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ABSTRACT

Detailed properties of the cyclotron maser and whistler instabilities in a

relativistic magnetized plasma are investigated for a particular choice of

anisotropic distribution function F(p 2,p) that permits an exact analytical

reduction of the dispersion relation for arbitrary energy anisotropy. The

analysis assumes electromagnetic wave propagation parallel to a uniform

applied magnetic field Bz. Moreover, the particular equilibrium distribu-

tion function considered in the present analysis assumes that all electrons

move on a surface with perpendicular momentum p = = const. and are uni-

formly distributed in axial momentum from pz -z = const. to pz = =z

const. (so-called "waterbag" distribution in pz). The resulting dispersion

relation is solved numerically, and detailed properties of the cyclotron maser

and whistler instabilities are determined over a wide range of energy

anisotropy, normalized density w / 2 and electron energy.p c
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I. INTRODUCTION

The classical cyclotron maser 1-9 and electron whistler 6 ,10- 13 in-

stabilities in a uniform plasma are transverse electromagnetic instabilities13-15

driven by an anisotropy in the average kinetic energy of the constituent

electrons. These instabilities have a wide range of applicability to

astrophysical and space plasmas,3 ,4,8,11to laboratory plasmas with intense

RF heating,6,7,12 and to relativistic electron beams used for microwave

generation. 1,2,9  For nonrelativistic anisotropic plasma, detailed

properties of the whistler instability 13 are readily calculated for

a wide range of distribution functions F(p 2,pz). Here, we assume electro-

magnetic wave propagation parallel to a uniform applied magnetic field

Bo5z, and the terms "perpendicular" and "parallel" refer to directions

relative to BOkz. For relativistic anisotropic plasma, however, because

of the coupling of the perpendicular and parallel particle motions through

the relativistic mass factor y (1 + p 2/m2c2 + p2 M2c2)1, properties of

the cyclotron maser and whistler instabilities are usually calculated in

limiting regimes which allow approximate analytical solutions or sub-

stantial simplification of the electromagnetic dispersion relation.

These limiting regimes range from weak energy anisotropy, to very

strong energy anisotropy, to long perturbation wavelengths, to short per-

turbation wavelengths.

The purpose of this paper is to investigate detailed properties of

the cyclotron maser and whistler instabilities in relativistic magnetized

plasma for a particular choice of anisotropic distribution function that

permits an exact analytical reduction of the dispersion relation for

arbitrary energy anisotropy. This calculation is intended to provide
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qualitative insights regarding stability behavior for more general choices

of equilibrium distribution function. The particular distribution function 15

[Eq.(7)] considered in the present analysis assumes that all electrons move

on a surface with perpendicular momentum p1 = p = const., and are uniformly

distributed in parallel momentum between pz ~=~ = const. and pz z

const. (so-called "waterbag" distribution in pz). For this choice of

F(p2,pz), the integrations over p and pz in the dispersion relation [Eq.

(2)] can be carried out in closed form. The resulting dispersion relation

[Eq.(19)] is valid for arbitrary energy anisotropy aI /2 and can be used

to investigate detailed stability properties over a wide range of system

parameters. Here, 8 and iz are defined by al = / mc and iz = z/jmc,

2 2 2 A2 2£
wherey = (1 + ^2 /m c + 2 2/ 2 i

The organization of this paper is the following. In Sec. II, we

outline the theoretical model (Sec. II.A), derive the electromagnetic

dispersion relation (19) for the choice of equilibrium distribution

function in Eq.(7) (Sec. II.B), and (for completeness) show that Eq.(19)

reduces to familiar results in the two limiting cases az = 0 and B = 0

(Sec. II.C). In Sec. III, the dispersion relation (19) is solved

numerically, and detailed stability properties are investigated for both

the cyclotron maser and whistler instabilities over a wide range of system

parameters 2 , /2, j, and ck /p. Here, wc = eB0/mc and Wp =

(4fe2 /m) are the nonrelativistic electron cyclotron and plasma frequencies,

respectively, and kz is the axial wavenumber of the perturbation. Finally,

in Sec. IV, we obtain the electromagnetic dispersion relation [Eq.(35)]

for the case where the distribution in parallel momentum p corresponds

to thermal equilibrium [Eq.(29)]. A detailed analysis of Eq.(35) will

be the subject of a future investigation.
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II. THEORETICAL MODEL AND DISPERSION RELATION

A. Electromagnetic Dispersion Relation

In the present analysis, we specialize to the case of stationary ions

(m + -) and consider a single active component of relativistic anisotropic

electrons. Electromagnetic stability properties are investigated for per-

turbations propagating in the z-direction parallel to a uniform applied

magnetic field B Oz. Perturbations are about the class of spatially uniform

equilibria with distribution function

f0(p) = fiF(p 2 ,p (

where n^ = const. is the ambient electron density, p = (p2 + p2) is the
_L x y)

particle momentum perpendicular to the magnetic field B &z, and pz is the

parallel momentum. The linear dispersion relation for circularly polarized

electromagnetic wave perturbations propagating in the z-direction is given

by

c2k2  2 d'p (p /2)
0 = D =1 - z +

Y YW - k ZP/m±Wc
(2)

kzpz ) + k zp __ 2x yW - + kz F(p2 z '
a aP- m ap z

where kz is the axial wavenumber and w is the complex oscillation fre-

quency with Imw > 0, which corresponds to instability (temporal growth).

In Eq.(2), w = 4irne 2/m is the nonrelativistic plasma frequency-squared;

Wc =eB0/mc is the nonrelativistic cyclotron frequency; -e and m are the

electron charge and rest mass, respectively; c is the speed of light in

2 2 2 2 22 ivacuo; y = (1 +L /m c + pz/in c )' is the relativistic mass factor; the
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range of integration is fd p''' = 27fdp Pf dpz ; and the normalization
0 -

of F is fd3pF(p ,pz) = 1. Moreover, the two signs in Eq.(2) refer to

electromagnetic waves with right-circular polarization (- sign) and left-

circular polarization (+ sign), respectively. The dispersion relation (2)

is readily extended to the case of a multicomponent plasma by making the

replacements w - -- + Wj-*--, F(p_,,pz) + F (p ,pz), w wc *, etc., where

j labels the plasma species.

The dispersion relation (2) can be used to investigate detailed

electromagnetic stability properties for a wide range of anisotropic dis-

tribution functions F(p ,pz). For relativistic anisotropic plasma, we

note that the perpendicular and parallel particle motions in Eq.(2) are

inexorably coupled through the relativistic mass factor y = (1 + p/m2 c2 +

p /m2 c 2). For present purposes, we assume that the electrons move on a

surface with constant perpendicular momentum p1 = = const. That is,

F(p 2,pz) is assumed to have the form

2 1
F(p ,pz) - 6( p zI - Fl(pz) (3)

where Fi(pz) is the parallel momentum distribution (yet unspecified) with

normalization IdpzFi(pz) = 1. The strongly peaked distribution in p in

Eq.(3) can occur in laboratory plasmas when there is intense microwave

heating (e.g., electron cyclotron resonance heating) of the electrons

perpendicular to B Oz'

The integration over p in Eq.(2) can be carried out in closed

analytical form for the choice of distribution function in Eq.(3). Making

use of ay/apz = Pz/Ym2c2 and ay/ap = p /ym c2, some straightforward

algebra shows that Eq.(2) can be 'expressed as
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c~k 2 dp0= D k(,kz) = - - F1(pz)

-00 (4)

y kp/mW (1 - C2k /W2
- P-I. z

y - kzpz/mW ±c/W (m - kzPz/mW oWClW

In Eq.(4), y is defined by

= (+ + ,) (5)

where p has been replaced by p = const.

B. Waterbag Distribution in Parallel Momentum 15

The dispersion relation (4) can be used to investigate detailed electro-

magnetic stability properties for a wide range of distribution functions

Fi(pz). For purposes of elucidating the essential features of the

instability in relativistic anisotropic plasma, we make a particular choice

of Fi(pz) for which the integrations over pz in Eq.(4) can be carried out

in closed analytical form. In particular, it is assumed that the electrons

are uniformly distributed in parallel momentum between pz ~-z = const.

and pz = + z = const. That is, Fl(pz) is specified by

1
Fl(pz) - H( - pZ) , (6)

2pz

where H(x) is the Heaviside step function defined by H(x) = +1 for x > 0,

and H(x) = 0 for x < 0. Note from Eq.(6) that IdpzFi(pz) = 1. Because

the electrons are uniformly distributed in parallel momentum for <pz z'

we refer to the pZ-dependence of the distribution function in Eq.(6) as a
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"waterbag" distribution in pz. Combining Eqs.(3) and (6), the total

distribution function F(p2 ,pz) can be expressed as

1 1
F(p ,p 6(p, ) -H( - p) (7)

Z 27rp 2 p z

For future reference , we first calculate the energy anisotropy associated

with the distribution function in Eq.(7).

Equilibrium Properties: For the choice of distribution function in

Eq.(7), it is useful to introduce the maximum energy ymc 2, parallel speed

CAZ., and perpendicular speed cA defined by

= _ z

SYMC ymc

c1 (8)2 2 -8

1 Z)

We further introduce the effective perpendicular and parallel temperatures

defined by

T1 = Jd3p F(p2,pz '
2ym -

1 3 2
2TZ = d3 P F(p 2pz)
2 z 2Ym z

Substituting Eq.(7) into Eq.(9) and carrying out the required integrations

over p1 and pz give
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1 2-2G(
T -= mc2 G(AzZ

(10)
1 2 + A

z= 2 2 - G(Rz) + G(Rz )

where G(A ) is defined by

+ A +
G() -- in (

2Az ( ~ z

From Eq.(11) and Fig. 1, we note that G(A ) is a slowly increasing function
2z

of a with G(Rz) = 1 + A /3''' for A <<1. Moreover, in the limit of az z z
nonrelativistic plasma with ^ << 1 and 2 << 1, Eq.(10) reduces to the ex-

pected results, T + (1/2)mc 2A2 and T + (1/3)mc28 . Depending on the relative

values of A and Az, it is clear that the choice of distribution function
-5-z

in Eq.(7) can cover a wide range of energy anisotropy.

Dispersion Relation: We now simplify the dispersion relation (4) for

the choice of waterbag distribution F (pz) in Eq.(6). In this regard, it

is convenient to define

2 2

= + (12)

and rewrite the expression for y = (1 + p2/m 2c2 + p2/m 2c2) in Eq.(5) as

p 
Z

/ 2 2
n= t y + d s . (13)

In the dispersion relation (4) we change variables from pzto ca where

(.14)pz (.mc)sinha
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From Eqs.(13) and (14), it follows that

y = 91cosha

(15)
dpz

= mcda
Y

Substituting Eqs.(6), (14) and (15) into the dispersion relation (4) then

gives
a

c2k2  2 mc
0 = D j(W,k -1 da

W w 2p z.

[cosha - (kzc/w)sinha] 
(16)

[cosha - (kzc/w)sinha ±c

P-L (1 - c2k /W2)

2 2m2c2 [cosha - (k c/o)sinha w A 2

where 9 = (1 + 2 /M2c2), is defined in Eq.(12). The limits of integration

(±&) in Eq.(16) are determined from z = (..mc)sinh&. Because Y = YLcosh&,

where 9 is defined in Eq.(8), the equation determining & can also be ex-

pressed as

-= = tanh& . (17)
y mc

Solving Eq.(17) for & in terms of Rz gives

& =-n z (18)
2 1 -bz

The integrations over a in Eq.(16) can be carried out in closed analytical
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form (Appendix A). Substituting Eqs.(A.4), (A.6) and (A.7) into Eq.(16)

gives the desired dispersion relation

0 = D (W,kz) = 1 -c -Y G(z)1+ G(

z C

2 C(c2k2 _ 2
I z

2 (w/ )2 + (1 - R )(c2k - W2 (19)

(w c/i)- c2k2$ w(1 - "0 ) ioc G~~

where is defined by

Sz"c 2 + (1 2 $$(2k 2 2

-2 ,2(2 )
( z C

and G() is defined by

1 /1+ E
G(E) = - ln - . (21)

2E E1- 1

In Eq.(19), the various quantities are defined by A = p /imc [Eq.(8)], ^az
S/5inc [Eq.(8)], 5-=(1 + ^2 2 2 +2 2m 2

z/ E.) 1 p/m C + 2 c )1 [Eq.(8)], and G( z) is defined

in Eq.(11). The fully relativistic dispersion relation (19) can be used to

investigate detailed properties of the electron whistler and cyclotron maser

instabilities for a wide range of effective energy anisotropy 2 /2 2,
IL Z

normalized density p /W , electron energy mc2  etc.

Because Fj(pz) is an even function of pz in Eqs.(6) and (7), it follows

that the average flow velocity in the z-direction is Vd: fd3p(p/y)

2x F (p- 'p ) = 0. For electrons with average axial velocity V d const. 0,
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the corresponding dispersion relation for a displaced waterbag distribution

is readily derived from Eq.(19) by making the appropriate Lorentz transforma-

tion of w and kz. In particular, we view Eq.(19) as the dispersion equation

relating w and kZ in a frame of reference moving with axial velocity Vd

relative to the laboratory. Then the corresponding dispersion equation re-

lating w' and k' in the laboratory frame is obtained by making the

transformation

W = Yd(w' - k'Vd)
(22)

kz Yd(k' - w'Vd/c )

in Eqs.(19) and (20). Here, Yd is defined by yd = (1 - Vd/c 2)-, and

W2 c2  + '2 - c2k 2 - d 7' - k Vd c d); etc.w ~ k/i -'. ww/Y Yd(w k c/~)

For completeness, it is useful to simplify Eq.(19) in various limiting

regimes.

C. Limiting Forms of Dispersion Relation

We consider the full dispersion relation (19) in two limiting cases:

(a) zero parallel temperature (Az = 0), and (b) zero magnetic field (B0 = 0).

Zero Parallel Temperature: For z = 0, the case of maximum energy

anisotropy, we obtain G( z) + 1 [Eq.(11)], 9+ _ [Eq.(8)], and G(E) + 1

[Eq. (21)]. For ^z + 0, the dispersion relation (19) reduces to1

0= D (W,kZ) 1 -cr
W

(23)

W /2 1 + (c 2 k -_ 2

W ( ± W/il) 2 W (W ± Wiy
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Zero Magnetic Field: In the case where B0 = 0 and the perpendicular

and parallel motions are allowed to be relativistic, we set wc 0 in

Eq.(19), which gives the dispersion relation 15

+ c2k2

0 = D (w,kz) 1 - Z

(24)

W2 2 - c2k2

- 4 G(Az - 2_2 z

W 2(1 - ^0z) w - c k -a

Equation (23) gives the familiar Weibel instability 14,15 in the field-free

case. Of course, for wc = 0 and Az = 0, Eqs.(23) and (24) are identical.
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III. ELECTROMAGNETIC STABILITY PROPERTIES

In this section, we investigate the detailed stability properties

predicted by the electromagnetic dispersion relation (19) for a wide

range of effective energy anisotropy A /202, normalized density w /W ,

2and electron energy 9mc2. As a reference case, we first consider the

case of extreme energy anisotropy where z = 0. That is, the thermal

speed in the z-direction is effectively zero.

A. Extreme Energy Anisotropy (z = 0)

For z = 0, the full dispersion relation (19) reduces to Eq.(23),

which can be expressed in the equivalent form1

[ 2 W2 ~ 2

( c2 k 2 ) 1 + P I = . (25)
2 ( - -ccSI$zL 2 (w w1/Y j (W - cW Y^

In Eq.(25), without loss of generality, we have restricted attention to

the branch with right-circular polarization [lower sign in Eq.(23)].

For 2 = 0 (cold-plasma limit), Eq.(25) supports only stable oscilla-

tions (Imw = 0) corresponding to a fast-wave branch (the upper curve in

Fig. 2), and a slow-wave branch (the lower curve in Fig. 2) which we

refer to as the "whistler" mode or the "cyclotron" mode in the present

analysis. In Fig. 2, Rew/wp is plotted versus ckz 1p for wp/wc = 0.5,

1 and 5. For R = 0 and y = 1, we note from Eq.(25) and Fig. 2 that the

whistler mode asymptotes at Rew = wc for c2k2/W2 >> 1. On the other hand,c z p

the fast-wave branch begins at Rew = (1/2)[wc + (42 + 2 )i] for

c2k 2/ << 1, and asymptotes at Rew = ck for c2k /W >> 1.z p z z~2 w 1



14

For a t 0, however, and moderate electron density, both the fast-wave

branch and the whistler mode exhibit instability in Eq.(25). In particular,

it is found (Fig. 3) that the fast-wave branch becomes unstable at long

axial wavelengths (sufficiently small values of c2k2/W 2), whereas thez p

whistler mode becomes unstable at short axial wavelengths (sufficiently

large values of c2k2 / ). The unstable fast-wave mode is referred to asz p

the cyclotron maser instability, whereas the unstable whistler mode is

referred to as the whistler instability. Typical numerical results

obtained from Eq.(25) are illustrated in Fig. 3 where Rew/w [Fig. 3(a)]

and Imw/w [Figs. 3(b) and 3(c)] are plotted versus ckz /p for w /c = 0.5

and A2 = 0.2, 0.5 and 0.9. Note in Fig. 3 that separate plots of the

growth rate curves are presented for the whistler instability [Fig. 3(b)]

and the cyclotron maser instability [Fig. 3(c)]. For specified values of

W /W and A , a striking feature of Fig. 3(a) is that the real frequency

Rew remains approximately constant over the range of unstable wavenumbers

(kz) for both the whistler and cyclotron maser instabilities. Moreover,

for Rz = 0, it is evident from Fig. 3(b) that the maximum growth rate of the

whistler instability occurs for c2k 2/W2 >> 1. Taking c2k + in thez p z
dispersion relation (25) readily gives

(ImW)MAX 2 ( )IWp'

(26)

(Rew)MAX = /y '

for the whistler instability at maximum growth. In units of wp, it follows

from Eq.(26) and j = (1 - A2)-. that the maximum whistler growth rates.

assumes its absolute maximum value of 0.439 w~ for A2 = 2/3 (Fig. 4).
± _
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In contrast, maximum growth of the cyclotron maser instability occurs for

kz = 0 [Fig. 3(c)]. Moreover, the bandwidth of the cyclotron maser in-

stability is restricted to the wavenumber range c2k2 /W 0(1) for the

choice of parameters in Fig. 3.

For A2 0, and sufficiently large values of 2 , it is found from

Eq.(25) that the cyclotron maser instability is completely stabilized,

whereas the whistler mode remains unstable. This is illustrated in Fig. 5

for the case where w 2/w2 = 5. Here, Rew/w [Fig. 5(a)] and Imw/w [Fig.p c p p

5(b)] are plotted versus ckz /w for ^2 = 0.2, 0.5 and 0.9. The unstable

mode in Fig. 5(b) corresponds to the whistler instability, whereas Imw = 0

exactly for the fast-wave branch.

The density threshold for stabilization of the cyclotron maser in-

stability can be calculated exactly in terms of A from Eq.(25). We take

kz = 0 in Eq.(25), which corresponds to maximum growth rate of the cyclotron

maser instability when ;z = 0. This gives

0 (W -j )3 + S (W -w ) /d2

(27)
2 -2 2 ; 2

+ !P i- 1 (W - ci ) + ./ Y^~ + 2

Equation (27) determines the real frequency Rew and growth rate Imw of the

cyclotron maser instability at maximum growth (kz = 0). Some straight-

forward algebra shows that the necessary and sufficient condition for

stability (Imw = 0) is given by
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2 2 ( A Y

W3 2 +2 -0 - 1
c c cr (

(28)

+ (64R + 488 + 128 + 1) .
_L _L_ I J

That is, whenever w2 /W2 exceeds the critical value in Eq.(28), the

cyclotron maser instability is completely stabilized. This is illus-

trated in Fig. 6, which shows the regions of (8 ,w w/) parameter space

corresponding to stability and instability.

Equation (27) can also be used to determine the real frequency and

growth rate of the cyclotron maser instability at maximum growth as

functions of w /W and A . Typical results are illustrated in Figs. 7

and 8. In Fig. 7, plots of Rew/w [Fig. 7(a)] and Imw/w [Fig. 7(b)]

versus w /W obtained from Eq.(27) are presented for 2 = 0.2, 0.5 and 0.9.

(Note that Rew/w is plotted only for the unstable ranges of w p/W C.) Con-

sistent with Eq.(28) and Fig. 6, it is clear from Fig. 7(b) that the in-

stability bandwidth (in w /Wc - space) decreases as 2 is reduced.

Similarly, Fig. 8 shows plots of Rew/w [Fig. 8(a)] and Imw/w [Fig. 8(b)]
1pp

versus a2 obtained from Eq.(27) for wp/Wc = 0.5, 1 and 2. Evidently,

consistent with Eq. (28) and Fig. 6, the instability bandwidth (in ;2 - space)

and maximum growth rate decrease as w p/Wc is increased.

B. Arbitrary Energy Anisotropy

Electromagnetic stability properties were examined in Sec. III.A for

the case of extreme energy anisotropy (Az = 0). In this section, we make

use of the electromagnetic dispersion relation (19) to investigate detailed

stability properties for finite values of the anisotropy factor _ /2 .



17

In particular, Eq.(19) is solved numerically for the real oscillation fre-

quency Rew and growth rate Imw for both the cyclotron maser and whistler

branches over a wide range of system parameters w2 /W and a /2a .

Typical results are illustrated in Fig. 9 for the choice of system

parameters w 2/W2 = 0.25 and A = .5. In Fig. 9(a), the normalized real

oscillation frequency Rew/w is plotted versus ckz Wp for the case

a /2a2 = 11. The dashed portions of the dispersion curves in Fig. 9(a)

correspond to the unstable range of wavenumbers for the cyclotron maser

and whistler instabilities. Further detail is presented in Figs. 9(b) - 9(e).

In particular, shown in Figs. 9(b) and 9(c) for the electron whistler branch

are plots of Rew/w [Fig. 9(b)] and Imw/w [Fig. 9(c)] versus ckz 1p obtained

from Eq.(19) for anisotropy factors ranging from ^ /2a= to $2 /2 =
We note from Fig. 9(c) that the maximum growth rate and the range of un-

stable kz values decrease with decreasing values of a /2a . Moreover,

there is a corresponding decrease in Rew/w as L /2a2 is reduced [Fig. 9(b)].
2- 2

For A2 = 0.5 and w /W = 0.25, it is found from Eq.(19) that the whistler

instability is completely stabilized when the anisotropy factor is reduced

to 12/2a2 = 0.506. Finally, shown in Figs. 9(d) and 9(e) for the cyclotron

maser branch are plots of Rew/w [Fig 9(d)] and Imw/w [Fig. 9(e)] versus

ckz Wp obtained from Eq.(19) for anisotropy factors ranging from I /2% = -

to 8 /28z = 0.51. We note from Fig. 9(d) that Rew/w decreases as the

anisotropy factor 8 /2z is reduced. Moreover, the normalized growth

rate Imw/w p decreases as a /2 is reduced [Fig. 9(e)]. Indeed, for 2 = 0.5

and w2 /W2 = 0.25, it is found from Eq.(19) that complete stabilization of thep c

cyclotron maser instability requires reduction of the anisotropy factor to

/2U2 = 0.50, corresponding to +. For general values of $ /2a , we also noteI z ± z
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from Eq.9(e) that maximum growth of the cyclotron maser instability always

occurs for kz = 0. [Compare with Fig. 3(c) for the special case where Az = 0.]

Similar stability plots obtained from Eq.(19) are presented in Fig. 10

for the case where A2 = 0.5 and the value of w /w is increased to w /w = 5.Lp c p c
For this choice of system parameters, w2 /W2 is sufficiently large that thep c

cyclotron maser instability is absent (Imw = 0) for all values of the

anisotropy factor 2 /2. For the electron whistler branch, Rew/w and

Imw/w are plotted versus ckz Wp in Figs. 10(a) and 10(b), respectively,

2 /22 ;2 to - 0.9
for values of the anisotropy factor ranging from A2 /22,= to 1/2a = 0.69.

The qualitative features of the stability behavior in Fig. 10 are similar

to Figs. 9(b) and 9(c), i.e., the real oscillation frequency, the growth

rate, and the instability bandwidth (in kz-space) all decrease as the

anisotropy factor 8 /2 is reduced. Moreover, we note that the normalized

growth rates Imw/w in Fig. 10(b) (obtained for o /w = 5) are comparablep p c

in magnitude to those in Fig. 9(c) (obtained for w 2/w2 = 0.25). On thep c

other hand, comparing Figs. 9(b) and 10(a), the real oscillation frequency

(measured in units of w ) is reduced substantially as w 2/w is increased.p p c

For the choice of system parameters in Fig. 10, it is found from Eq.(19)

that the whistler instability is completely stabilized when the anisotropy

factor is reduced to 82/2a2 = 0.51.

For the cyclotron maser branch, Fig. 11 illustrates the scaling of

2 2
stability properties with w / . In particular, shown in Fig. 11 are

plots of Rew/w [Fig. 11(a)] and Imw/w [Fig. 11(b)] versus ckZ /Wp obtained

from Eq.(19) for 2 = 0.5, /2a2 = 1.56 (which corresponds to 2 = 0.160

when 2 = 0.5), and values of normalized density ranging from w22 / = 0.25
_L p c

to W 2/W$ = 1. It is evident from Fig. 11 that the real oscillation frequency,
pc

growth rate, and bandwidth (in kz -space) all decrease as w 2lW 2 is increased.
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Indeed, for the choice of system parameters in Fig. 11, the cyclotron maser

instability is completely stabilized when the normalized density is in-

creased to 2 2W = 2.3.p c

Similarly, Fig. 12 shows the scaling of stability properties with

w2/w2 calculated from Eq.(19) for the whistler branch. In particular,p c

Rew/w and Imw/w are plotted versus ckz /p in Figs. 12(a) and 12(b),

respectively, for the choice of system parameters 2 = 0.5, 2 /2a2 = 11
i2 z

(which corresponds to az = 0.0227 when 2 = 0.5), and values of normalized
(which~ corsonst = 02022

density ranging from w2 /W = 0.25 to 2 /W = 25. We note that Rew/w de-

creases as w /W2 is increased [Fig. 12(a)], and there is a concomitant

downshift in kz of the growth rate curves [Fig. 12(b)]. Indeed, in the

limit of zero magnetic field (2/2 + o), the whistler instability in Fig. 12p c

evolves continuously into the classical Weibel instability 13-15 with Rew = 0,

and nonzero growth rate (Imw 0) over a finite bandwidth in kz-space.

The dispersion relation (19) can also be used to determine the stability

boundaries separating the regions of parameter space corresponding to

stability (Imw = 0) and instability (Imw > 0). Shown in Fig. 13 are the

regions of (2 ,w w/w) parameter space corresponding to stability and in-

stability for the cyclotron maser mode. The stability boundaries in Fig. 13

are calculated from Eq.(19) for several values of z. For specified

z, the region above the curve in Fig. 13 corresponds to stability. As

in the case Rz = 0 (Fig. 6), for specified value of 2 , it is evident from

Fig. 13 that there exists a critical value of w /W2 above which the cyclotron
p c

maser instability is completely stabilized. Note also from Fig. 13 that the

unstable region of (R ,w w/) parameter space continues to decrease in area

as Az is increased and the anisotropy factor J /2a is reduced.
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Finally, shown in Fig. 14 are the regions of (28 ,s ) parameter space

corresponding to stability and instability for the whistler mode. The

stability boundaries in Fig. 14 are calculated from Eq.(19) for several

2 2 2 2values of w /W. For specified w /Wc, the region above the curve starting

at the origin in Fig. 14 corresponds to instability (Imw > 0). That is,

the anisotropy factor 1 /20 is large enough in this region to give instability.

2 2 2 2As wp/Wc is decreased from w /2C = 00 (corresponding to B0 = 0), it is evident

from Fig. 14 that smaller values of the anisotropy factor 8 /28 are

required to stabilize the whistler instability.
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IV. DISPERSION RELATION FOR THERMAL EQUILIBRIUM

DISTRIBUTION IN PARALLEL MOMENTUM

For completeness, in this section we simplify the dispersion relation

(4) for the case where the parallel momentum distribution F(pz ) corre-

sponds to the thermal equilibrium distribution

exp(-ymc 2/T )
2F (cK 2z (29)2 m (cKj mc /Tz)

Here, Tz = const. is the parallel temperature, y = (1 + p 22 + 2 227
Here, p/M c + /m c

is defined in Eq.(5), ^ = (I + p2 m2c2 ) is defined in Eq.(12), and Kn(x)

is the modified Bessel function of the second kind of order n. Substituting

Eq.(29) into Eq.(4) gives the dispersion relation

c2k2 (W2 2) dp
0 =D ±(kz 2 z

W 2y mcK (YMc /TZ

(30)

yw kp/m p (2 - ck)
x exp(-ymc2/T) z z

Z y - k ZP/m±W c 2mc (yw - k Z/m ±WC)

where Imw> 0 is assumed. We express Eq.(30) in an alternate form by

making use of the identities (valid for Imw > 0)

CO i

IdTexp[i(yw - kZPZ/m ±c )TI = y- kz ZZ/M W _ c
0

(31)

1
dTrexp[i(yw - k PZ/M ± W c)] (yw - k ZP/m ± W )2

0
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We further introduce the transformation pz = (mc)sinha and y = 9 cosha

defined in Eqs.(14) and (15). Equation (30) can then be expressed in the

equivalent form

c 2k 2 i 2 W27
0 = D (kzo) = 1 - + P 2W 2imcK1 (jmc /TZ)

x drexp[±i(wc 9)T] daexp[-(9mc2 /Tz - iWt)cosha - ickzTsinha]

0 -00
ck c2k p 2

x cosha - z sinha + iWT 1 - -L
=) 2 2 2

where use has been made of Eqs.(14), (15) and (31). The

a in Eq.(32) can be carried out exactly by making use of

transform

integration over

the integral

11
- K [(a2 + b2 - daexp(-ibsinha - acosha)
7r 27r

We introduce the variable defined by

2 ( (± 2  - ior) 2 + c2k t2 .

Tzz

Then, from Eqs.(33) and (34), the dispersion relation (32) can be expressed as

T2 20 / K (9 mc /T )
T~zW/ - K (9mc /T

+ - 2 / dK 0 c /)T]

0 [ 2

x -W - iT (w2 - c2 k 2) P
y z 2 222

(32)

(33)

(34)

(35)
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for Imw> 0. Although the T-integration in Eq.(35) canndt be carried out

in closed form, this form of the dispersion relation is particularly

useful for numerical solutions and for analytical approximations in

various limiting regimes. A detailed analysis of Eq.(35) will be the

subject of a future investigation.

As a simple limiting case, we consider Eq.(35) for BO = 0, which

corresponds to the Weibel instability in an unmagnetized plasma. Some

straightforward- algebra that makes use of Eqs.(3) and (29) shows that Tz
3 *2 2can be identified with the parallel temperature fd P(P /ym)F(p ,pz), and

that the effective perpendicular temperature T1 = fd3p(p /2ym)F(p2,pz) is

given by

1 m > ( KO(jlmc2/Tz)
T =- mc. (36)

2 _ K KGmc /Tz)

Setting wc = 0 in Eq.(35) and making use of Eq.(36) give the dispersion

relation for an unmagnetized plasma, i.e.,

c2k2 (w /y ) K0(9±mc2/Tz)0 = DT(kz 1 2 K1 2 /Tz
Z W Kw(y mc /TZ)

2 22 (37)
T (w2 -ckS)1

+ 2 drtK(OM
i mc K0(mc /Tz) J

0

The T-integral in Eq.(37) must generally be evaluated numerically, or

in the context of asymptotic expansions for large or small values of |I.

Unlike Eq.(19), the dispersion relation (37) generally incorporates the

effects of collisionless dissipation (Landau damping) by the pz distribution

in Eq.(29). For the slow-wave branch, it can be shown from Eq.(37) that

the necessary and sufficient condition for instability is given by
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T K 2( mc2/T ) 2

2 1 (38)
T z Kj(j L mc /T Z)

where T1 is defined in Eq.(36). Moreover, when Eq.(38) is satisfied, it

is found that Rew = 0 (for the slow-wave branch) over the range of unstable

wavenumbers specified by

2 2 T. K (mc 2/T) K0 (mc 2/T1
0 < k < kI2 _Z -ffc m2 .c z (39)

yJc Tz K0 mc /Tz) K((9~c /TmZ

Note from Eq.(39) that the marginal stability point k2 (where Imw = 0 =

Rew) can be calculated in closed analytical form. This follows from the

identity

- - 2
Yim c2k 2 dTTKO l i-mc Ky mc2 /Tz) (40)

ImW + 0+ J Rew = 0 T z
0

Finally, shown in Fig. 15 is a plot of the stability boundary in the

parameter space (TZ/i/mc2, TJ /ymc2) calculated numerically from Eq.(38).

The region above the curve in Fig. 15 corresponds to instability, which

requires sufficiently large thermal anisotropy T±/Tz.
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V. CONCLUSIONS

Detailed properties of the cyclotron maser and whistler instabilities

in a relativistic magnetized plasma have been investigated for the particular

choice of anisotropic, "waterbag" distribution function F(p ,pz) in Eq.(7),

which permits an exact analytical reduction of the dispersion relation (2)

for arbitrary energy anisotropy (Sec. II). The resulting dispersion relation

in Eq.(19) was solved numerically, and detailed properties of the cyclotron

maser and whistler instabilities were determined over a wide range of

effective energy anisotropy a 2 and normalized density w /o (Sec. III).

Not only does the choice of waterbag distribution in Eq.(7) readily permit

the calculation of detailed stability properties over a wide range of

system parameters, the corresponding dispersion relation (19) can be used

to determine universal stability boundaries for the cyclotron maser and

whistler instabilities. For example, Figs. 6 and 13 show the stability

boundaries for the cyclotron maser instability in (;2,w w/w) parameter space

for several values of Az. Similarly, the stability boundaries for the

whistler instability in (2 A, A2) parameter space are illustrated in Fig. 14

for several values of w /W. Finally, the electromagnetic dispersion rela-p c

tion (35) was derived for the case where the parallel momentum distribution

Fl(pz) corresponds to the thermal equilibrium distribution in Eq.(29) (Sec. IV).

A detailed analysis of Eq.(35) will be the subject of a future investigation.
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APPENDIX A

EVALUATION OF AXIAL MOMENTUM INTEGRALS

We evaluate here the integrals over a required to simplify the

dispersion relation (16). In this regard, it is useful to introduce the

definite integrals defined by

a da
Ii =- (A.1)

J (a + bcosha + dsinha)

ad (bcosha + dsinha)
12 = a(A.2)I (a + bcosha + dsinha)

da
13 ( 2, (A.3)

3 (a + bcosha + dsinha)2

where sinh& = [/>zLmc, a = c 1o, b = 1, and d = -ckz/w. Some straight-

forward algebra shows that

1 (a - b)tanh(a/2) - d + (a2 + d2 - b2  ]
1 (a2 + d2 - b 2)1 (a - b)tanh(a/2) - d - (a2 + d2 - 2)1

2 -2 z 2 _2 1(A.4)
2c/i) + (1 - ))(c2k) - W2)]

o(I -2 w ) n + Az IN 2 + (1 - A2)(c2 kS - w2 ]

(- 2 ) w A/)+ (1- 2 2 2Lz c( Y Zl ± /Y + (1 - Z)(c k~ - W2)
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Moreover, from Eqs.(A.1) and (A.2), 12 can be expressed in terms of II by

12 = 2& - aI1 . (A.5)

Making use of sinh& = Dz mc = (9/j )z = (cosh&)z gives 2& =Z - L Z Z

ln[(1 + AZ - z For a = ±w/cKw, Eq.(A.5) then becomes

1 2 = ln + , /^ (A.6)
1 z z

where I is defined in Eq.(A.4). Finally, making use of Eq.(A.3), it can

be shown that 13 can be expressed as

( 2) 2 [2__2
I -) 2( WC/j) - c k z

3 ~- 2 [W/ + (1 - ^)(c2 k - 2 wc/9) - c2k &

(A.7)

-("/1)(1 - )

± / + ( - )( - 2 '

where 11 is defined in Eq.(A.4), and 9 is defined by 9 =

(1 + 2/2 2 +2 2c2 1

Substituting the expressions for I, 12 and 13 in Eqs. (A.4), (A.6)

and (A.7) into Eq.(16) gives the desired dispersion relation in Eq.(19).

From the expression for G( ) in Eq.(21), we note that the following expan-

sions for G( ) pertain

2 4 E2n

1 + - + - + -- + + .-- , I <1,
3 5 (2n + 1)

G(E) = (A.8)

1+ + -+ 1 2++..+I ,t |
4 ~ 2--+ +-- + - EI~ 1

3E 5C (2n + 1)E 22

in the regions jt < 1 and |( > 1.
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FIGURE CAPTIONS

Fig. 1. Plot of G(Oz) versus Rz [Eq.(11)].

Fig. 2. Plots of Rew/w versus ckz Wp obtained from Eq.(25) for z
0 = A and several values of w /WC'

Fig. 3. Plots versus ckz Wp of (a) Rew/w , (b) Imw/w (whistler

instability), and (c) ImW/w (cyclotron maser instability)

obtained from Eq.(25) for Rz = 0, w =/w 0.5, and several

values of A .
I

Fig. 4. Plot of normalized maximum growth rate (Imw)MAX/wp versus

R for the electron whistler branch obtained from Eq.(26)

for Az 0 and kz = 00. The absolute maximum growth rate is

0.439 , which occurs for R2 = 2/3.

Fig. 5. Plots versus ck Wp of (a) Rew/w , and (b) Imw/w (whistler

instability) obtained from Eq.(25) for z = 0, W /w = 5, and

several values of 2 . The cyclotron maser instability is

absent (Imw = 0) for w 2/w2 = 5 and z = 0.p c z

Fig. 6. Regions of ( 2,w2/w2) parameter space corresponding to stability

(Imw = 0) and instability (Imw > 0) for the cyclotron maser mode

[Eqs.(27) and (28)]. For Rz = 0 and specified 2 t 0, the

cyclotron maser instability is completely absent for sufficiently

large values of w /W2
P C

Fig. 7. Plots of (a) Rew/w , and (b) Imw/w versus w /WC obtained from

Eq.(27) for the cyclotron maser mode at maximum growth (kz = 0

and Rz = 0) for several values of R. Rew/W is plotted only

over the unstable range of w /Wc in Fig. 7(a).
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Fig. 8. Plots of (a) Rew/w , and (b) Imw/w versus obtained from

Eq.(27) for the cyclotron maser mode at maximum growth (kz = 0

and Az = 0) for several values of w p/W C. Rew/w is plotted

only over the unstable range of R2 in Fig. 8(a).

Fig. 9. Electromagnetic stability properties calculated from Eq.(19) for

2 = 0.5 and w2 /W2 = 0.25. Plots of (a) Rew/w versus ck /Wa± p c p z p
for 1/2z = 11. Plots of (b) Rew/w p, and (c) Imw/W versus

ckz Wp for the whistler branch for several values of $/2az.

Plots of (d) Rew/w , and (e) Imw/w versus ckz Wp for the
p2 -2

cyclotron maser branch for several values of R /2z.

Fig. 10. Whistler stability properties calculated from Eq.(19) for 2 = 0.5
±

and w22 / = 5. Plots of (a) Rew/w , and (b) Imw/w versus ck /WP C p z p
for several values of 1 / . (The cyclotron maser instability

is absent for the choice of system parameters in Fig. 10.)

Fig. 11. Cyclotron maser stability properties calculated from Eq.(19) for

= 0.5 and , /2a2 = 1.56. Plots of (a) Rew/w , and (b) Imw/w

versus ck /W for several values of w2 /W.z p p c

Fig. 12. Whistler stability properties calculated from Eq.(19) for A2 = 0.5

and -/ = 11. Plots of (a) Rew/w , and (b) Imw/w versus

ck /W for several values of w2 /W.

Fig. 13. Regions of ( 2 ,w2/w2 ) parameter space corresponding to stability

(Imw = 0) and instability (Imw > 0) for the cyclotron maser mode.

The stability boundaries are calculated from Eq.(19) for several

values of Az (see also Fig. 6).
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Fig. 14. Regions of (2 (,A2) parameter space corresponding to stability

(Imw = 0) and instability (Imw > 0) for the whistler mode.

The stability boundaries are calculated from Eq.(19) for

several values of 2 2W2

Fig. 15. Regions of (Tz /i-mc2,T±/Yi mc2) parameter space corresponding

to stability (Imw = 0) and instability (Imw > 0) for the slow-

wave (Weibel) mode. The stability boundary is calculated from

Eqs.(37) and (38) (BO = 0).
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