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ABSTRACT

Use is made of the single-particle orbit equations together with Maxwell's equa-

tions and appropriate statistical averages to investigate detailed properties of the

sideband instability for a helical-wiggler free electron laser with wiggler wave-

length x0 = 2w/k0 = const. and normalized wiggler amplitude aw = eBw/mc2k0 = const.

The model describes the nonlinear evolution of a right-circularly-polarized primary

electromagnetic wave with frequency ws, wavenumber ks, and slowly varying amplitude

as(z,t) and phase s (z,t) (Eikonal approximation). The orbit and wave equations are

analysed in the ponderomotive frame ("primed" variables) moving with velocity v =

Ws/(ks + k0 ) relative to the laboratory. Detailed properties of the sideband insta-

bility are investigated for small-amplitude perturbations about a quasi-steady equi-

librium state characterized by a = const. (independent of z' and t'). Two cases

are treated. The first case assumes constant equilibrium wave phase ss = const.,

which requires (for self-consistency) both untrapped- and trapped-electron popula-

tions satisfying N exp[ik'zJ0(t') + i6 ] /y,> =0. Here, k' = (ks + k0)/y p is

the wavenumber of the ponderomotive potential; zjO(t') is the equilibrium orbit; and

y mc is the electron energy. The second case assumes that all of the electrons are

deeply trapped, which requires a slow spatial variation of the equilibrium wave

phase, 30 /az0 2r ( rck/ 2k 0. The resulting dispersion relations and de-s 0O0OOBp
tailed stability properties are found to be quite different in the two cases. Both

the weak-pump and strong-pump regimes are considered.

* Permanent address: Plasma Fusion Center, Massachusetts Institute of Technology,

Cambridge, MA 02139
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I. INTRODUCTION AND SUMMARY

There is growing experimental1-18 and theoretical 19-65 interest in

free electron lasers (FELs)66-69 as effective sources for coherent radiation

generation by intense relativistic electron beams. Recent theoretical

studies have included investigations of nonlinear effects 19-42 and satura-

tion mechanisms, the influence of finite geometry on linear stability

properties,43-48 novel magnetic field geometries for radiation genera-

tion,43 ,49-53 and fundamental studies of stability behavior. 54-65 One topic

of considerable practical interest is the sideband instability 32 which

results from the bounce motion of electrons trapped in the (finite-amplitude)

ponderomotive potential. Both kinetic 19-21 and single-particle 32-42 models

of the sideband instability have been developed, and numerical simulations 34-42

have been carried out. However, with the exception of the recent kinetic

studies by Davidson et.al.,19-21 the theoretical models have assumed per-

turbations about a finite-amplitude primary electromagnetic wave with

slowly varying equilibrium phase 6 0. By including both untrapped- and

trapped-electron populations, it has been shown 21 that quasi-steady

equilibrium solutions to the nonlinear Vlasov-Maxwell equations exist in

which both the amplitude and phase of the primary electromagnetic wave are

constant. Moreover, the concomitant kinetic investigations19 , 20 of the

0sideband instability for 6 = const. have shown that linear stability prop-

erties are qualitatively and quantitatively different from single-particle

treatments32-42 of the sideband instability carried out for the case where

the equilibrium wave phase 6 is slowly varying. In the present analysis,

we use a single model to investigate detailed linear properties of the side-

band instability for both cases (constant wave phase, and slowly varying
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phase). The theoretical model (Secs. II-IV) is based on the single-particle

orbit equations together with Maxwell's equations and appropriate statistical

averages.32 Unlike earlier single-particle treatments, the present analysis

is carried out in the ponderomotive frame, which leads to a considerable

simplification in the orbit equations.

The theoretical model and assumptions are described in Secs. II-IV.

A tenuous, relativistic electron beam propagates through a constant-amplitude

helical wiggler magnetic field with wavelength x0 = 2w/k 0 = const., nor-

malized amplitude aw = eBk/mc k0 = const., and vector potential specified

by [Eq.(1)]

mc2

A(x)= - a (coskozi + sinkozi .

The model neglects longitudinal perturbations (Compton-regime approximation

with 6 ~ 0) and transverse spatial variations (a/ax = 0 = a/ay). Moreover,

the analysis is carried out for the case of a finite-amplitude primary

electromagnetic wave (ws,ks) with right-circular polarization and vector

potential specified by [Eq.(2)]

mc 2
i(x nc2 As(z,t) cos[ksz - Wst + 6s(zlt)]
e

- sin[ksz - Wst + 6s (z,t)]y

where the normalized amplitude a s(z,t) and wave phase 6s (z,t) are treated

as slowly varying (Eikonal approximation). A detailed investigation of the

sideband instability simplifies considerably if the analysis is carried out

in the ponderomotive frame moving with velocity [Eq.(3)]19-21
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v = .

ks + k0

In the ponderomotive frame ("primed" variables), the nonlinear

evolution of s(z',t') and d'(z',t') is described by [Eqs.(24) and (25)]

a k/c2 47e2a I sin(e'. + 6')
2w' + as w is s

s at' WS' az' m L' .y'./ Vi

a k'c2 a 4ire 2 aw 1cos(e'. + S')2we~ 1
at' ' az' m LK y'>

s3

where the statistical average L' < -> is defined in Eq.(27). Here,
i

correct to lowest order in I(wI'/as )(aas/at')<<1, energy is conserved in the pon-

deromotive frame (dy /dt' = 0), and the axial orbit e (t') = k'z'(t') solves [Eq.(35)]

d2 c2k,2a
d l + w Im asexpc + i6')] = 0

where k' = (ks + k0 p is the wavenumber of the ponderomotive potential.

Moreover, the real oscillation frequency wI and wavenumber k' are related

by the dispersion relation [Eq.(20)].

o,2 = 2

In obtaining Eqs.(20), (24), (25) and (35), it is assumed that all

electrons have zero transverse canonical momentum, i.e., P' .= 0 = P' .

Equations (24), (25) and (35) are used to investigate properties of

the sideband instability for small-amplitude perturbations about a primary
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electromagnetic wave with constant amplitude ^ = const. (independent of

z' and t'). Two cases are treated. The first case (Sec.V) assumes

constant equilibrium wave phase 60 = const., which requires (for self-

consistency) both untrapped- and trapped-electron populations satisfying

< yr exp(ie. + i6 )> = 0 [Eq.(49)]. This is analogous to the case
j J is s 19-21

studied by Davidson et. al. using the Vlasov-Maxwell equations. The

second case (Sec. VI) assumes that all of the electrons are trapped,

which requires a slow spatial variation of the equilibrium wave phase

60 /3z' 0.32-42 The resulting dispersion relations and detailed stability

properties are found to be quite different in the two cases. For deeply

trapped electrons, it is shown that the two dispersion relations are

given by [Eq.(68)]

(AQ - cAK) (AP)2 - Q = r3 c3k3
B 0 0

for 6 = const. (Sec. V), and by [Eq.(94)]

B 2 B24(r ck /B)6

= -) (As - cA K )

for 36 /az' = 2rO~rock /2B) k' / 0 (Sec. VI). In Eqs.(68) and (94), AQ and

AK are defined by AQ = Aw - vpAk and AK = k0(v p/c)Ak/ks, where we have

transformed back to the laboratory-frame frequency w = ws + Aw and wave-

number k = ks + Ak. Moreover, the small parameter r0 is defined by [Eq.(39)]

1 a2 2 (1 + v/c)
r3 lw T (1 «1, <
0 = -7<<1

4 Y 1,Y c k 0 vp /C

and 9B is the bounce frequency in the laboratory frame
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2 2 V\1/2

a = P w s
B ,2 Y2'

p

Here, y is defined by yp = (1- v /c2/ 2 , ) ' / + a 2)1/2 is thep p p
characteristic energy of the trapped electrons, and 2 = 4n e2

pT Tem

47rT 2/Y'm is the plasma frequency-squared of the trapped electrons.

The dispersion relations for 6= const. [Eq.(68)] and 36 /6z' / 0

[Eq.(94)] and the corresponding properties of the sideband instability

are examined in detail in Secs. V and VI. We summarize here some of the

key results.

(a) In the weak-pump regime (B /rock0 << 1), the characteristic

maximum growth rate of the sideband instability is substantial, with

Im(A)M/r Ocko = (3)1/2/2 in both cases [Eqs.(73) and (100)].

(b) In the strong-pump regime (aB r0ck0 >> 1), however, the maximum

growth rate is reduced significantly, with Im(An)M/rOcko = 2-1/2(r0ck0 B 1/2

<< 1 for the case of constant phase 60 [Eq.(68)], and Im(an)M/rOcko

(3)1/2/(2)2/3 rOckO B) << 1 for the case of slowly varying 60 [Eq.(94)].

(c) The instability bandwidth AKb in AK-space is generally different

in the two cases. For example, in the strong-pump regime (aB /rOck0 > 1),

it is found that AKb /rOko = (2rockO/QB)1/2 << 1 from Eq.(68), whereas

AKb /rOk0 = B /r0ck0 >> 1 foTlows from Eq.(94).

(d) Finally, for the case of slowly varying phase 6 0 [Eq.(94)], it is
5

found that both the upper and lower sidebands are unstable, with Re(AQ) > 0

0for AK > 0 and Re(Ai) < 0 for AK < 0. In contrast, for 6 = const., it

is found from Eq.(68) that only the lower sideband is unstable. This is

associated with the fact that the wave perturbation is assumed to have
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right-circular polarization in deriving Eq.(68). 19 For 60 = const. and
s

wave perturbations with left-circular polarization, it is readily shown

that the upper sideband is unstable.19
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II. THEORETICAL MODEL AND FIELD EQUATIONS

The present analysis assumes a tenuous, relativistic electron beam

propagating in the z-direction through a helical magnetic wiggler field

with vector potential

mic2

A(x) = - a (x)
e

mc 2
= - - a(cosk zix + sink zie)

Here, -e is the electron charge, mc2 is the electron rest energy, X0 = 21/k 0

= const. is the wiggler wavelength, the wiggler magnetic field is B = Vx A

and aw = eB /mc2k0 is the normalized wiggler amplitude. Transverse spatial

variations are neglected (3/ax = 0 = 3ay), and it is assumed that the beam

density and current are sufficiently low that the equilibrium self fields

associated with the space charge and axial current of the electron beam are

negligibly small. Moreover, longitudinal perturbations are neglected in the

stability analysis (Compton-regime approximation with 6c3 0). In addition

to the static wiggler field in Eq.(1), it is assumed that a primary electro-

magnetic wave signal with right-circular polarization has developed with

vector potential

mic2

A s(x,t) = - a s(x,t)
e

mc
2

- a ss(z,t) cos[kz-W t+6s (z,t)]^ (2)
e a S('t 5 sx (2)

- sin[ksz - Wst + 6s (zt)]y

where ws and ks are the frequency and wavenumber, respectively. Here, the

wave amplitude s (z,t) and phase shift 6 s(z,t) are treated as slowly varying,
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and the corresponding electromagnetic fields are given by B = vxA and"-S

E = -(1/c)aA /at. The amplitude a (z,t) in Eq.(2) is related to the

magnetic field amplitude s(z,t) of the primary electromagnetic wave by
25

s e s/mc2k . In the present analysis, it is assumed that the primary

electromagnetic wave in Eq.(2) has evolved to finite amplitude following a

phase of linear FEL instability. Moreover, although the (dimensionless)

amplitude as is treated as finite, it should be noted that as << 1 in the

regimes of practical interest.

A detailed investigation of the sideband instability simplifies con-

siderably if the analysis is carried out in the ponderomotive frame moving

with veloci ty 19-21

v= s (3)
k s + k 0

Therefore, the subsequent analysis is carried out in ponderomotive-frame

variables (z',t',y') defined by the Lorentz transformation

z' =Y p (z - v pt)

t' = y p(t - vpz/c2 (4)

YI = Yp(Y - vppz/mc2

where y = (1 - v2 /c2 )-, y'mc2 = (m2c4 + c 2p 2 + c2p;2 + C p 2 ' is the

mechanical energy, and the components of momentum (p',p',p') are related

to the velocity v' = dx'/dt' by p' = y'mv'. We introduce the complex repre-

sentation of the vector potentials defined by

a~(z) = a (z) - ia (z)w w yw
(5)

a~(z,t) = a (z,t) - ia (z,t)s 5 ys
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Making use of Eqs.(1) and (2) and the inverse transformation z = yp(z' + v pt')

and t = yp(t' + v pz'I/c 2), it is readily shown that

a_(z',t') = -a exp[-iy k (z' + vt')],

(6)

a~(z',t') = a (z',t')exp[i(k'z' - b't') + is'(z't')]

in ponderomotive-frame variables. Here, (w',k') in the ponderomotive frame

is related to (ws,ks) in the laboratory frame by

Js= yp s - ks v )
(7)

k' = Yp (ks - s p/c2

In general, we also allow for additional wave components with right-circular

polarization. The corresponding complex vector potential a~(z',t')=

a (z',t') - iaw(z',t') can then be expressed as

a-(z',t') = tk(z' t ')exp[i(k'z' - w't')+i6 ,(z',t')] , -(8)
k' (z

where (w',k') in the ponderomotive frame is related to (w,k) in the laboratory

frame by

'= Y(w - kv ,

k' = yp(k - wvp /c2  9)

Here, k' = 2wn'/L', where L' is the fundamental periodicity length in the

ponderomotive frame, and the summationE extends from n' = -- to n' =

k'
Without loss of generality, we take L' = 27r/k', where k' = (ks + k )/Yp
Comparing Eqs.(6) and (8), it is evident that the primary electromagnetic

wave (w',k') corresponds to one particular wave component in Eq.(8) with
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(',k') = (w',k'). For future reference, Eq.(8) can also be expressed as

a(z',t') =Z a (z',t')exp[i(k'z' - 't')] , (10)
k'

where the complex amplitude a kl(z',t') is defined by

ak,(z,t) = ak'(z',t)exp[i6k,(z',t')] . (11)

We denote the axial position and energy of the j'th electron in the

ponderomotive frame by z'(t') and y (t'). In addition, it is assumed that3 3
all electrons move on surfaces with zero transverse canonical momentum, i.e.,

P = 0 = P . This gives for the transverse velocities v, = Pkl/ytm and

c
v = -Ha (z.,t') + a (z ,t'),

(12)

V= -- [ayw(z ,t') + ay(z!,t')].

Making use of Eqs.(6), (10) and (12), it is straightforward to show that the

microscopic current J~(z',t') = JxM(z',t') - iJyM(z',t') can be expressed as

J~(z',t')= -eZ(vkj - iv'.)6[z' - Z (t')]

M1

-ecZ- -aaw exp[ypko(z' + v t')] (13)

+Z ak(z,t')exp[i(k'z' - w't')] 6[z' - z (t')]
Ek'(z

where denotes summation over electrons. For future reference, we also

m e i= + 2 2 22 222simplify the expression for y' (1+P~I c +Pyj/m c + pzjim c )1 ,where
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P, = y mvj and p = y mv' are defined in Eq.(12). Some straightforward

algebra that makes use of Eqs.(6), (10) and (12) gives

, 2
Y2= + +a2 + i a

m c k
(14)

- 2awRe ak'

Here, the orbital phase factor C (t') is defined by

e(t') = (k' + y k0 )z (t') - ( y' - v k0vp)t' . (15)

In the regimes of practical interest, a 2 is order unity, and lak 2 << 1 for

the electromagnetic wave components. Therefore, an excellent approximation

to Eq.(14) is

p 2
Y 2 + + a -2 2aRe axp(ie )] , (16)

m c w1

where ak' = ak'exp(i6k,) is the complex wave amplitude. In Sec. III, we will

make use of the form of y in Eq.(16) to investigate the equations of motion

in the ponderomotive frame.

In the ponderomotive frame, Maxwell's equations for the complex vector

potential a~(z',t') = a (z',t') - ia y(z,t') associated with the average

electromagnetic fields can be expressed as

- D2 .)a(z,t') = - 4(re2 Kz - iv' )d[z' - z'(t')]), (17)
cat, 3z, y >

where <*''> denotes ensemble average. Making use of Eqs.(10) and (13), it

follows that Eq.(17) can be expressed in the equivalent form
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+1 k2~a 1 2a 2 aiV
- + k ' =k ' +

kI cat, /z

2iwl aak c2k' aaki k'
- -, - --- exp[i(k'z' -ot)
c at' W' az'

(18)
2

ak'exp[i(k'z' - W't')]D[z' - z (t')]
mc k j Y/

41re 2a 1
+ 2 - exp[-ik 0yp(z' + vpt')]S[z' - zi (t')]

mc p

Consistent with the assumption that the amplitudes ak' are slowly varying with

z' and t', we neglect the second-derivative contributions with respect to z'

and t' in Eq.(18) but retain the terms proportional to aak'/at' and aak'/az'

32 L'
(Eikonal approximation). Furthermore, we operate on Eq.(18) with f x

0 L
exp(-ik'z'+i't')***, where L' is the fundamental periodicity length for

the (fast) spatial oscillations in the ponderomotive frame. Treating the

spatial variation of aki and y as slow, the wave equation (18) then gives

( ,2 4,2 2 7r - - -1-7 1kcmc LKZ\'\

2iw' aak' k'c2 aakI

- - - - + -
(19)

c at' W' az'

4 e 2 a 1 e x p ( -i e )
L' z

for the evolution of the kW'th Fourier component. Here, = (k' +Ypk 0 )z(t') -

(' - pk0v p)t' is the orbital phase defined in Eq.(15).



14

Separating Eq.(19) into fast and slow contributions gives

,2 c2k' 2 4z+ (20)

and

2iw' aak' k'c2 aak'

c at' W' az'
(21)

4 ree2 a 1 e x p ( -i e )

L'

Equation (20) determines the real oscillation frequency w' in terms of k' and

beam dielectric effects (proportional to <F 1/y > ). On the other hand,

Eq.(21) describes the (slow) evolution of the complex amplitude ak, (z',t')

induced by the wiggler field aw. Expressing aki = ak'exp(isk), the wave

equation (21) can be separated into real and imaginary parts. This gives

separate equations for the evolution of akl(z',t') and 6 , (z',t'), i.e.,

a k'c2  a 47re 2a 1 sin(e' + 6k.)
+ -- )a k' = mw - (22)

a k'c2 a 4fe 2a 1 2 a Icos(e. + 6',)
2'ak , + - - = w- . (23)\' at, W az' /m L' Y7/

Equations (22) and (23) are fully equivalent to the (complex) wave equation

(21).

We summarize here several noteworthy points regarding the wave equations

(22) and (23) [or, equivalently, Eq.(21)].

(a) First, the orbits z'(t') and y (t') occurring in Eqs.(22) and (23)

are determined self-consistently in terms of the wiggler and electromagnetic

fields (Sec. III). Therefore, generally speaking, Eqs.(22) and (23) are
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nonlinear equations for the evolution of ak' and 6 .. Indeed, Eqs.(22) and

(23), together with the dynamical equations for z1(t') and y (t'), can form

the basis for numerical simulations of the nonlinear evolution of the wave

spectrum and the sideband instability.

(b) Second, for (w',k') = (w',k'), Eqs.(22) and (23) describe the

evolution of the primary electromagnetic wave (s'6 ). In particular,

as (z',t') and s'(z' ,t') evolve according to

k'c2 4xe2a 1 sin(e' + 6')
2 ' -, + , >a s m ( 2 4 )

a k'c2 a 4re 2a 1 cos(e' + 6')
2' a - + '=' L . , (25)ssat,' ; Z m Ll I /

where (w',k') solves Eq.(20), and ets is defined by

es = k'zt(t') . (26)3S p j

Here, use has been made of ' - Y k0 vp = s - (ks + k0)v]= 0, and k' is

defined by k' = (k' + ypk0 p (ks + k0 Ws v/c2) (ks + k0 p
(c) If, in addition, there are secondary electromagnetic wave components

(ak',6k') with frequency and wavenumber (w',k') different from (w',k'), then

ak,(z',t') and 6,(z',t') evolve according to Eqs.(22) and (23), where

(W', k' ) s o1ve s Eq.(20),and = (k' + y k0)z(t') - (W' - ypk 0 v)t' is

defined in Eq.(15).

(d) Finally, there is some latitude in specifying the precise operational

meaning of the statistical averages < > occurring in the wave equa-

tions (22) and (23). For present purposes, let us assume that the orbits
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zt(t') and yt(t') have been calculated in terms of the initial values z '(0)

and yt(O). Then the simplest definition of the statistical average < >

over some phase function (e (0),y (0)) is given by

1 (6 e (0) y t(0>

(27)

= f - dy6G(6,y6)(e6,Y6 )

0 1

Here, ^n is the average density of the beam electrons in the ponderomotive

frame, and G(e6,y6) is the (probability) distribution of electrons in initial

phase e6 and energy yg.
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III. PARTICLE ORBIT EQUATIONS

We now obtain the orbit equations for z'(t') and yl(t'). In the
3 3

ponderomotive frame,-the equation of motion for p ,(t') = y'(t')mdz/dt' is

d. 2
pd _mC Y (28)

dt' z _ az j

Here, to the level of accuracy required in the present analysis, y is defined

in terms of pj and field quantities by Eq.(16). Neglecting the variation of

ak,(z ,t) with respect to z in comparison with ael/az = (k' + y kA), it

readily follows from Eqs.(16) and (28) that z (t') evolves according to

d 2 1 dy' dz' c2a

7772 zt + - - = - Im (k' + y pko)akexp(ie!) (29)
dt y dt dt. yj k3

where ak kexp(i6 ,), and = (k' + y k0 )z - (W' - Y k0 v)t'. In Eq.(29),

the summation E includes the primary electromagnetic wave (w',k') as well
k'

as other electromagnetic wave components.

With regard to the evolution of y'(t'), we make use of

d e
- y =- E

dt' J mc '_

(a + a) a- (a + a) (30)
yat

3
- - - ax(z ,t')+ax~z,,t')1 + [ay(z ,t')+ayz.,t')J2

where (a , a ) denotes the vector potential for the wiggler field [Eq.(6)],

and (a x,a ) denotes the vector potential for the electromagnetic wave con-

tributions [Eq.(8)]. In obtaining Eq.(30), use has been made of Eq.(12) to
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express the perpendicular velocity (v' ,v' ) in terms of field quantities.

2Substituting Eqs.(6) and (8) into Eq.(33) and making use of a = const.

gives

Y = 1- ak 2 - 2awRe[ak'exp(ie )] , (31)

where ak' ke). Neglecting | k 2 in comparison with 2a ak' in Eq.(31),

and treating ak,(z' ,t) as slowly varying with respect to t' in comparison with

-y k ), it is straightforward to show that Eq.(31) can be

approximated by

d a w (Y>',(2
y = - Im( ' - Y k v)akexp(i) (32)

dt' i 3 p0pk
Sk'

where C = (k' + ypk0 )zl - (w' - ypk0 v)t'. Equation (32) can be used to

eliminate dy /dt' in the equation of motion for z'(t') in Eq.(29). This
3 3

readily gives

2c 2a (w' - y k0v ) dz'
z = - c Im[Z((k' +y k0  - y P k

dt j k, c2  dt'

(33)

x ak' exp(iej)

Equations (32) and (33) are the final equations of motion used in the

present analysis. Note that Eqs.(32) and (33) generally allow for several

wave components. Moreover, it should be kept in mind that the slow variation

of akl(z',t') with respect to z' and t' have been neglected in deriving Eqs.(32)

and (33). For future reference, we now specialize to the case where there is

a single wave component (w',k') = (w',k') corresponding to the primaryss

electromagnetic wave ( s,6'). Making use of cw' = y (Ws - ksv p pk 0v and
2k' + ypk0 = yp(ks + k0 - OS v/c ) = (ks + k0)/p k1, it is readily shown that

Eqs.(32) and (33) reduce to
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d
-- Y'. = 0 (34)

dt'

d 2 c2a k'2

s+ p Im[a exp(ies = 0 , (35)

for the case of a single wave component (w',k'). Here, es = k'z (t') and

as = isexp(is). To the level of accuracy which neglects aas/at' in Eq.(31),

we note from Eq.(34) that energy is conserved in the ponderomotive frame

(y' = const.). The concomitant simplification in the particle orbits and

related analysis is the primary motivation for carrying out the present

investigations in the ponderomotive frame.19-21
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IV. SIDEBAND INSTABILITY - MODEL AND DEFINITIONS

Assuming a single electromagnetic wave component (w',k') in Secs. V

and VI, we make use of the coupled equations for s(z',t') [Eq.(24)], s (z',t')

[Eq.(25)], and e' (t') [Eq.(35)] to investigate detailed properties of the,Js

sideband instability in circumstances where the electrons are deeply trapped

in the ponderomotive potential. In particular, we examine linear stability

properties for small-amplitude perturbations (6a ,') about a finite-amplitudes s

state (0 ,60). In this regard, two cases are distinguished.

A. Perturbations about a primary electromagnetic wave equilibrium with

constant phase 6 and constant amplitude a (a/at' = 0 = 3/az'). Previous

kinetic studies 19 21of the sideband instability based on the Vlasov-Maxwell

equations have shown that both trapped and untrapped electrons are required

for such an equilibrium state to exist.

B. Perturbations about a quasi-steady primary electromagnetic wave

with phase 60 which is slowly varying with z'. Previous single-particles
analyses 32 42 of the sideband instability have emphasized this case, assuming

that all of the electrons are trapped, or that the untrapped electrons play

no role in sustaining the primary electromagnetic wave.

The sideband instability is investigated for Cases A and B in Secs. V and

VI, respectively. The analysis shows that detailed stability properties

differ substantially in the two case (e.g., the scaling of the growth rate

with beam current, primary wave amplitude, etc.). This difference is clearly

associated with the assumptions regarding the equilibrium state and the role

of the untrapped electrons.

Although the dispersion relation (20) incorporates beam dielectric

effects through the term (41re2/mL') <I-l> , for present purposes we
<3_
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assume a very tenuous electron beam and approximate Eq.(20) by w2 = c2k2
s s

for the primary electromagnetic wave. Assuming a forward-moving electro-

magnetic wave, we solve the simultaneous resonance conditions

Ws = +cks

(36)

s = (ks + k0)v p

for ws and ks. This readily gives the familiar results

Ws = 2(1 + v /c)k0 p
(37)

ks = Y 2(1 + v /c)(v /c)k0  (p p p

where y = (1- v2 /c2 )-, and vp = W /(k + ko) is (nearly) synchronous withp p 5 5

the average axial velocity Vb of the beam electrons. Moreover, from Eq.(37),

the ponderomotive wavenumber k = (ks + k0)/yp can be expressed as

k' = yp(1 + v p/c)k0 . (38)

For future reference, we introduce the small dimensionless parameter

r0 and the bounce frequency ^B(y ) of the trapped electrons defined by

3 1 a 2 2 (1 + v /c)
ro = -7 << 1 ,(39)

4 y yck0  vp/c

and

YBP = (c2 k 2a a /Y j2). (40)

In Eq.(39), the characteristic energy Y' of an electron trapped in the

ponderomotive potential is given approximately by

= (1 + a ) . (41)

[See Eq.(14) with p = 0 and Iasi << aw.] Moreover, T = nge2 4 T pm
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is the plasma frequency-squared of the trapped electrons, and Aj = YTp is

the average density in the ponderomotive frame. In Eq.(40), B(Y') is the

bounce frequency (in the ponderomotive frame) of an electron with energy y

trapped near the bottom of the ponderomotive potential. For y = 9', the

bounce frequency aB in the laboratory frame is defined by

GB = WB(Y)/yp
(42)

= (c2k' 2a a0,9 2)1p s p

for deeply trapped electrons. In Eq.(42), k and 9' are defined for a

tenuous electron beam by k = (ks + k )p = p (1 + vp/c)k0 and '

(1 + a2 )1. Therefore, Eq.(42) can be expressed in the equivalent (and more

familiar) form

C= ( + a 8)ck 0
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V. SIDEBAND INSTABILITY FOR PRIMARY

ELECTROMAGNETIC WAVE WITH CONSTANT

PHASE AND AMPLITUDE

We now make use of Eqs.(24), (25) and (35) to investigate detailed

properties of the sideband instability for small-amplitude perturbations

about a primary electromagnetic wave with constant amplitude 0and phase

6 . Each quantity is expressed as its equilibrium value plus a perturbation,

i.e.,

as =a s + 6as

6' = 6 + 6 (43)

= + 6Cis is i

where 6 0(t') =k () and 60 (t') = k 6z'(t'). In the ponderomotive

frame, Y = const. follows from Eq.(34) to the level of accuracy in the

present analysis.

A. Equilibrium Model

Making use of Eqs.(24) and (25), it follows that i and 6 generally

evolve according to

(a k'c2  4e 2a 1 sin(e9 + 60)
2w' - + a0 _ w is s (44)

sat' W ' 3z' s m L' .. >'s 1

( a k'c 2 4 re2 a 1cos( 9 + 6 0
2' _s . (45)

' s' az' m L' y/

Moreover, 9 s(t') = k' zj(t') solves Eq.(35) with all perturbations set equal

to zero, i.e.,, 6as =0, 6' = 0 and 6z = 0. That is, e9 (t') solves the

pendulum equation
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d 6 0 + 2 B ( y ' ) s i n ( e s + 6 = 0 ( 4 6 )

where =B(y ) (c2k,2a 0 /y )2 1 is the bounce frequency of electrons trapped

near the bottom of the ponderomotive potential.

If 6 0and a are initially constant (independent of z' and t' at t' = 0),

then it follows from-Eqs.(44) and (45) that

a= const.,

0 (47)
s = const.,

for all z' and t' provided

sin(e 0 + 60) cos(e 0 +6) (48)

To satisfy Eq.(48) necessarily requires that the distribution of beam electrons

have both untrapped- and trapped-electron components. For example, the con-

dition / y cos(69 s + 60) = 0 cannot be satisfied if all of the
< is s,

electrons are deeply trapped with e 0s+ 6 ~ 0. We also note that Eqs.(47)

and (48) are analogous to the equilibrium constraints assumed by Davidson

et. al. 19-21 in recent kinetic studies of the sideband instability.

Without loss of generality, in the remainder of Sec. V we take 60 = 0

and rewrite Eq.(48) in the equivalent form

exp(-ie 9 )
s = 0. (49)

00
For 6 = 0 and a = const., the equilibrium orbit equation (46) can be

expressed as
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- d2

d 0 s + (y=)s i n (e = 0 (5 0 )

where B ) (ckaw- 2)1 = const. A detailed analysis of Eq.(50)

shows that the electron motion is untrapped for energies y! satisfying (Fig. 1)

y y =1+ (a + a 0)2]. (51)

[Here, a > 0 and a > 0 have been assumed without loss of generality.] That

is, when Eq.(51) is satisfied, the particle motion is modulated by the

ponderomotive potential, but the normalized velocity de0 /dt' does not changeis

polarity (Fig. 1). On the other hand, for y < Y', the electrons are trapped,

and the motion described by Eq.(50) is cyclic, corresponding to periodic

motion in the ponderomotive potential. From Eq.(50), it is readily shown

that the minimum allowable energy of a trapped electron is

1 + (aw - sO)2 . (52)

Because << a, in the regimes of practical interest, we note from Eqs.(51) and

(52) that the characteristic energy of a trapped electron is approximately Y'

(1 + a ) [Eq.(41)].

B. Linearized Equations

We now investigate stability properties for small-amplitude perturba-

tions about the equilibrium state described by Eqs.(47), (49) and (50). In

this regard, it is convenient to work directly with Eq.(21) for the evolu-

tion of the complex amplitude a a exp(id'). Expressing as = a + 6a

and e' = es + 66 , Eq.(21) gives

a c 2 k' a 02iw' - + - (as + 6as)
at' W' az

s (53)

4re2a 1 0exp(-ie - id )

m L'
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00Making use of a = const. [Eq.(47)] and < exp(-ie. )/yt > = 0 [Eq.(49)],

and Taylor expanding exp(-i6e ) = (1 - i6e ) on the right-hand side of

Eq.(53), we obtain

a C 2k' a
2 ' - + -6a

at' W ' az' s

(54)
4re 2a 1 exp(-ie S)

for the evolution of the complex amplitude Sas. Here, 6as = s + id a for
05

small-amplitude perturbations, where 6 = 0 is assumed. In Eq.(54), the

perturbed orbit dW (t') = k dz'(t') is calculated from Eq.(35). Linearizingijs p j
Eq.(35) about the equilibrium orbit equation (50) readily gives

dis + t (y )cos(e 0 d .edt' +(55)

= -c 2 k' 2 a I s

Here, e9 (t') solves Eq.(50), and Eq.(55) is generally valid for both untrapped

and trapped electrons.

Equations (54) and (55) constitute coupled linearized equations for the

complex amplitude 6as and perturbed orbit 66' . For present purposes, it is

useful to express

66's 6*1. exp(ies) + 6*exp(-i ) ,(56)

where 6Wp* denotes the complex conjugate of 6*' . Making use of Eqs.(50),

(55) and (56), it is readily shown that 6' (t') evolves according to
is
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d d d

dt'2 ~SJa s + 2i d S s
__ 6dVdt' /dt' a35

+ [ (Y cos(eys id (Y)sin(es> d ) 3 js (57)

c2k 2a das

S 21

Note in Eq.(56) that we have factored out the (fast) orbital variations in

66 proportional to exp(±ies ). On the other hand, the amplitudes 6*I
is asis

and 6** in Eq.(56) describe the systematic variation of e induced by

the slowly changing wave perturbation 6as [see Eq.(57)].

Substituting Eq.(56) into the right-hand side of Eq.(54) gives

exp(-ie )Kz~~is ,e~
(58)

a + -a* exp(-2ie s)]
Y Yi

The term proportional to exp(-2ie s) in Eq.(58) generally has fast oscillatory
is

contributions from the trapped and untrapped electrons. As in single-particle

analyses with a 0 = 0, we assume that this term averages to zero in the
5

statistical average >. Equation (54) then becomes

( 2k' 4ie 2a 1

2 'a w __-s-a, (59)
2(at' ' z' m L' <

where the slow evolution of 6*1 is determined in terms of 6as from Eq.(57).is
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C. Sideband Instability

The coupled linearized equations (57) and (59) can be used to investigate

detailed stability properties for a wide variety of untrapped- and trapped-

electron populations. For present purposes, however, we focus on the

sideband instability, assuming that the trapped electrons are deeply

trapped near the bottom of the ponderomotive potential with energy y ~9'

[Eq.(52)] and average density nT = const. The t'- and z'-dependence of the

wave perturbation 6as is assumed to be of the form

exp[-i(Aw')t' + i(Ak')z'] , (60)

where Im(Aw') > 0 corresponds to temporal growth. Approximating 9' ~

(1 + a) = y', the wave equation (59) becomes

2 - 2

-2iww' - - Ak' 6as = a 6*' (61)

for perturbation frequency Aw' and wavenumber Ak' characteristic of the trapped-

electron motion. In Eq.(61), p = 4n e2/m = 4wATe2/y m, and the subscript j

has been dropped from 61 . For deeply trapped electrons, it also followsis
that 6 = 2nw (n = 0, ±1, ±2,''') and de /dt' ~ 0 in the linearized

is is
orbit equation (57). Therefore, Eq.(57) can be approximated by

(A') 2 + 2; 2 w 6as (62)
Ly 21

Combining Eqs.(61) and (62) readily gives the desired dispersion relation

(o c2k Ak')(AW')2 aB& c2k 2  , (63)

which determines Aw' in terms of Ak' and other system parameters.
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It is useful to transform Aw' and Ak' in Eq.(63) back to the laboratory

frame, and introduce the small dimensionless parameter r0 defined in Eq.(39).

In this regard, making use of w' = ypk0vp and k = (ks+k 0 )yp = yp(1+vp/c)k0

[Eq.(38)], the right-hand side of Eq.(63) is readily expressed as

2. 2 2 k2
awwpT P = y (1 + v /Or3 c3k3 (64)

Moreover, it follows from Eq.(9) that

Aw' = Yp(Aw - vp Ak)

2 (65)
Ak' = Y [Ak - (v p/c2 )Aw

where Aw and Ak are the frequency and wavenumber of the perturbation in the

laboratory frame. Consistent with neglecting beam dielectric effects (see

Sec. IV), we approximate wI = ck' and Aw' - (c2 k/w')Ak' = Aw' - cAk' on

the left-hand side of Eq.(63). Making use of Eq.(65), it follows that

r V Akl

Aw' - cAkr = yp (1 + vp/c) [(Aw - vPAk) - ck0  ,] (66)

where k = Y2 (1 + v /c)(v /c)k is defined in Eq.(37). We further introduce

the shorthand notation

2= Aw - v pAk ,

(67)
V Ak

AK =k 0 *.2...
c ks

Substituting Eqs.(64)-(67) into Eq.(63) then gives the dispersion relation

(AQ - cAK) (AQ)2 - S = r3c3k3 , (68)

where aB = (c2 k 2a s /y'2 2 ' is the bounce frequency in the laboratory frame,

and r3 is defined in Eq.(39).
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The dispersion relation (68) is equivalent to Eq.(63). Most striking

is the fact that Eq.(68) is identical (neglecting beam dielectric effects)

to the cubic limit of the kinetic dispersion relation19,20 derived for deeply

trapped electrons assuming constant equilibrium amplitude ^ of

the primary electromagnetic wave (ws ,ks). Equation (68) is analyzed ex-

tensively in Ref. 20, where the growth rate Im(As) and real oscillation

frequency Re(ai) are calculated in terms of cAK, 1B and r0k0c over a wide

range of system parameters. For present purposes, we summarize selected

key results.

(a) A detailed investigation 20 of Eq. (68) over a wide range of system

parameters shows that the maximum growth rate occurs for frequency and

wavenumber in the vicinity of

A -B
(69)

AK B/C

Note that Eq.(69) corresponds to the lower sideband, which exhibits strong

instability. [As discussed in Ref. 19, excitation of the lower sideband is

associated with the assumption that the wave perturbation has (nearly)

right-circular polarization. For wave perturbations with left-circular

polarization, it is found 19 that the upper sideband exhibits instability.]

(b) We introduce the shifted frequency A and wavenumber AK defined by

(70)

AK = -B/c + AK

Making use of Eq.(70), the dispersion relation (68) can be expressed in the

equivalent form

(A) (AQ - 2- cK) = r30c3 k0 (71)



31

20
Because maximum growth is found to occur for AK ~ 0, we solve Eq.(71)

for the case AK = 0 exactly. The solution to ( - 2aBA 2 - rc 3 0 = 0

then determines the characteristic maximum growth rate Im(A') = Im(aW).

Some straightforward algebra gives20

(3)1/2 32 a 3 1/3

Im(Aw) = r k c 1+ - B
00 (2) 5/3 27 r3k3 3

(72)

x + 32 3 -1/2- 2/3 32 a3 -1/2 2/3
X __B B - ]

27 r 27 r3k3c /

for AK = 0.

(c) In the weak-pump regime (aB r0k0c), Eq.(72) reduces to

(3)1/2
Im(Aw) = - r0k0c, for aB rk0 c . (73)

2

On the other hand, in the strong-pump regime (PB > k0c), Eq.(72) gives

r0k0c r0k0c 1/
Im(AW) = /- 21 , for s ,k c . (74)

(2) 2 spB B 0k0

Figure 2 shows a plot of Im(Aw)/[(3) 1/2r0k0c/2] versus the normalized pump

strength aB /rOkOc calculated from Eq.(72). It is evident from Eq.(72) and

Fig. 2 that Im(Aw) exhibits a simple scaling with QB /rOkOc only in the

asymptotic limits in Eqs.(73) and (74). Moreover, the instability growth

rate is greatly reduced as the pump strength is increased to large values

[compare Eqs.(73) and (74)]. Although the details will not be presented

here, it is also found 20 that the instability bandwidth in AK-space de-

creases substantially as QB /OkOc is increased. Indeed, the range of AK
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corresponding to instability can be approximated by IAKI < AKb rk 0

(2r0k0c/9 B)l in the strong-pump regime with B /rOkOc >> 1.

-.1/3(d) As a final point, because r0  / n , the scaling of Im(6u) with

trapped electron density T (or current) varies from A 1/3 in the weak-pumpT T

regime [Eq.(73)] to 1 /2 in the strong-pump regime [Eq.(74)]. This is

in contrast with the analysis in Sec. VI where all of the electrons

are deeply trapped and the characteristic growth rate scales as 1/3T
the strong-pump regime (a r'k0c) and as ^2/3 in the weak-pump regime

B 00k0c).
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VI. SIDEBAND INSTABILITY FOR PRIMARY

ELECTROMAGNETIC WAVE WITH

SLOWLY VARYING PHASE

In this section, we make use of Eqs.(24), (25) and (35) to investigate

detailed properties of the sideband instability in circumstances where all

of the electrons are deeply trapped near the bottom of the ponderomotive

potential with energy y ~ A' [Eq.(52)] and average density n = AT P= const.

For deeply trapped electrons, Eqs.(24), (25) and (35) can be approximated

by

c2 k 2

+ -! = T sin(e' + 6') , (75)
at ,' az, s 2w' s

c ck' a w2
a - + s -i.)' = Al cos(e' + ') (76)

at' ' Dz' s 2w ( s

d2 c2k'2a a
--- e + P s sin(e' + 6') = 0 , (77)
dt Y

where 2T 410e 2/m. In Eqs.(75)-(77), the subscript j has been dropped

from ets; use has been made of a= a exp(i6'); and we have taken the

characteristic energy of the trapped electrons to be Y' = (1 + a2)1 [Eq.(41)].

Moreover, e' + 6' ~ 2nw (n = 0, ±1, ±2,*-) for the deeply trapped electrons

assumed in Eqs.(75)-(77). Without loss of generality, we take n = 0

and expand Eqs.(75)-(77) for small es' + 6'. This readily gives

c~ ~ ~ 2s A

- + s a = (e' + 6') , (78)
at'' az, s 2w'y'

A a c 2k ' a 2
a - + s a ) = T , (79)

s at' W' az' s 2w'y'
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d2 c2k,2a
' + c 2  (es + 6 = 0 1 (80)

dt' y

correct to lowest order. Unlike the analysis in Sec. V, a striking feature

of Eqs.(78)-(80) is that there is necessarily a variation in the zero-order

wave phase 60 predicted by Eq.(79).

A. Equilibrium Model

An appropriate quasi-steady equilibrium state consistent with Eqs.(78)-

(80) is described by

e + 6 0 (81)
5 s

a 0 a (82)
at, s az'

and

60 =0S
at' (83)

0 c2k' a 
0 a

s W' az' s 2w'i'

That is, the equilibrium wave amplitude a is constant (independent of z'
s0

and t'), whereas there is a slow variation of wave phase 60 with z' de-

scribed by Eq.(83). Making use of w' = Ypk0vP and k = Yp(1 + vp/c)k 0
[Eq.(38)], it is readily shown that

- 2 2a w r0ck0 k 2r kc , (84)W) p2sy s B

where the small parameter r3 << 1 is defined in Eq.(39), and &~

(c2k 2 a 0 /,2 2 is the bounce frequency (in the laboratory frame) for
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deeply trapped electrons. Neglecting beam dielectric effects, we

approximate w' = ck' on the left-hand side of Eq.(83), and Eq.(83) can

be expressed as

-- 6 ekk (85)
az' p

where the small parameter e is defined by

r0ck0 2
2r0 - - << 1. (86)

B

Note that e << 1 is required in the present analysis in order that the

change in 6 0is small over the scale length of the ponderomotive potential

= 2k ). Unlike the stability analysis in Sec. V, Eq.(86) requires

that the pump amplitude be above a certain small threshold value

2 2 2 3
(B/c/ k0 >> 2ro) for the present analysis to be valid.

B. Linear Stability Analysis and Dispersion Relation

We now express ^s = a + 6^s, 6' = 6 +6I and = e +6e', where

6as, 6' and 66' denote small perturbations. Linearizing Eqs.(78)-(80)

about the equilibrium state described by Eqs.(81)-(83) readily gives

a c k ' a A

-- + - )6as = as ck (6e' + 6) , (87)
at, s az'

a c 2k' a
- + s 6' + 6aseck' = 0 (88)

s at' W' 3z' s p

6S' + I (y')(6e' + 6') = 0 . (89)
dt
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Here, w ' = (c2k 2a & /i' 2 )', e is the small parameter defined in

Eq.(86) [see also Eq.(84)], and use has been made of w' = ck' and Eq.(85)
25 0

to express 6as(c k'/w')(a6 /az') = s eck; in Eq.(88). As in Sec. V,

we assume that the z'- and t'- dependence of the perturbed quantities

in Eqs.(87)-(89) is proportional to exp[-i(Aw')t' + i(Ak')z'], where

Im(Aw') > 0 corresponds to temporal growth. Approximating w' =ck',

Eqs.(87)-(89) readily give

A AfJ
-i(Aw' - cAk')6as = -a ck(66e + 6') , (90)

-ii (Aw' - cAk')' = -eck; as (91)

[(A') 2 _ .B(2')](6o' + 6a) = (Aw')2'. (92)

After some straightforward algebraic manipulation, Eqs.(90)-(92) give the

desired dispersion relation70

2 2 2.k2

0 = 1 - - (93)
(A ') (Aw' - cAk')

which determines Aw' in terms of Ak' and other system parameters.

Paralleling the analysis in Sec. V, we transform Aw' and Ak' back to

the laboratory frame according to Eq.(65). Making use of Eqs.(65)-(67)

and the relations k = Yp (1 + vp/c)k0 [Eq.(38)] and c = 2ro(rOckO/OB)

[Eq.(86)], it is readily shown that Eq.(93) can be expressed in the

equivalent form

2 2 2 4(r ck0 B1 6
0 =1 - - - 0  0 B) (94)

(an) (ai - cAK)

Here, an = Aw - v Ak, AK k0(v p/c)(Ak/k s), and a= (2k 2a / 2

is the bounce frequency (in the laboratory frame) for deeply trapped electrons.
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C. Sideband Instability

Equation (94) has the familiar form of the dispersion relation for the

two-stream instability. 71,72 Here, a p plays the role of the first

plasma component, and a 4(r0ck0 /B) 6 +p2 plays the role of the second

plasma component which is drifting with velocity c relative to the first

component. Equation (94) can be solved numerically for the real oscillation

frequency Re(af) and growth rate Im(an) in terms of cAK, 0B and aB /rOkOc

over a wide range of system parameters. For present purposes, we make use

of analytical estimates to determine the instability bandwidth and maximum

growth rate from Eq.(94).

First, it can be shown from Eq.(94) that instability exists [Im(AQ) =

Im(6w) > 0] for AK in the range

-AKb < AK < AKb , (95)

where the bandwidth AKb is given (exactly) by

CAKb = aB 1 + 4 ---- . (96)

B

As illustrated schematically in Fig. 3, the growth rate Im(as) = Im(Sw) is

equal to zero for AK = 0 and AK = ±AKb, and achieves its maximum value at

AK = ±AKM. Equation (96) is valid for arbitrary pump strength ranging

from the strong-pump regime (aB /rOkOc >> 1) to the weak-pump regime

(QB/rOkOc << 1). Moreover, it can be shown exactly from Eq.(94) that the

real oscillation frequency of the unstable branch increases from

Re(AQ) = 0, for AK = 0 , (97)

to
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[r 0ck 0 \6 I1/3)-1/2
Re(A) = +QB 1 + 4 S/ /, for AK = +AKb . (98)

The range of oscillation frequencies described by Eqs.(97) and (98)

corresponds to the upper sideband. On the other hand, for AK in the

interval -AKb < AK < 0, the lower sideband is unstable, and the polarity

of Re(aa) is reversed relative to Eq.(98). Because Im(AQ) is an even

function of AK, and Re(AQ) is an odd function of AK, without loss of

generality we limit the subsequent analysis to the interval 0 < AK < AKb.

Although the bandwidth AKb can be calculated analytically for

arbitrary pump strength aB /rOcko [Eq.(96)], the growth rate Im(an) must

generally be determined numerically from Eq.(94). However, analytical

estimates of the maximum growth rate can be made in both the weak-pump

and strong-pump limits. In this regard, it should be kept in mind that

r0 << 1 is assumed in the present analysis [Eq.(39)].

Weak-Pump Regime (aB /rOck0 << 1): In the weak-pump regime with

B/r Ock0 << 1, we also require (aB /rOck0)2 >> 2r0 in order to be consistent

with the assumption of slowly varying phase 6 , i.e., e << 1 in Eq.(86).

For aB /rOck0 << 1, it follows from Eq.(96) that the instability bandwidth

is given approximately by

r1ck2 3 QBcAKb = 2r0ck0  --- 1 + +/3 ( B-- . (99)

aB (2) ( rV0ck0)

Because (aB /rOckO)2 >> 2r0 is required, we note from Eq.(99) that the insta-

bility bandwidth AKb in the weak-pump regime is relatively narrow in units

of k0. It can also be shown from Eq.(94) that the maximum growth rate

Im(A,)M = Im(Aw)M, in the weak-pump regime can be approximated by
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(3)1/2
Im(a)M =- 2 0ck0  - (100)

Moreover, maximum growth occurs for AK = AKM, where AKM is defined by

r0ck 0\2  3 a B 4
cAKM = 2r0ck0  ---- 1+ + - (101)

( aB )' 16 (r 0ck 0)

Comparing Eqs.(99) and (101), we note that AKM is only slightly downshifted

from AKb. That is, the growth rate Im(aa) is peaked very close to the

upper end of the unstable wavenumber range in Fig. 3.

For specified values of r0ck0 and 0B rOck0 << 1, it is evident from

Eqs.(73) and (100) that the growth rate in Eq.(100) is the same as

the corresponding growth rate derived in Sec. V in the weak-pump

regime. Moreover, because r0 ,1/3, the scaling of the growth rate with

trapped-electron density (or current) is proportional to Al/3 in Eqs.(73)T
and (100).

Strong-Pump Regime (aB /rOck >> 1): For a /rOck >> 1, it follows

from Eq.(96) that the instability bandwidth AKb is given approximately by

0 B 3 r 0ck 0 2
cAK = r ck0  B + ---- + (102)b 0 \0r0ck0  (2) k B

In units of r0k0, it follows from Eq.(102) that the instability bandwidth

AKb is also relatively broad in the strong-pump regime. This is in contrast

with the constant-phase case analyzed in Sec. V, where the (narrow) bandwidth

AKb is given approximately by AKb = rOko(2rokOc/QB)i in the strong-pump regime

with aB /rOkOc >> 1. Moreover, it can be shown from Eq.(94) that the maximum

growth rate in the strong-pump regime can be approximated by
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Im(AQ)M = (3)1/2 r ck (r0ck 0 (103)

(2) 2 0B /
Here, maximum growth occurs for AK = AKM, where AKM is defined by

cAKM = rck0 IB 1 + 3 r0ck0  2 . (104)
rocko (2) B

Comparing Eqs.(74) and (103) for specified values of r0ck0 and

B/r Ock0 >> 1, it follows that the growth rate in Eq.(103) is smaller than

the corresponding growth rate derived in Sec. V in the strong-pump regime.

Moreover, because ro a n T/3 the growth rate scaling is proportional to

-.1/2 in ^2/3T in Eq.(74) and proportional to T in Eq.(103).

Intermediate Pump Strength: The dispersion relation (94) must generally

be solved numerically when aB /rOck0 ~ 1. However, for the special case

where

= (2)1/3 , (105)
r0ck0

the dispersion relation (94) can be solved exactly. Substituting Eq.(105)

into Eq.(94) gives

12 2
0 = 1 - - B 2 (106)

(An) (Al - cAK)

which is the two-stream dispersion relation for "equidensity" streams

with effective plasma frequency aB* It is readily shown from Eq.(106)

that instability exists for AK in the range -AKb < AK < AKb where

cAKb = (2)3/2 B .(107)

Moreover, the growth rate Im(AN) and real oscillation frequency Re(a6) of

the unstable branch are given by
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Im(AQ) = aB [1 + 8(AK/AKb) 2 ] 1/2 - 1 - 2(AK/AKb)2  1/2 (108)

and

Re(AS) = (2)1/2 B(AK/AKb) = cAK/2 (109)

for AK in the interval -AKb < AK < AKb. The maximum growth rate calculated

from Eq.(108) is

1
Im(AQ)M = 9B , (110)

2

which occurs for AK = ±AKM, where AKM is defined by

AKM = (3)1/2AKb . (111)

At intermediate pump strengths (B /rOckO : 1), it is clear from Eqs.(109)-

(111) that the characteristic oscillation frequency and growth rate of

the sideband instability are of order the bounce frequency QB*

Comparing Eqs.(100) and (110) for specified r0k0c, it is evident that the

maximum growth rate Im(aQ)M varies only slightly for aB /rOcko in the range

2r0 < QB /0Ocko < (2)1/3. On the other hand, in the strong-pump regime with

B /rOck0 >> 1, it follows from Eq.(103) that Im(AQ)M decreases rapidly with

Im(AQ)M = [(3)1/ 2/(2) 2/3]rOckO(r0 Ock0 B). This is illustrated in Fig. 4 where

the normalized maximum growth rate Im(&Q)M/ (3)1/2r0ck0/2] calculated numerically

from the dispersion relation (94) is plotted versus the dimensionless pump

strength aB /rOck0*

Finally, Table 1 provides a concise summary which compares the key

stability results obtained from the dispersion relation (68) (60 = const.)

and the dispersion relation' (94) (a6 /az' = k 0). In particular, presented
iz

in Table 1 are the normalized maximum growth rate Im(A9)M/r~ckO, the normalized
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instability bandwidth AKb rOk0, and the normalized real oscillation

frequency at maximum growth Re(Aa)M/rOcko, fQr pump strengths ranging

from the weak-pump regime (aB /rOcko < 1) to the strong-pump regime

(QB /rock0 >> 1). For QB /rOcko >> 1, a very striking result evident from

Table 1 is that the sideband instability described by Eq.(94) has a broad

bandwidth with AKb/rOkO = QB/rOcko >> 1, whereas the sideband instability

described by Eq.(68) has a narrow bandwidth with AKb /rOkO = (2rocko/nB "

It should also be pointed out that the frequency bandwidth Awb can be

estimated in the various regimes illustrated in Table 1. For example, in

the case of slowly varying equilibrium phase [Eq.(94)], we obtain Anb

Awb v pAkb ! B in the strong-pump regime (aB /rOcko >> 1). Here,

vPAkb = c(ks/kO)AKb (1 + v /c)(v/c)B follows from Eqs.(37), (67) and

(102). This gives Ab ~ y2 (1 + v /c)(v /c)1 ± B, where the term ±Qb1p2)seTs g Al =p p peB Bt B

represents a small correction.
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VII. CONCLUSIONS

In the present analysis, a single-particle model based on Eqs.(24),

(25) and (35) has been used to investigate properties of the sideband

instability for small-amplitude perturbations about a primary electromag-

netic wave with constant amplitude a = const. (independent of z' and t').

Two cases were treated. The first case (Sec. V) assumed constant equilibrium

wave phase 6 = const., which requires (for self-consistency) both untrapped-

and trapped-electron populations satisfying < Ey j exp(ie9 + il )> = 0

[Eq.(49)]. This is analogous to the case studied by Davidson et. al.

using the Vlasov-Maxwell equations. The second case (Sec. VI) assumed

that all of the electrons are trapped, which requires a slow spatial varia-

tion of the equilibrium wave phase a6 /az' ' 0. 32-42 The resulting dispersion

relations and detailed stability properties were found to be quite different

in the two cases. For deeply trapped electrons, it was shown that the dis-

persion relations are given by Eq.(68) for 6 = const., and by Eq.(94) for

a /az' = 2ro(rOckO IB)2k # 0. The two dispersion relations and the

corresponding properties of the sideband instability were examined in

detail in Secs. V and VI. We summarize below some of the key results.

First, in the weak-pump regime (aB /rOck0 << 1), the characteristic

maximum growth rate of the sideband instability is substantial, with

Im(As)M/rOcko = (3)1/2/2 in both cases [Eqs.(73) and (100)]. Second, in

the strong-pump regime (QB /rOck0 >> 1), it is found that the maximum growth

rate is reduced significantly, with Im(a)M/rOcko = 2-1/2(r0ck0 /QB) 1/2 <<

for the case of constant phase 60 [Eq.(68)], and Im(Ai)M/rOcko

(3)1/2/(2)2/3 ](ck B) << 1 for the case of slowly varying 60 [Eq.(94)].

It is also found that the instability bandwidth AKb in AK-space is generally
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different in the two cases. For example, in the strong-pump regime

(aB /rOck0 >> 1), we obtain AKb /rOko = (2rOck O/B) 1/2 << 1 from Eq.(68),

whereas AKb/rokO = B /rOckO > 1 follows from Eq.(94). Finally, for the

case of slowly varying phase 60 [Eq.(94)], it is found that both the upper

and lower sidebands are unstable, with Re(A92) > 0 for AK > 0 and Re(an) < 0

for AK <-0. In contrast, for 6s = const., it is found from Eq.(68) that

only the lower sideband is unstable. This is associated with the fact

that the wave perturbation is assumed to have right-circular polarization

in deriving Eq.(68).1 9 For 6 = const. and wave perturbations with left-s

circular polarization, it is readily shown that the upper sideband is

unstable.19
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FIGURE CAPTIONS

Fig. 1. In the ponderomotive frame, electron motion in the phase space

(z',p ) occurs on surfaces with y' = const.

Fig. 2. Plot of normalized growth rate Im(Aw) / [(3)1/2r0ck0/2] versus

dimensionless pump strength aB r0ck0 for AK = 0 [Eq.(72)].

Fig. 3. Schematic plot of growth rate Im(A&) versus AK obtained

from Eq.(94).

Fig. 4. Plot of normalized maximum growth rate Im(A&)M/ (3)1/2r0ck0/2]

versus dimensionless pump strength B /rOck0 calculated

numerically from Eq.(94).

Table 1. Table showing the maximum growth rate, bandwidth, and real

oscillation frequency (at maximum growth) of the sideband

instability obtained from Eqs.(68) and (94) in the weak-pump

(aB/r Ock0 << 1), intermediate-pump (B /rocko = 1), and strong-

pump (B /rOck0 >> 1) regimes. For aB /rOckO = 1, the estimates

are obtained numerically from Eqs.(68) and (94).
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Dispersion Relation (68) Dispersion Relation (94)
0 . const.) (a6 /az'- ek' 0 0)

Weak-Pump Regime

(OB/rOcko << 1)

Im(aQ)M (3)1/2 (3)1/2

r0ck 2 2

&Kb> 1 2(rock0 /0) 2

rok0  (assumed << r 1)

Re(aa)M 1 1

rocko 2 2

Intermediate-Pump Regime

(OB/rocko 1)

(AOM 0.67 0.7
r0cko

AK.b 4 2.7
rgk0

-1. 
0.9

r 0ck0

Strong-Pump Regime

(a8/r Ock0 > 1)

Im(A )M 
oc ko 1/2 (3) 1/2 (rck,)

r Ocko 2n 8 (2)M a -

AK b (2 ./2

r0 k0  \ B r 0k/

r 0ck 0 \ocko rocko

Table 1


