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Abstract

While early work on the density limit in tokamaks from the ORMAK [1] and DITE (2,3]

groups has held up well over the years, results from recent experiments and the

requirements for extrapolation to future experiments have prompted a new look at this

subject. There are many physical processes which limit attainable densities in tokamak

plasmas. These processes include 1) radiation from low Z impurities, convection, charge

exchange and other losses at the plasma edge, 2) radiation from low or high Z impurities

in the plasma core, 3) deterioration of particle confinement in the plasma core, and 4)

inadequate fueling, often exacerbated by strong pumping by walls, limiters, or divertors.

Depending upon the circumstances, any of these processes may dominate and determine

a density limit. In general, these mechanisms do not show the same dependence on

plasma parameters. The multiplicity of processes which lead to density limits with a variety

of scaling, has led to some confusion when comparing density limits from different

machines. In this paper we attempt to sort out these various limits and extend the scaling
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law for one of them to include the important effects of plasma shaping, namely that

iK, = x 7 where n, is the line average electron density (1020 / M3 ), x is the plasma

elongation and 7 ( MA / M2 ) is the average plasma current density, defined as the total

current divided by the plasma cross sectional area. In a sense this is the most important

density limit since, together with the q limit, it yields the maximum operating density for a

tokamak plasma. We show that this limit may be caused by a dramatic deterioration in

core particle confinement occurring as the density limit boundary is approached. This

mechanism can help explain the disruptions and marfes that are associated with the

density limit.

1. Introduction

In exploring the operating regime of a tokamak, researchers have always found a limit

in the maximum density that they could achieve. Attempts to raise the density beyond this

limit result in a disruption of the discharge. The calue of the density limit is found to vary

from machine to machine and with operating conditions in a systematic way. In this paper,

we will consider several distinct limits. The first is the familiar Murakami limit with

n, < BT/R . The coefficient m is not constant, but increases with input power and with

plasma purity. A second and distinct limit is apparent when density is plotted against

plasma current or (when these are normalized to toroidal field) as Murakami number,

n, RIB vsl/q . This is the DITE (or Hugill) plot and we will use the term "Hugill limit" to

refer to density limits with n, - 4 [4]. Of course, experimental and theoretical

investigations of these limits do not always yield such clear and simple scalings. We will

suggest in a later section, that it might be more appropriate to distinguish between the

limits by their underlying mechanism. That is, we would use "Murakami limit" to refer to

operational limits imposed by plasma radiation and "Hugill limit" to refer to limits imposed

by deterioration of particle confinement. For completeness we can include a third limit,
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associated with an MHD threshold phenomenon that was observed by Granetz on Alcator

C [5]. This behavior is not well understood, but leads to a density limit with n, - B2

Finally, there Is a density limit which is imposed by the fueling process itself. Gas puffing

alone is not always sufficient to reach the Murakami or Hugill limit. It is important to

understand that all the density limits must be obeyed; the operating space of a tokamak

will be limited by the minimum of the Murakami, Hugill, Granetz and fueling limits.

2. Scaling and Dependencies of the Density Limits

2.1. Murakaml Limit

The Murakami limit was first proposed as an empirical scaling for the highest density

achievable under any given discharge conditions. The BIR scaling brought together

results from a very wide range of machines working at density limits that varied over two

orders of magnitude. The scaling was never exact of course, and as experimenters refined

their techniques, particularly in the control of impurities, densities well above the original

limit were subsequently reached. This has given rise to use of the Murakami number,

which is simply the line averaged density divided by BT/R. This allowed the comparison of

density limits under different conditions, while normalizing out the strongest dependence.

The Murakami number was seen to increase as Zff approached 1 [6] and as additional

heating, in the form of neutral beams, was applied [3,7]. This density limit has been

attributed to a loss of balance between input and radiated power [1,8].

2.2. Hugill Limit

Additional insight into tokamak operating limits was obtained when plasma density

was plotted against plasma current (or in their normalized form as Murakami number vs

1/q ) for a large number of discharges [4]. The earliest plots of this kind are from DITE for

which data are shown in Fig. 1 [9]. Operational limits are determined from the boundaries

of data on these plots. Three important features can be seen in this figure [10,11]. First,
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there is a density limit proportional to plasma current; second, the proportionality constant

between maximum density and plasma current is not increased with auxiliary heating;

third, auxiliary heating allows the maximum density to be achieved at the higher plasma

currents. We can understand the data in Figure 1 as resulting from the superposition of the

limit on q ( q > 2 ) and two distinct density limits: a "Hugill" limit with nma c 1p

independent of input power, and a Murakami limit with nma independent of Ip but

strongly influenced by input power.

The operating space for all tokamaks shows these same general features. This is

shown in schematic form in Fig. 2 in which the various limits we have identified are

labeled. The use of the standard normalized axes, I, and the Murakami number allows

direct comparison among machines. Figure 3 shows these DITE plots with data for several

different tokamaks. For clarity, only the boundaries of experimentally accessible regions

are drawn instead of including data points from individual discharges. If all machines

showed the same Hugill density limit nmax = B/qR the lower boundary of each region

should coincide. Although to lowest order the chosen normalization does bring together

data from devices with widely varying parameters, it is clear from this figure that

substantial systematic differences between the devices remain. In particular we note that

machines capable of producing strongly shaped plasmas, reach the highest n,f/Ip . Of

course, differences between the density limits on various machines might be due to

differences in experimental technique, or to differences, from machine to machine, in the

physics that sets the density limit. Neither of these alternatives is very attractive since they

do not help us understand the physics of the limit nor do they allow us to extrapolate to

density limits on future machines. Fortunately, if past experience is a guide, the

explanation is that we simply do not have quite the right scaling expression.
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Under the assumption that a common cause is responsible for setting this density

limit on all machines, we can look for a scaling that can bring all the data into line. We can

B
begin by noting that the equation nmax - - is close, within a factor of two, of the

expression we are seeking and thus a first approximation, n - 1 . It should be pointed

out that there is no consensus in the literature on which "form" of q to use in plotting the

density limit. Various approximations of qg and qcylindrical are used along with expressions

5a 2 B
like q = IR , that are only correct for circular machines and in the limit of high aspect

ratio and low beta. If the plasma safety factor is important in the physics of the density

limit rather than simply a convenient normalization of the plasma current, then we would

expect qp to be the correct term to use. In Fig. 3 we have plotted data from Alcator C,

Dill, and PBX against qg . This is not the scaling we are looking for; qg does not seem to

be an important quantity with respect to the density limit.

By fitting the available data to very simple combinations of the machine parameters,

we arrive at an expression that does bring data from the various machines together,

!F= K 7

measured in 10 2 0/M 3 , K is the plasma elongation, and 7 is the average plasma density,

I4 area measured in MA/M 2 . Figs 4a-d are modified Hugill plots for several machines

showing the results of this scaling. They should be compared with figure 3. For elliptical

machines, this scaling for the density limit can be written as irmax = -9 and for high
na

5 Baspect ratio, low beta, circular machines it can be written as - x - . A few comments
n qR

on the simplicity of equation 1 are in order. It is almost certain that the dependence on

plasma size and elongation given by equation 1 are not exact, that additional

dependencies on shape parameters exist. By its nature, the density limit boundary can
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only be approximately defined. As the limit is approached, the plasma becomes

increasingly susceptible to disruption and data become sparser, so that quite aside from

ordinary errors in the measurement of experimental quantities, the definition of the

boundary is somewhat subjective. Data that would allow more precise calculation of

parametric dependencies are not easily obtained.

2.3 Fueling Related Limits

The importance of an adequate fuel source in reaching a density limit seems obvious

but is often overlooked (consider in fact, the density "limits" that were observed before the

technique of gas puffing was introduced.) As machines have become larger and denser,

the mean free path for low energy neutrals has become smaller when compared to minor

radius, and gas fueling has become less effective. This can be clearly seen in DITE plots

for JET and TFTR where ohmic, gas fueled plasmas are compared with those fueled by

pellet injection (Fig 5) [12,13]. Injection of high speed frozen hydrogen pellets introduces

fuel directly into the plasma core, avoiding the limitations associated with gas puffing. The

same effect can be achieved by fueling with neutral beams (Figs 6 [13]) which can yield

plasmas at the same densities as those with pellet fueling and ohmic heating. The higher

densities seen in this case have been attributed to the additional power that is added along

with the particles [13]. However if we consider JET discharges with RF heating that adds

no particles, these yield the same low densities as gas fueled ohmic plasmas. This was

explained as the effect of additional impurities introduced by the RF heating. If this were

the case, it would be expected that plasmas with RF and NBI would not reach the same

densities as NBI alone since the RF would add impurities in either case. This is

contradicted by the data, which shows the RF + NBI plasmas achieving the same densities

as NBI or pellet fueled discharges. Another clear example of a fueling related density limit

can be seen in data from Alcator C (Fig. 7). The highest densities obtainable for the

machine configured with carbon limiters and gas fueling are about half of those found with

6



molybdenum limiters. That this difference is due to deficient fueling can be seen by

observing that pellet fueled carbon limiter plasmas have the same density limit as those

with molybdenum. Presumably the strong pumping effect of carbon accounts for the

difference seen with gas fueling [14]. A similar effect probably accounts for the higher

densities reported on TFTR with helium gas when compared to hydrogen or deuterium [15,

16]. Limiters, walls, and divertors can all compete effectively with the plasma for hydrogen

fuel at the plasma edge.

2.4 Granetz Limit

For completeness we will identify an additional density limit associated with an MHD

threshold phenomenon. On Alcator C, low m coherent MHD oscillations were observed

when the line averaged density was raised above n, - B2 [5] Fig. 8. This limit did not

scale with plasma current over a wide range 2.7 < q < 4.7 MHD amplitude increased

rapidly for n > nc until, at densities about 40% above the MHD threshold, a disruptive

density limit was reached. This behavior has not been seen on other machines, however

this may be explained by later work that showed a significant size scaling with ne - a2 or

higher [12]. It is interesting to note that a strong degradation in impurity confinement was

correlated with the rise in MHD activity 1/r, - ( n - ne) 4 [18].

3. Physics of the Density Limits

The operating space for a tokamak is bounded in most cases by the occurrence of

major disruptions. It would be wrong of course, to look for the cause of operational limits

solely in the MHD equations (where electron density does not enter explicitly). It may be

useful to think of the destruction of the MHD equilibrium as the final (fatal) symptom of

some other underlying malady. For some time [1,8], excessive radiation has been

identified as the cause behind the density limit disruption. This is logical since radiated

power increases with density but Input power does not. As radiation losses increase, the
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plasma temperature profile and plasma current channel both shrink leading ultimately to

the loss of MHD stability. Several authors have derived expressions for a density limit

determined by this mechanism that are in rough agreement with experimental

measurements. Gibson [19], Ohyabu [20], Ashby [21], Wesson [22] and Roberts (23]

have calculated the conditions required for thermal instability and MHD collapse due to

impurities radiating in thin shells at the plasma boundary. Ashby and Hughs find for

example,

max B Zf )1/2 1nm. -qi Zg -1 T, 12 .( 2)

Perkins and Hulse [24] calculate a density limit by requiring power balance between input

and radiated power in the plasma core. The expressions they derive can be written as

nmax' (Zeff 1 )v 2  (3)

which agrees with Murakami's scaling and mechanism. Observations would appear to

support these models; the highest densities are achieved with auxiliary heating and in

clean discharges (low Zeff ).

Closer inspection of the data reveals some problems with this picture. While the

higher densities are reached at higher input power, the slope of nma vs I, is not much

affected (Figs 1, 4), at least for plasmas with adequate fueling (see discussion of fueling

limits). This was recognized by Hugill [10,11], who suggested that radiation may not be

responsible for this density limit. For relatively clean plasmas, this boundary is not

dependent on impurity level either. In Fig. 9, the ratio of measured density to the density

limit, if = K 7 is plotted against Zff and shows that the density limit is accessible for Zff

up to 1.5 and perhaps as high as Zff = 2. Data from ISX-B (Fig. 10) show a similar result
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when discharges from gettered and ungettered vacuum chambers are compared. In

contrast, the theoretical treatments divege as Zff -+ 1 limited only by hydrogen

bremsstrahlung, which is overwhelmed by impurity radiation at Zff in the outer regions of

the plasma at Zeff only slightly above 1.

Results from a series of pellet fueling experiments on Alcator C [25] suggest an

alternate approach to this problem. In these experiments, single pellets were injected into

plasmas with relatively low plasma current. The density increased very quickly at the time

of injection, .27 sec, for all discharges and the rate of density decay was monitored (Fig.

11). As the plasma current was lowered, shot to shot, the decay time decreased

dramatically. Calculations summarized in table 1 show that the density limit, established

with gas fueling, was greatly exceeded. These discharges did not disrupt however, but

simply "shed" particles in excess of the limit. The density decay time is not the same as

particle confinement time but is closely related. At steady state the particle confinement is

given by the ratio of density to source, however in those cases where the time derivative

dominates the source term, the density decay time will equal the particle confinement time,

r, . Unlike the conventionally defined global r, which is dominated by the large particle

fluxes in the plasmas edge, this confinement time is characteristic of the plasma core. It is

worth pointing out that no decline in energy confinement accompanied the drop in particle

confinement except the convective loss directly associated with the density decay. Figure

12 shows the results when the density decay time is plotted vs J/n for a larger collection

of shots. The precipitous drop in particle confinement occurs in the neighborhood of the

previously derived density limit. The same data is plotted in another form in Fig. 13, which

is a conventional DITE plot where data from pellet shots with fast decay rates are shown

as solid circles. Table 1 tabulates data from Fig. 11. Shown for each shot, are the plasma

current, the ratio of the maximum density for each discharge to the density limit, the
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calculated density limit, K 7 and the density decay time from a fit to the curve (which is

necessarily taken after the peak of the density).

Table I

Ip npea/I 7 numit ( cm-3 ) z, (msec)

370kA 1.2 4.3 x 101 51
220kA 2.0 2.6 x 1014 19
220kA 2.4 2.1 x 1014 7

If the deterioration of particle confinement described above is a general feature of

tokamak discharges it could be the prime mover behind the density limit. (At the least it

allows us to push the chain of cause and effect back one more step. We need to add here

that while this explanation may explain various aspects of the density limit, the authors

offer no insight into the physical mechanism that might lie behind the transport

deterioration.) This does not mean that radiation does not play an important role in the

n - Ip limit. With deteriorating confinement, it takes an ever larger source of fuel for each

incremental increase in density as a machine is pushed towards the limit. This will result in

higher edge densities, more radiation, and lower edge temperatures. Ultimately the current

profile and MHD stability are sufficiently altered to cause a major disruption. Of course,

even in the absence of radiation, convective, ionization, and charge exchange losses

would eventually lead to the same result. (Allen [26] has reported that increased energy

transport in the plasma periphery plays a role in density limit disruptions in the DITE

tokamak.) With pellet fueling, it is possible to raise the central density without affecting the

edge, thus the limit can be exceeded without disruption, revealing the transport

deterioration by itself.

We would not want to claim that deterioration of particle confinement is the only

mechanism for density limit disruptions. We have already seen that the balance between

radiation and input power can determine how much of the n - I curve is accessible. For

sufficiently dirty plasmas, radiation alone can cause the operating range to contract from
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all the operational boundaries [3,24]. We have previously distinguished between two

density limits based on their scaling; perhaps It would be better to make the distinction

based on mechanism. The Murakami limit would apply to the limit, whatever its exact

scaling on BT , Ip and size, where radiation was the principle cause, and the Hugill limit

would apply to the limit based on deterioration of particle confinement. The mechanism

that we are proposing allows us to connect the Hugill limit to the fueling limit as well. Since

the plasma density results from the balance of source and loss, deterioration of particle

confinement with n/IJ can act in tandem with processes which reduce the particle source.

This may also explain the observation that fueling limits often show the n, - I, scaling.

The same mechanism we propose to explain the Hugill density limit may underlie the

appearance of Marfes [28]. Marfes are bands of very high density, low temperature,

poloidally asymmetric plasma that appear at the periphery of tokamak plasmas as the

density limit is approached. Typically, Marfes occur at 60 - 80% of the density limit. They

are believed to be a thermal condensation phenomenon [19, 29] localized by neoclassical

flows in the edge plasma. If our new understanding of the density limit is correct, Marfes

can be thought of as the first symptom of the deteriorating particle confinement. As particle

confinement falls, with energy confinement fixed, the ratio of power flux to particle flux at

the edge falls as well. This means there will be more particles at the edge and they will

have lower average energy. These are just the right starting conditions for a thermal

condensation. Of course details of the edge profiles, impurity content, and plasma flows

will all affect the onset and characteristics of the Marfe.

4. Summary

We have distinguished between several different density limits. The first, the

Murakami limit, is caused by an unfavorab'e balance between input and radiated power

and scales as n - Br/R for ohmically heated plasmas. The same physics could lead to

11



dependence on plasma current at lower densities. It is strongly affected by plasma purity

and of course by auxiliary or alpha heating. With sufficient input power the Murakami limit

can be pushed to very high values. The second, which we have called the Hugill limit,

depends principally on current density and plasma cross section and may be due to a

degradation in particle confinement time as the density limit is approached. Scaling this

limit as Nl = K 7 brings much of the available data base into line. In a sense it is the most

important density limit, since together with the disruptive limit on plasma current ( qq > 2 ),

it defines the operating space for a tokamak and will yield the highest steady state density

achievable on a given machine. In the case of large and/or high density tokamaks or in the

presence of processes which compete with the plasma for fuel, this limit may be difficult to

reach. With particle confinement declining with n/J, any decrease in particle source will

result in lower densities. Inadequate fueling represents a third limit on density. All of the

above limits must be obeyed; the operating space of a tokamak will be limited by the

minimum of the Murakami, Hugill, and fueling limits.
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