = O'/V/. A' is manifestly zero due to Eq. (A4b). The flux functions

x and & are related to the poloidal and longitudinal fluxes of A by

%, _ A-dS,
X - & - fA ,S (A6)

L L

XFL _fA.dSL(A1

27r 27r
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The field line equations are

dL dx2

(A8)
A Ai

Vector fields that have these geometric structures are B, D, u1 , qi, and J.

Appendix B. Flux Surface Average

The flux surface average () is defined by 0

(f) J fdx dx , (BI)

where AV is the volume between two neighboring flux surfaces. Labeling the flux surfaces

by T, we can derive from the above definition

(f)d fdS (B2)

If A lies within flux surfaces, i.e., A-V' = 0, then Gauss' law readily yields

(V.A) = 0, (B3)

(fV-A) = -(A-Vf). (B4)

Furthermore, if V.A = 0, it follows that

(A-Vf) = 0. (B5)

Based on a divergence-free and on-surface vector field A, another representation of

() can be established. Setting x1 = T makes A satisfies Eqs. (A4). Then the use of

Eqs. (A3,A5,A8) yields

dT L 27r dX2 (L de B6( -dV jo 27r j f, (B6)

where 'PL = 27rb is the longitudinal flux. For ergodic field lines, we can do the poloidal

average by following the field line N circuits around the system. This yields

dXPL 1 NL d
(f ) lim A f. (B7)

99N- N1



A special case of this formula is

.1 NL df dV
rim -V (B8)

N-N A d'L'

which relates the line integral to the specific volume dV/dPL.
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