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Abstract

Through the use of x-ray arrays, highly peaked carbon (C) and molybdenum (Mo) pro-

files were observed to occur after hydrogen pellet injection used for plasma fueling. Multi-

ion neoclassical theory predicts equilibrium profiles close to these observations. Specifically,

about 40 ms after pellet injection, C, a plateau impurity, was well fit by (Te /Te(0)) 1.5 ZC for

r<6.5 cm (Zc=6). Experimental values for the convective velocity and diffusivity inside 4

cm were - 10 3 cm/s and - 300 cm 2 /s, respectively. An internal disruption then occurred,

which reduced on-axis impurities by a factor of 3 and ended neoclassical-like transport.

Based on these observations we posit that C, the dominant non-hydrogenic contributor

to Zeff, dramatically affects sawtooth dynamics by altering the central resistivity. The

implications of these observations to ignited plasmas are discussed.
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The transport of impurities, and the ensuing implications for current profiles and

sawtooth dynamics, are crucial issues for tokamak physics'- 4 and future reactor designs.

Foremost, should alpha-particles behave neoclassically they could, in certain circumstances,

accumulate in the center and quench the burn.' Despite significant work on neoclassical

transport, 1 ~5 quantitative comparisons have been seriously impaired by the lack of com-

plete spatial and temporal information about the main plasma impurities. In order to

overcome this problem, simultaneous measurements were obtained with two x-ray arrays

that have markedly different spectral responses to Alcator's main light [carbon (C)] and

heavy [molybdenum (Mo)] impurities. [Work directed towards a similar goal is also ongoing

elsewhere. 6 ] The results reported here describe the first measured impurity profiles to be

quantitatively compared to the equilibrium predictions of neoclassical theory. In addition,

we have observed an unambiguous connection between impurity profiles and sawtooth dy-

namics. This occurs through the effects impurity profiles have upon the plasma resistivity.

Figure la depicts the spectral efficiencies of the two x-ray arrays, A and B. Both

are absolutely calibrated and conveniently cross-calibrated in-situ by operating with the

same filter (A ).7 The arrays view the plasma from the same toroidal position, array A (B)

from the side (bottom). For array B, with relevant Alcator conditions, only ~ 2% of the

detected x rays are from Mo ions (mainly from -An=2 transitions). This is because the

filter response "cuts off" the dominant An=1 transitions that occur around 2.5 keV.8

The starting point for our analysis involves solving two equations for the C and Mo

densities (nC and nm, respectively ):

A

-n- (Pf )nH ~ (P )nC - ( P'j)ni - (1)

(Py)nH (PC)nc. (2)
ne

In these equations EA and EB are the absolute x-ray emissivities determined from Abel

inversion; ne is the electron density; nH = n, - ZCnC - ZMnM [Zc=6, ZM ~ 30, and
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ZnMfl is negligible: and the Pj's are spectral power functions for each species j, where

j stands for either H, C, or Mo. and k = filter A or B. Figure lb depicts array-B power

functions for fully-stripped H and C ions (Gaunt corrected).' The power functions for Mo

include collisional and dielectronic excitations (large contributions),10 and bremsstrahlung

and radiative recombination (small contributions). Appropriately weighted sums are taken

over the central Mo ions, ±28 thru +32.1"0 Important to our analysis is the fact that the

Mo power functions have a weak dependence on the precise weighting of these ions.

Time traces of several adjacent x-ray detectors are shown in Fig. 2 for a discharge

with I,= 5 2 0 kA and Bt=9.7 T (major and minor radii of 64 cm and 16.5 cm). As the pellet

enters the plasma, the signals drop as T,(0) plummets from 1.6 keV to 0.6 keV. During the

next, 37 ins, Te recovers and the C profile inside 7 cm gradually evolves from a "flattish"

pre-pellet profile to a highly peaked one. The profile then abruptly "flattens" at the giant

impurity disruption (henceforth abbreviated as G.I.D.), and thereafter carbon does not

dramatically repeak. Note that from pellet injection until the G.I.D., the carbon profile is

modulated by sawteeth of increasing duration. Indeed, there are many discharges in which,

following pellet injection, sawtoothing eventually stops altogether (without major disrup-

tions ensuing). Figure 2c depicts array-A emissivities, determined through Abel inversion,

at critical times in the discharge of Figs. 2a and 21). It is worthwhile to stress that, con-

trary to "giant" internal disruptions attributed to large temperature fluctuations,' 2 the

G.I.D. is of a different nature (notice the small temperature drop in Fig. 3d). In fact,

the temperature perturbation of the significantly smaller internal disruption following the

G.I.D. (Fig. 2a), is virtually identical to that of the G.I.D.

Figures 3a and 3b show the experimentally determined C and Mo density profiles just

prior to and after the G.I.D. The dashed curves are the asymptotic equilibrium profiles

predicted on the basis of a rigorous multi-ion neoclassical theory." In comparing experi-

ment with theory, it is crucial to note that C is in the plateau regime (ie. the C collision
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frequency is less than the transit frequency). Also, because of small Mo concentrations,

diffusion of C is governed by its interaction with hydrogenic (H) ions. Thus the expression

for the radial C flux is 1 3
,
4

n' n'e 1.5T'
Fc cX [ , +, (3)

InH Zcnc

where T'/T is assumed to be the same for electrons and ions, and the prime indicates dif-

ferentiation with respect to r. The exact source-free equilibrium solution to the continuity

equation

anc
+ V - c = 0 (4)

is, using Equation (3),

nC nH )Z' ( 1.) 5Zc(5

nc (0) nH(O) T(O)

Equation (5) predicts that it is the temperature profile which is responsible for peaking

carbon since nH is slightly hollow due to central ion deficit effects (Fig. 3e). Because

the experimental (pre-disruption) temperature profile is well represented by a Gaussian,

Equation (3) can be accurately recast as

Fc = -Dn'c, - nc V () (6)

where a is the minor radius. D and V are not separately constant, though the ratio, D/'V,

is constant. The solution of Eq. (6) for Fc = 0 is nc cx exrp -r 2 /(2aD/V)]. From the

experimental data at 257.5 is, D, V is 0.33- ' cm. This value is to be rigorously inter-

preted as an upper limit since array-B data indicate that some carbon peaking continues

up to the onset of the large m=1 oscillation. (For example, see the center and outer sig-

nals in Fig. 2b.) This indicates experimentally that onc/at is not yet completely zero.1 4

Important to our considerations here is the fact that the neoclassical prediction [Eq. (5)]

represents the narrowest carbon profile that can be theoretically achieved.
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From the carbon peaking that occurs in the 12 msec interval preceeding the G.I.D.

(see Fig. 2a), an estimate can be made of V and D inside 4 cm. Experimentally they are

found to be of order 103 cm/s and 300 cm 2/s respectively. The corresponding theoretical

values are 500 cm/s and 150 cm 2 /s respectively. Thus the measured values are of the order

of the neoclassical predictions. Typically most tokamaks 4 , including Alcator for non-pellet

discharges 5 , have reported that impurity diffusivities are one to two orders of magnitude

larger than the neoclassical prediction.

The dashed curve in Fig. 3b depicts the rigorous asymptotic source-free equilibrium

profile for Mo, predicted by the appropriate mixed-regime theory' 3 (Mo in the PS regime,

C and H in the plateau). The detailed application of this theory is outlined in Appendix-I.

It is concluded there that Mo peaking is largely driven by the C profile. Thus for our

experimental conditions, theory yields a Taylor-like solution 16

nu n c zc

() (0) ~ (0 r_4 cm) (7)

where A is a well defined correction factor due to collision frequencies and mass ratios

(temperature and hydrogen gradients are shown to be subdominant, in shaping Mo profiles

for 0 < r'<4 cm). Due to the larger error in the experimental molybdenum profile, the

experimental width is determined to be between a factor of 1.3 and 3.0 that of Eq. (7).

From the theoretical viewpoint. however, it is crucial to carefully consider the role of the

impurity-electron friction (as represented through the equation for ambipolar balance).

Specifically, molybdenum is a trace impurity, i.e.. OMo a " 3 x 10-3

while carbon is a major impurity, oc 1 . Thus for carbon the standard

neoclassical treatment, which drops the carbon -elect ron friction vs. the carbon-hydrogen

friction, is justified, i.e.

FH+ZCFCO0. (8)

(Carbon-molybdenum friction is also negligible.) For the molybdenum test particles, how-
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ever, the full ambipolar balance must be considered, i.e.

Zm]FA1 = F, - (FH + ZcFc) (9)

Experimental estimates of the right-hand side of Eq. (9) yield a small net positive (i.e.
14

radially outward) contribution [F - 10 at - 4 cm], which has the effect of broadening

the molybdenum equilibrium profile of Eq. (7) by a factor of 2. Thus, inclusion of the

electron friction brings the theoretical prediction well within the experimental uncertainty.

Fitting and error analysis procedures are described next. Just prior to the G.I.D.,

impurity levels were observed to approach a minimum at about 6.5 cm, then rise outside

this radius. Equations (1) and (2) were first used to estimate C and Mo profiles inside

6.5 cm. In turn these profiles were used to construct two Gaussians corresponding to nc

and nm whose amplitudes and widths were varied until a good fit to the original data was

achieved (see Fig. 4). Errors in the e-folding widths (oc and oUM) were then determined

by varying ne and T, over their uncertainties: 15% in amplitude and 20% in width for n,;

10% in amplitude and 20% in width for T,. From this procedure it was determined that

ac = 3.3+g8 cm, am = 3.5+0i* cm, and that the relative uncertainty in the on-axis ratio

of C to Mo density is 22 (primarily due to the larger uncertainty in nM).

The post-G.I.D. profiles were determined by finding acceptable fits to the change in

the x-ray. interferometer (ne). electron cyclotron ( T e), and visible bremsstrahlung signals.

Starting with the pre-disruption profiles, n,, Te, nC and nm were "flattened" so as to

conserve particles and energy to about 1%. Figure 3 depicts the post-disruption profiles'

(Fig. 4 the corresponding x-ray "reconstructions"), from which it can be concluded that

the unambiguous effect of the G.I.D. is to reduce on-axis impurities by a factor of 3.

Finally we posit that central carbon, the dominant non-hydrogenic contributor to

Zeff, has directly measurable effects on the MHD dynamics associated with the sawtooth

period. As carbon gradually peaks following the pellet injection, the central Spitzer con-
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ductivity (calculated on the basis of the C. Mo, and T, profiles of Fig. 3) will hollow,

leading to a flattening - possibly a hollowing - of the current profile (see i of Fig. 3f and

Appendix II). This will significantly reduce the m=1 tearing rate, conventionally associated

with the sawtooth disruption,18 since the growth rate scales as q'(r,)2. [q' is the derivative

of the safety factor, and r, is the radius of the q = 1 singular surface.] The inhibition of the

tearing mode should lengthen the sawtooth period, an effect observed during the reheat

phase that follows pellet injection (Fig. 2a). In addition, if the current is sufficiently flat,

the safety factor should be above 1 everywhere in the plasma. Indeed this may account

for the numerous discharges where sawteeth are completely suppressed following pellet

injection. (Also, major disruptions do not ensue for these cases.) In this situation highly

peaked impurity profiles persist even while the temperature remains peaked on-axis. It

is important to stress that, this sawtooth suppression is not a result, of a major change in

central radiative power balance since, for the discharges discussed herein, radiation plays

an insignificant, role in the central power balance. [See references 1 and 3 for experiments

in which central radiation is significant, sawteething stops, and the plasma disrupts.] Also

directly relevant to the connection between the peakedness of the carbon profile and the

sawtooth period is the observation that the carbon profile does not dramatically repeak

after the G.I.D. Just after the G.I.D. the conductivity peaks (ii of Fig. 3f) and. subse-

quently, the sawtooth period progressively shortens (by a factor of 2.5 approximately 15

ins after the G.I.D. of Fig. 2).

In summary, differently filtered x-ray arrays have been used to simultaneously measure

central carbon and molybdenum profiles, Alcator's dominant light and heavy impurities.

following pellet injection. The width of the carbon profile is close to the neoclassical pre-

diction of a source-free equilibrium state. The experimental molybdenum profile, which

is more uncertain, is between a factor of 1.3 and 3.0 times that of the asymptotic pre-

diction; theory suggests, however, that the asymptotic molybdenum profile should not be
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experimentally realized as long as there is a significant radial outward diffusion of electrons

(which is experimentally observed). We have no proven explanation why at first the pellet

affects the impurity transport in the manner described above, whereas for non-pellet dis-

charges (with standard sawtoothing) Alcator impurity transport is anomalous. 15 However,

the hypothesis has been raised that pellet injection lowers r 8n = by a factor 2, thereby

stabilizing the "ion mixing mode" 9 and permitting classical ion transport to evolve. Nor

is it theoretically clear why the giant impurity disruption (G.I.D.) should end, as observed,

this neoclassical-like behavior, unless, for example, it can be shown that this disruption

causes ih to rise above the instability threshold again. Further, we have presented direct

experimental evidence that the central peaking (flattening) of carbon lengthens (shortens)

the sawtooth period - or stops the sawtooth altogether - through measured changes in the

central Spitzer conductivity profile.

From these observations there arises the concern that the thermalized alpha com-

ponent of an ignited fusion plasma may be strongly peaked on-axis, depending on the

(retarded) sawtooth activity in pellet fueled plasmas. And conversely, with increasing

central impurity peaking, the current density may flatten, thereby greatly extending the

sawtooth period or even suppressing sawteeth entirely. Since this may produce intolerably

good impurity confinement, our observations imply that recent suggestions to RF-stabilize

the m=1 island, in order to permit sawtooth-free operation for q(O) < 1 and thus high

ohmic heating power levels, may have to be modified to allow periodic impurity expulsion

via a deliberately induced internal disruption.



Appendix I

Ia. Neoclassical Theory for Carbon

In the inner half of the Alcator C plasma about the time of the G.I.D., carbon is in

the plateau regime. Since

ac __ 1c> and
n c Z C 

M ._
nH r WH

a~ -nMoZo~ X 10-3nH 
y 3 

H -

the carbon friction with the electrons and with molybdenum is negligible, and from Ref-

erence 13, Eq. (7.43), there results our Eq. (3). The "screening coefficient" multiplying

the temperature gradient term is defined in Eqs. (7.47) and (7.48). The "thermody-

namic forces" , A and A2 , needed in Eq. (7.43) are defined in Eqs. (7.17) and (7.16),

respectively.

Ib. Neoclassical Theory for Molybdenum

Molybdenum is a trace impurity in the Pfirsch-Schliiter regime. The case of such a

trace impurity in a plasma containing a main impurity has been worked out in Reference

13, Eq. (6.129). Because of the large mass ratio between molybdenum and carbon, these

impurities are "weakly equilibrated" parallel to the field lines. Following the notation of

Reference 13 (T=Mo), the flux for the trace impurity is expressed as

F = -DTn.T f nTVT, (A.1)

Inside 4 cm, VT/DT can be well approximated by including only the effects of n'- upon

the molybdenum flux, i.e.

VT L +L 2 ) ZTT'C (A.2)
DTiL, Zc nc
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Letting A T- , which is shown in Figure A.1, the FT = 0 solution of (A.1) can

then be found by numerical integration. If, however, A(r) is approximated by its mean value

A (for Or-4 cm), one immediately obtains Eq. (7) of the main text. It is worthwhile to

note that the dashed curve of Figure 3b includes all the terms of Eq. 6.129 (i.e. it includes

the effects due to n' 1 and T', as well as that due to nC). However, for r<4 cm, this result

differs only slightly from the Taylor-like solution,16 1.e. Equation (7).
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Appendix II

Effect of Impurity Peaking on Current Density Evolution

Experimentally the sawtooth period is observed to lengthen after the large pellet is

injected and impurity peaking is taking place. The diffusion equation for the current

density is

aj 118 .
- - r -/ (1)

&t po r49r Or r

where for our case of interest the Spitzer resistivity il can be written as

Z.ff (r, t) T, (r, t)
77 = ?70 -3,/2 (2)

Te (r, t) T, (0, t)

(Henceforth we will drop 0 and let T, = Te. Also, we drop the subscript on Zeff.

Equation (1) becomes

Oj _10 Oj 10 0 (3)n- r77-j+ [--r-a71 + a097(3)
,t rOr or r Or .9ror

Term I is a standard diffusion term and can only flatten j. Term 11 leads to temporal

growth or damping of j depending on the sign of the second derivative of the resistivity.

This describes the well known thermal instability part of the sawtooth process in a clean

plasma. Term III can also contribute to growth or damping depending on the sign of

the gradients. To analyze this furthur in a quantitative way, take T,-3 /2 = e /r and

Z = Zoe,2 ,Z (as is experimentally justified inside 7 cm), where rT and rz are the profile
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widths of T and Z, respectively. (For our experimental conditions following the pellet. only

rz has a significant time dependence.) Then from (2)

7 = Zo (t)e-~u" , where I= 1 - 1 (4)
Z r r T

With impurity peaking experiments, r2 < r2 and w- 2  0

Without peaking, w 2  -r < 0, which is the standard case of a clean plasma. Inerting

(4) in (3) yields

1 dj 1 a dj 41 r2  oj 2r
__--- - j[ -I1- --- ] -- - (5)

Zo (t) &t r ar Or 2  2 O\r u, 2

This indicates that inside ro w(t) the second term now produces damping, and outside

ro = u?(t), it produces growth. The third term now produces further growth where 9 is
Br

negative and further damping where 2 is positive. Thus hollow current density profiles
ar

can arise, thereby dramatically changing qo. Furthermore, such profiles can have a strong

stabilizing influence on the sawtooth precursor whose growth rate depends on 1 at q(= 1,

thus lengthening the sawtooth period.
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Fig. 1 (a) X-ray spectral efficiencies for arrays A and B. The low-energy response results

from 10.0 mg/cm2 Be for A; and from 10.0 mg/cm2 Be plus 30.4 mg/cm 2 C for B.

The high-energy response results from the finite detector thickness (23.3 mg/cm 2 Si).

(b) Array-B power functions for the hydrogen (H) and carbon (C) x-ray continua.

Recombination (i) and bremsstrahlung (ii) components of carbon are individually

depicted, the former dominating for T. < 1.3 keV [units of erg-cm 3/s; vertical scale

in logio]. All calculations of the continua include appropriate Gaunt corrections. 9
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Fig. 2 (a) Several x-ray signals for adjacent array-A detectors viewing chords separated by

1.7 cm (shot # 25). The top signal corresponds to the center-viewing detector. The

pellet enters the plasma at about 223 ms; the giant impurity disruption (G.I.D.) occurs

at about 259 ms [units of nano-amps (nA)]. (b) Same as (a), but time-expanded about

the G.I.D; the arrows indicate times of analysis for all subsequent figures. (c) Absolute

array-A x-ray emissivities just before the pellet (dashed line), and just before (257.5

ms) and after (259.3 ms) the G.I.D. (solid lines) [units of 10 erg/(cm3 -s)].
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Fig. 3 (a) Experimental carbon density profiles just before (i) and just after (ii) the giant

impurity disruption (G.I.D.), at the times indicated in Fig. 2b [units of 1013 cm .

Outside of - 6.5 cm. the impurity concentrations increase. The dashed curve is wih

asymptotic equilibrium prediction. (b) Same as for (a), but for molybdenum iuiiits

of 109 cm-3 . (c) Corresponding n, profiles [units of 1014 cM-3]. (d) CorrespoxidiTIi

T, profiles [units of keV1 . (e) Corresponding nH profiles [units of 1014 cm 3 '. .

Corresponding Spitzer conductivity profiles [units of 105 (ohm-cm)~ 1]. The realtm

error in the conductivity profile is 5%, the absolute error -15%.
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Fig. 4 (a) Array-A pre (.) and post (c) x-ray "brightness" data just before and just after

the giant impurity disruption (G.I.D.) of Fig. 2. The lines are from "reconstructing"

models of the x-emission, as described in the text [units of nano-amps (nA)[. (b) Same

as (a), but for array B. [The relative error in all x-ray data points is ~5%; the absolute

~ error of the entire data set (A&B) is ~10%. The noise level of each data point,

-0.5 nA,T is significantly smaller than the signals.]
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Fig. Al. The function A, used in obtaining the Taylor-like solution (Equation 7) for the molyb

denum asymptotic profile. In Equation (7), A is the mean value between 0 and 4

cm.
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Appendix II

Effect of Impurity Peaking on Current Density Evolution

Experimentally the sawtooth period is observed to lengthen after the large pellet is

injected and impurity peaking is taking place. The diffusion equation for the current

density is

Oj 110 0
-=- - -r -7j (1)8t po r9r Or

where for our case of interest the Spitzer resistivity 77 can be written as

Z _ _ t) Te (rt)
f = f ,t) Z =/2 (2)

Tes/ rt) Te (0, t)

(Henceforth we will drop and let Te Te. Also, we drop the subscript on Zff.

Equation (1) becomes

Oj 10 a j 10 a aj r1
=- r?7-+3 --- r--7j+ (3)09 rOr Or rOr Or 4rOr

Term I is a standard diffusion term and can only flat ten j. Term 11 leads to temporal

growth or damping of j depending on the sign of the second derivative of the resistivity.

This describes the well known thermal instability part of the sawtooth process in a clean

plasma. Term III can also contribute to growth or damping depending on the sign of

the gradients. To analyze this furthur in a quantitative way, take T,3/2 2 /4 and

Z = Ze ,0 & 2 /4 (as is experimentally justified inside 7 cm), where rT and rz are the profile
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Fig. 1 (a) X-ray spectral efficiencies for arrays A and B. The low-energy response results

from 10.0 mg/cm 2 Be for A; and from 10.0 mg/cm 2 Be plus 30.4 mg/cm 2 C for B.

The high-energy response results from the finite detector thickness (23.3 mg/cm 2 Si).

(b) Array-B power functions for the hydrogen (H) and carbon (C) x-ray continua.

Recombination (i) and bremsstrahlung (ii) components of carbon are individually

depicted, the former dominating for T. < 1.3 keV [units of erg-cm 3/s; vertical scale

in loglo]. All calculations of the continua include appropriate Gaunt corrections.9
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Fig. 2 (a) Several x-ray signals for adjacent array-A detectors viewing chords separated by

1.7 cm (shot # 25). The top signal corresponds to the center-viewing detector. The

pellet enters the plasma at about 223 ms; the giant impurity disruption (G.I.D.) occurs

at about 259 ms [units of nano-amps (nA)]. (b) Same as (a), but time-expanded about

the G.I.D; the arrows indicate times of analysis for all subsequent figures. (c) Absolute

array-A x-ray emissivities just before the pellet (dashed line), and just before (257.5

ms) and after (259.3 ma) the G.I.D. (solid lines) [units of 106 erg/(cm 3 a) 1.
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Fig. 3 (a) Experimental carbon density profiles just before (i) and just after (ii) the giant

impurity disruption (G.I.D.), at the times indicated in Fig. 2b [units of 1013 cm-3].

Outside of - 6.5 cm. the impurity concentrations increase. The dashed curve is the

asymptotic equilibrium prediction. (b) Same as for (a), but for molybdenum [units

of 109 Cn-3-. (c) Corresponding n, profiles [units of 1014 Cm-31. (d) Corresponding

T, profiles 'units of keVY. (e) Corresponding nH profiles [units of 1014 cm-3. (f)

Corresponding Spitzer conductivity profiles [units of 105 (ohm-cm)~']. The relative

error in the conductivity profile is p5%, the absolute error < 15%.
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Fig. 4 (a) Array-A pre () and post (c) x-ray "brightness" data just before and just after

the giant impurity disruption (G.I.D.) of Fig. 2. The lines are from "reconstructing"

models of the x-emission, as described in the text [units of nano-amps (nA)]. (b) Same

as (a), but for array B. [The relative error in all x-ray data points is ~ 5%; the absolute

error of the entire data set (A&B) is ~ 10%. The noise level of each data point,

-0.5 nA,7 is significantly smaller than the signals.]
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Fig. Al. The function A, used in obtaining the Taylor-like solution (Equation 7) for the molyb-

denum asymptotic profile. In Equation (7), A is the mean value between 0 and I

cm.
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