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ABSTRACT

Stimulated emission by an unaccelerated electron beam propagating through

a periodically modulated dielectric is studied. The laser gain in the low

gain regime is calculated for the case of a cold, tenuous electron beam by ap-

plying the Einstein coefficient technique in the classical limit 1+4O. In the

high gain, strong pump regime equations for the evolution of the electron

beam dynamics and of the radiation are developed using a self-consistent,

one dimensional model for the interaction. Analytic calculations of the

small signal gain, and numerical computations of the nonlinear saturation

characteristics are presented.
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I. INTRODUCTION

In a conventional free electron laser, (FEL), coherent electromag-

netic radiation is produced by subjecting an electron beam in vacuum to a

transverse periodic "wiggler" magnetic field which induces transverse period-

ic accelerations on the electrons. The undulating electron beam interacts

with an incident electromagnetic wave, thereby generating an axially directed

ponderomotive force which bunches the electrons. Subsequent interaction of

the bunched beam with the incident wave leads to energy growth of the wave at

the expense of the beam kinetic energy.

In this paper we examine an alternate concept in which an unaccelerated

electron beam traveling at constant velocity traverses through, or passes in

the immediate vicinity of a periodically modulated dielectric medium. The

arrangement is illustrated schematically in Fig. 1. An electron beam travel-

ing along the z axis with velocity v,, traverses a dielectric whose dielectric

coefficient K(w,z) undergoes periodic oscillations of the form

K(w,z) = Ko(w) + AK(w)cos(k wz) (1)

where AK(<<Ko) is the modulation amplitude and kw= 2 /z w is the "wiggler" wave-

number, with tw as the period. The dielectric coefficient may or may not be a

function of the radiation frequency w.

An electromagnetic wave

t = toexp[jwt - jkix - jfic1(z)dz] (2)

travels through the medium with the propagation vector t=xki+ifKdz directed at

an angle e to the electron beam velocity. Such a wave may be a transverse

electromagnetic (TEM) wave in an unbounded medium or a transverse magnetic

(TM) waveguide mode. In either case with e60, the axial component of t now

provides the "ponderomotive" force which bunches the electron beam and leads

to wave growth.

This FEL mechanism is the stimulated manifestation of the incoherent,

spontaneous "resonance transition radiation" studied by many workers."
8
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For that reason, and for the sake of brevity, we shall refer to it henceforth

as the "Transition FEL". However, it is quite unlike the stimulated Cerenkov

FEL 9- 6 in which an electron beam passes through or near a homogeneous dielec-

tric medium. Indeed, the well-known Cerenkov condition (v1/c)K cose=1(Ko>1)

need not be satisfied in the Transition FEL, and stimulated emission can be

achieved for dielectrics for which Ko(w) is both greater and smaller than unity.

The latter affords the possibility of generating coherent electromagnetic radi-

ation by passing an electron beam through a modulated electron plasma whose

(unperturbed) dielectric coefficient is given by

Ko(w) = 1 - (wp/W) (3)

where op=(Ne/moeo)7 is the electron plasma frequency of the medium. Such a mo-

dulated plasma could be created artificially, for example, by microwave or

laser breakdown of a low pressure un-ionized gas in a quasioptical resonator;

or by use of alternating slabs of material and operation at frequencies that

exceed atomic frequencies for the materials in question. Indeed, use of such

periodic stacks of material has led Piestrup and Finman19 to examine propects

for stimulated x-ray emission from such a system. Our analysis is a follow

up on their work, but differs both in technique and in some of the results de-

rived.

In section II of this paper we discuss the frequency characteristics of

the Transition FEL. In section III we obtain the gain in the low gain regime

for the case of a cold, tenuous electron beam. This gain is calculated by ap-

plying the Einstein coefficient technique in the classical limit h-->. In the

high gain strong pump regime discussed in section IV, we develop equations

for the electron beam dynamics and the radiation field using a self-consis-

tent, one dimehsional model for the interaction. Analytic calculations of the

small signal gain, as well as numerical computations of the nonlinear satura-

tion characteristics are presented. Section V summarizes the results.
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II. RADIATION FREQUENCY

The emission from a Transition FEL results from the interaction between

the ponderomotive wave on the beam,

W= (k11 + nkw) 81 C (4)

with kw as the dielectric periodicity, and an electromagnetic wave

W2 K(w,z) = (k' + k2)c2 = k c2C+ W 2Ko(w)sin 2e (5)

where a,=v11/c is the normalized electron beam velocity, and n=O, ±1, ±2 ... is

the harmonic number of the interaction. Maximum gain occurs near the frequen-

cy w corresponding to crossing points of the above waves. Eliminating k,, be-

tween Eqs. (4) and (5), and setting K(z)=Ko subject to the assumption that

AK/K<<1, yields the radiation frequency

nkw 611c
"3= w(6)

1 - '/Kow) cose

Equations (4) and (5) are similar to those encountered in the conventional

FEL' using magnetic wigglers, for which n is typically unity, K0=1 and e=0.

The existence of the higher harmonics in the ponderomotive wave of Eq. (4)

comes about, as we shall see later, from the periodicity of the wavenumber

K 1(z). The axial phase velocity w/k1 of the wave is greater than the electron

beam velocity v,, just as it is in a conventional FEL driven by a magnetic wig-

gler. This is unlike the Cerenkov type 6 of FEL which must satisfy the reso-

nance condition w/k1 =v,. In fact, the Cerenkov condition for a homogeneous

medium is recovered by setting kw in Eq. (6) equal to zero, with the result

that %AiKcos6=1.

It is clear from Eq. (6) that in order to achieve high radiation frequen-

cies, the electrons must have relativistic velocities with %Z1. In this case

also the spontaneously4-8 emitted transition radiation is directed into a nar-

row cone subtending an angle e=l/y with the z axis, with y=(1-3)~ =
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(1+eV/moc2 ) as the relativistic energy factor, and V the beam voltage.

The FEL frequency tuning characteristics as a function of electron beam

energy depend sensitively on the dispersion characteristics of the dielectric,

and on whether KO is greater or less than unity. We consider two cases.

First we take KO to be dispersionless and slightly greater than unity as is

appropriate, say, to an un-ionized gas at frequencies well removed from atomic

resonances. Writing Ko-1=a<<1, and choosing the angle of observation e=

sin-1(1/y), one finds from Eq. (6) that

nkwaIicy 2

1 - ( 11y)2(a/2)

which is shown plotted in Fig. 2a for a=2x10-3. The frequency scaling illus-

trates the _y 2 upshift familiar to conventional FEL's, but differs from the
V

Cerenkov FEL whose frequency generally decreases 7 with increasing y.

As our second example, we take KO(w) of Eq. (3), which refers to the highly

dispersive electron plasmas. Inserting Eq. (3) in Eq. (6) and solving for the

frequency w gives

nk ces 2(1-a2COs26)

_ = _ w"_& [ cose 1 - (1 s (8)

(1-sacos 2e) (nkwc, C) 2

Here the FEL radiation frequency exhibits two branches, a high frequency branch

corresponding to the positive sign, and a low frequency branch corresponding to

the negative sign. Moreover, there exists a minimum electron beam energy y be-

low which no FEL interaction can take place. These features are illustrated

in Fig. 3a which is plotted for the case e=sin-'(1/y) and (wp /nkwc) 2 =300.

The reason for the two roots and the low energy cutoff are due to the dis-

persive nature of Ka(w), as a result of which the electromagnetic wave of Eq.

(5) now becomes '
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W2 = (k11c/cose) 2 + W2 (9)
p

which shows that no propagation can occur at frequencies w<w . The ponderomo-

tive wave given by the straight line relationship of Eq. (4) can now intersect

the electromagnetic wave of Eq. (9) at two points. One then finds that at

high energy y, the two interacting waves exhibit phase synchronism at two

well separated frequencies, one low and the other high. As y is decreased the

frequency separation decreases until a single, tangential intersection occurs

corresponding to a minimum beam energy below which Eqs. (4) and (9) have no

solution. These manifestations are similar to those also observed in conven-

tional 20,21 FEL's.

The FEL gain is maximum near the tangential intersection discussed above

(see section III). At this point then, and with e=sin-1(1/y), it follows from

Eq. (8) that

nkwcolly 2  (10)
W (10)

1+ o2 ( + o2)1
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III. FEL GAIN IN THE LOW GAIN REGIME

The power gain G =AP/P. (change in output power divided by the total in-

put power) can be conveniently calculated in the low gain regime (G<1) by

means of the classical (t-h+O) form of the Einstein coefficient method, which

states that,2 2

8 r 3c2L n (p)[f(p) - f(p)]dp, . (11)
G = K o ( M h o 3 1 Wo P I ~ f -* ) - f

Here G>O signifies power gain, and G<O, power loss; n =(d2W/dwdoT) is the rate

of spontaneous energy emission per unit frequency interval dw, per unit solid

angle do, by one electron radiating for a time T; f( ') and f(-) are the

equilibrium momentum distribution functions for the beam electrons, with p-

and P as the upper and lower momentum states associated with the transition;

and d3p' is a volume element in momentum space. L is the interaction length.

In the classical limit, we can expand f(p') around f(p) in a Taylor series,

retain the first two terms, and noting that d3p--+d3p, obtain from Eq. (11)

G = 8C3 2 nL 3f(p) -f( d3p (12)

where Ap = ('-p) must be computed for the problem under investigation. Momen-

tum conservation in a periodic system with periodicity k and no external

fields other than the wiggler field requires that

Ap = (' - ) =t + nw) (13)

whichleads to the sought-after classical form for the gain applicable to a

variety of FEL systems:

8T3c2 L n(p) 4 -( + nKw) d3p (14)

(W))3 JK0 ( jo ap

We note in passing that on solving Eq. (13) together with the energy conserva-

tion equation

E - E = thw (15)
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where E is the total relativistic plus rest mass energy, yields,

w = (Ir +nik,) - c , (1T-O) (16)

which is just the vector form of the pondermotive wave of Eq. (4).

For present purposes we shall assume that the electrons have zero temper-

ature in all directions, as a result of which the distribution function is a

delta function distribution of the form,

N

f(p11,p1) = 62 p ~ p01)6(p _ p0ll. (17)

Here Nb is the number density of beam electrons, p,10=ymoo11c is the axial elec-

tron momentum and p,=ymicthe transverse momentum. Inserting Eq. (17) in Eq.

(14), noting that for our cylindrically symmetric geometry d3p=2rpjdpadp1 , and

integrating by parts gives

8r3c2NbLI Fan (pi,,pi)] -an(p I,p±)A
G = - -(ki + kw) ai + ki [ j (18)

which states that the FEL gain is proportional to the derivative with respect

to the momentum of the spontaneous emission rate. This is a form of Madey's

theorem.23  Thus, we see that this theorem is a.special application to free

electron lasers of the Einstein coefficient method in its classical limit.

The more general Eqs. (11) to (14), which allow for finite electron beam tem-

perature, have also been applied to the cyclotron maser (gyrotron) instabil-

ity, 2 2 ,2 4 ,25  the conventional FELs excited by magnetic wigglers26,27 and to

collisional instabilities.22,28,29

To complete the calculation of G we must derive the classical rate of

spontaneous emission rate n. This is accomplished by means of the equation30
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T/2 2

1 e2w2  f -jot+j fe dz
16 e 2W2 J q x (qxj)e dt (19 )

T167r3 eoKo (W)C2

-T/2

where q=l/JIZ and where the term exp[jfr11dz] is derived from Eqs. (1) and (5)

followed by a series - expansion in powers of AK/K:

exp[jfK11dz] = Jn(Q)exp jz /KOT~)cose + nk (20)
n=-00nc j

with

Q = [AK(w)] (21)
2kwciKo(W)cose

Inserting Eq. (20) in Eq. (19), setting z=o,,ct and integrating over time gives

C e2 W2 / T S in 2e sin 2 X
= J2() (22)

n=-c 16Tr 3 eOc n X
n

where

X [ - watiVKo(w) cose - nkwalic] (23)

is the "detuning parameter"31 and T=L/ ,,c is the time the beam spends in the

interaction region (L equals the system length).

The intensity of spontaneous emission is maximum whenever X-+0. The case

n=0 refers to Cerenkov radiation in a periodic dielectric medium. For a homo-

geneous, unmodulated dielectric, AK=0, kw=O, Q=0 and

e 22/Ko() Ta2sin 2e sin 2X

c 16r 3ecXc (24)

with Xc=(wT/2)(1-ajvKo~w) cose), which is the familiar expression for sponta-

neous Cerenkov radiation.
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On substituting Eq. (22) in Eq. (18), performing the differentiation with

respect to 4. and requiring that L>>401 c/w (interaction time >> period of

the wave) yields the FEL gain for a length L of interaction region:

c o W2Lsin2e sin 2X
G = pb J2(Q) dn (25)

n=-, 4y al/Kol()c 3  d n X

where wpb=(Nbe2/moeo) is the nonrelativistic beam plasma frequency. This result

differs primarily from that of Ref. 19 in that the latter does not contain the

Bessel function. Since J n(Q) for the problems of interest is typically less than

%).1 our gain is substantially less than that predicted by the previous authors.

Equation (25) contains gain information for several special cases. With

n=O, it refers to the gain of a Cerenkov FEL in a periodic dielectric; and

with AK=Q=kw=O, it refers to the Cerenkov gain in a homogeneous, unmodulated

dielectric. Cases for which n=1,2,3 .... refer to the fundamental and higher

harmonics of the Transition FEL of present interest. Maximum gain occurs when

the detuning parameter X n=1. 303 for which value the quantity (d/dXn) (sin 2Xn/X2)

has its maximum value equal to 0.5402. From Eq. (25) the maximum gain associ-

ated with the nth harmonic can then be written in terms of the electron beam

current I and the electron beam cross sectional area ab=nr2 as

Gn(max) = 0.8485 a)[ IFnWc) sin e n32 (Q)

(26)
I k

= 0.8485 - 2

where IA=47e omoc 3/e=17,000 A is the "Alfven current". We see that the gain is

proportional to the electron beam current and the interaction length L cubed.
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The term in the large brackets denoted a' is a measure of the effective wig-T

gler strength of the Transition FEL. The value of aT as a function of the

energy variable y is shown plotted in Figs.2b and 3b under the assumption that

sine=1/y. Figure 2b refers to the case of a modulated nondispersive medium,

and Fig. 3b to a plasma medium. In Fig. 2b we assume that the modulated di-

electric coefficient of Eq. (1) is given by

K = 1 + a + a(cosk wz) (27)

with a=2x10-3, and in Fig. 3b we assume that it is given by,

K = 1- ( /)2 (W/w)cos (kwz) (28)

with w normalized so that (Wp/nkwc)2=300. At the maximum gain frequency w

given by Eq. (10), aT= nlin(n/2), and is independent of the detailed physical

parameters of the system; for n=1, aT=0.24 (see Fig.3b).

It is instructive to compare the above results for the gain of the Tran-

sition FEL with the gain of a conventional FEL employing a magnetic wiggler,

and operating in the so-called "low gain Compton regime":'

GFEL = 0.8485 b A 1 [FEL] (29)

where aFEL= (ow/kwc), and Pw=eBw /mo is the nonrelativistic cyclotron frequency

associated with a wiggler magnetic field of amplitude Bw*

Equations (26) and (29) differ only in the form of the respective "wig-

gler amplitude" coefficients aT and a FEL* The value of aT seen in Figs.

2b and 3b is typically in the range -0.1 to ,1. This is to be compared with

a FEL of operating' FEL's, having 2s5ws10cm, and 2sBws8kG, for which aw is

typically in the range of 1 to 2. Therefore, for periodicities of a few centi-

meters, the gain of conventional FELs will be generally larger than for the

Transverse FEL.
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However, short periodicity wiggler systems, 32' 33' 3 4 which can attain

high frequencies with moderate beam energies, are better suited to the Transi-

tion FEL. The reason is that whereas aT is insensitive to the value of tw,

aFEL varies as P. As a result, the gain-frequency product Gw, which should

generally be as large as possible, varies as -1/2 for the Transition FEL butw

is independent of iw for the conventional FEL. One then finds that for period-

icities zw s1cm the gain of the Transition FEL exceeds the gains of FEL's using

magnetic or electromagnetic wigglers.32,33,34



- 13 -

IV. GAIN AND NONLINEAR SATURATION CHARACTERISTICS

IN THE STRONG PUMP,. HIGH GAIN REGIME

In this section we model the self-consistent generation of transition ra-

diation by an electron beam in the high gain and/or nonlinear regimes. Our

analysis follows that of Ref. 35 used in conventional free electron lasers.

We assume that the beam is highly relativistic 1/y=(1-Q)i<<1 and suffici-

ently tenuous so that space charge forces are small compared with the pondero-

motive force of the wiggler.

The electron energy evolves according to the energy conservation equa-

tion

=,- [ e v (30)
dt ~moc 

Here v is the electron velocity and E the self-consistent electric field given

by

E= E (z)J (Q)exp ikx + j(zkw +k11)z - t] +c. (31)

where Q is defined by Eq. (21), k1=(w/c)/K(0(w) cose, and E (z) are slowly vary-

ing complex amplitudes which generally satisfy the inequality dE, /dz<<kE,.

In the absence of the electron beam all the amplitudes E are equal to one

another and are constant in time.

In order to reduce our equations to one dimension, we assume that the ex-

ponential factor exp(jkix) does not vary appreciably over the beam radius re.

This implies that kr e=(k/Ko(w) sine)r e. With e=1/y, this means that

resyx/ 2r/Ko(w) where X is the radiation wavelength.

Inserting Eq. (31) in Eq. (30), and changing from t to z as the indepen-

dent variable yields
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dy/dz = - sine Enexp(jp) + C-1

+ I sine [ Eexp j + jzk z + c-c (32)2 ;Oi t I ~ w j C

where E is a normalized electric field amplitude defined as

(e/moc2) JP(Q) E . (33)

The phase p evolves according to

= nk, + kt - (w/c 1) = - 2X n/L (34)

where X is the detuning parameter given by Eq. (23). Since the electron beam

is assumed to be resonant with only the nth harmonic, we average Eq. (32) over

the periodicity tw* This eliminates the rapidly varying second term on the

right-hand side of Eq. (32) with the result that,

dy/dz = - sine Enexp(j*) + cc. (35)

The evolution of the radiation field is found by inserting Eq. (31) in

the wave equation

vx(vxI) - (w/c)2K(w,z)t =jwyo (36)

where K(w,z) is given by Eq. (1). As a result,

[ 2j (Pkw + k11) .jz jexp [j(ikw + ki)z-wtj = - jwle sined/moc 2 . (37)

The current density J =-Nev,, is determined self-consistently from the electron

dynamics. We multiply by the factor exp[-j(nkw+k,,)+jwt I and average, assum-

ing that the electron beam is periodic in *=(nkw+ki)z-wt. Thus,

dE W 2 sine

= n <exp [j/z] > (38)
2c 2 (nkw+kii)
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where the average < > is over the electrons in one periodicity wavelength

2n/ (nkw+k 1).

Equations (34), (35), and (38) comprise a closed system. They are iden-

tical to the equations describing a conventional FEL that uses a magnetic wig-

gler, except that now the quantity sine replaces the familiar wiggle amplitude

parameter o /kwcy(=aFEL/y) (see section III). We can, therefore, immediately

linearize these equations following the method of Bonifacio, Pellegrini, and

Narducci.36 Assuming a zeroth order energy distribution function with energy

spread Ay of the form

=() (1/2Ay) ly-yol < AY (39)
= 0 , otherwise

one obtains the following cubic dispersion relation for the (complex) spatial

growth rate r of the electromagnetic wave amplitude:

r' + 2kor 2 + [k -n2k (Ay/y)2 + A r + nATkw = 0 (40)

Here AT is the coupling strength of the Transition FEL given by

W 2sin 2e

AT = (41)
22

and ko is the detuning parameter

ko = nkw + kg - (w/cao) = - 2Xn/L . (42)

We note that the growth rate of a conventional FEL employing a magnetic wig-

gler is governed by the same dispersion equation as that given by Eq. (40)

with n=1 and AFEL'2pbaFEL/2c2Y.

For the case afa cold beam (Ay=0) and near the point of maximum growth

(ko0=), Eq. (40) can be approximated by

r3  - nATkw (43)

a result that, for the special case n=1, closely resembles that of Ref. 19. Of

the three roots represented by the above dispersion equation, only one exhib-
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its an exponentially growing solution with a growth rate given by the real

part of r, namely,

rr = (43/2) (nATkW)1/3 (44)

Thus, the gain Gn=oIPi, defined as the ratio of RF output power PO(z=L) in

harmonic n, to the total RF input power P.(z=0) in all harmonics n is

Gn = J2(Q) + 1e r + e r 2 (45)

Here JV(Q) represents the fraction of the input power in harmonic n available

for interaction with the electron beam; and the three terms in the brackets

represent the distribution of amplitudes amongst the three (active and passive)

waves. Since only one wave exhibits exponential growth, the quantity J2(Q)/9n

denotes the "launching loss". The variable Q is defined by Eq. (21).

The fact that the growth rate r r increases with harmonic numbers n appears

to make the Transition FEL attractive for operation at higher harmonic frequen-

cies. However, this must be weighed against the increase in launching loss

that occurs as n increases. For example, when the periodic dielectric is a

plasma, and the radiation frequency is given by Eq. (10) where the growth is

maximum, the launching loss equals J2(0.5n)/9 and rr= v(nkw)/2y1/3. The launch-

ing loss of successive harmonics n=1, 2, 3 is "22, 28, and 34dB, respectively.

The saturation efficiency n caused by phase trapping of the electrons in

the potential wells of the ponderomotive potential can be estimated from the

relationship'

n AE/m0c 2 (yo - 1) z 2(soly) 3 (cri)/(yo - 1)w (46)

where r is the imaginary part of the growth rate r given by Eq. (43) and w is

the radiation frequency. Substituting r from Eq. (43) yields, (for yo>>1),
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n = (cyinkwwpb sin2e/2o3) 1/3 (47)

For the special case of the modulated plasma dielectric, at the frequency for

maximum gain specified by Eq. (10), one finds that

2 -2/3

1 ] 2/pb 3 (y>>l) . (48)
y0 nk c

The efficiency of a conventional FEL at the corresponding maximum gain point

is given by n=(2-1/3)y-1 (Wpb/k c)2/3 a2. Typically, aFEL'1 and therefore

the efficiencies of the Transition FEL and the conventional FEL are of compar-

able magnitudes.

In order to observe the FEL evolution towards its nonlinear regime, we

performed a computer simulation. Ten kilowatts of radiant power at a wave-

length of 10pm were injected into the first harmonic, n=1, at position z=0.

The electron beam had a current density of 1kA/cm 2 , an energy of 11.1MeV (yo=

22.7) and an initial energy spread Ay=0.003. The unperturbed dielectric co-

efficient KO=1.002 (a=2x10-3 in Eq. (27)). The modulated dielectric had a

periodicity tw=2cm and was 100 periods long. Resonance was achieved for an

angle e between k and z (see Fig. 1) equal to 3.24x10-2 radians.

The computer simulations are illustrated in Figs. 4a and 4b. In Fig. 4a

we plot the radiation output power as a function of the axial distance z.

One observes an initial exponential growth followed by saturation, and syn-

chrotron oscillations of the electrons trapped in the ponderomotive wells.

Figure 4b shows the electron phase space (y,*), after saturation, at position

z=110cm; strong electron bunching is clearly visible. The synchrotron wave-

length = 100cm. The nonlinear gain (Pout /in) equals 23db, excluding that

portion of the launching loss which is associated with the Bessel function

J2(Q). The electron efficiency (Pradiation beam) equals 0.43%.

Figure 5 shows what happens when one shortens the periodicity k. , We
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again inject 10kW of power at a wavelength of 10um, with Ay=0.003. The beam

current density is now 7.75ka/cm2 and the beam energy is 5.7MeV (yo=12 .1). A

200 period long "microwiggler" with KO=1.002 and tw=0.2cm is employed. Reso-

nance occurs at an injection angle e=7.x10-2rad. Saturation occurs at z=35

cm. The nonlinear gain is 33dB, and the electronic efficiency is 0.46%.
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V. DISCUSSION

The purpose of the present study is to elucidate some of the physical

phenomena involved in the generation of stimulated emission caused when an un-

accelerated electron beam propagates through a periodically modulated dielec-

tric medium. The basic radiation mechanism is stimulated transition radia-

tion. We employ the formalism developed over the years for use with conven-

tional free electron lasers energized by magnetic wigglers. We then obtain

for the "Transition FEL" the frequency tuning characteristics, the linear and

nonlinear gains, and the system efficiency.

Some of the results we obtain are in interesting contrast to the conven-

tional FELs. For example, in the Transition FEL the coupling strength A of

Eq. (40) is determined by the angle 6 between the electron beam direction and

the wave propagation direction; it takes the place of the wiggle amplitude

parameter a FELIY=Q w/yk wc of the conventional FEL. Thus, in the Transition

FEL, the growth rate r does not depend on the amplitude AK of the wiggle mo-

dulation, unlike the conventional FEL where r is determined by the wiggle am-

plitude Bw through the term aFEL. On the other hand, the launching loss in

the Transition FEL is a strong function of the modulation amplitude AK, but is

independent of the amplitude Bw in the conventional FEL. Finally, in the Tran-

sition FEL, the growth rate r increases with the harmonic number n and with kw'

in contrast to the conventional FEL where r generally decreases with n (if it

depends on n at all), and also decreases with increasing kw'

In our paper we assume implicitly that the electron traverses the period-

ic dielectric medium. Of course, stimulated transition radiation can also be

induced in an arrangement in which an electron beam in vacuum passes in the

immediate vicinity of the modulated dielectric. This eliminates the problem

of electron beam scattering within the dielectric. The interaction then takes
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place between the beam and fringing electromagnetic fields just outside the

dielectric surface. An example of this is a sheet beam skirting a periodic-

ally modulated dielectric slab of dielectric coefficient K0 and thickness a,

which satisfies the (unmodulated) dispersion equation1 7

KO k - = _ - k tan - k ] al (47)

where k,, is the propagation constant parallel to the electron beam direction.

Elimination of k1 between Eqs. (4) and (47) yields the frequency versus y tun-

ing curves illustrated in Fig. 6. Those portions of the curves where w in-

creases with energy y are associated with stimulated transition radiation (cf

Fig. 2 ). The portions in which w decreases with increasing y are typi-

cal of stimulated Cerenkov radiation.1 7 To achieve good coupling between the

fringing fields and the electrons, and thus good gain, the electrons must be

within a distance %yx from the dielectric surface (x is the radiation wavelength).

Probably the most interesting aspect of the coherent emission mechanism

discussed in this paper is the possibility of using a dense, periodically mod-

ulated plasma as the wiggler. By creating such a fully ionized medium, the

problem of electron scattering in the dielectric is greatly diminished. For

example, it has been demonstrated 7 that by optically mixing two C02 laser

lines one can generate a plasma wave with a plasma density of 1.15x101 7cM-3

( p=1.9x10 13sec- 1 ). Stimulated transition radiation could then be achieved by

injecting a relativistic electron beam into the medium at the appropriate

angle e. To be sure, all our calculations have presupposed a stationary peri-

odic dielectric. However, by analogy with electromagnetic wigglers,1, 33,38,39we

believe that stimulated transition radiation should be possible from a non-

stationary dielectric such as a propagating or standing plasma wave.
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FIGURE CAPTIONS

Fig. 1. Schematic drawing of a Transition Free Electron Laser.

Fig. 2. Radiation characteristics of a Transition FEL as a function of the

electron beam energy parameter y for K = 1 + 0.002 [1 + cos(k wz)].

Frequency tuning (top), and the wiggler strength parameter aT (bot-

tom), as calculated from Eqs. (7) and (26), respectively for sine =

1/y. Bottom figure applies only to the fundamental, n = 1.

Fig. 3. Radiation characteristics of a Transition FEL as a function of the

electron beam energy parameter y for K = 1 - (Wp/w)2[1 + cos(kwz)l

with (Wp/nkwc) 2 = 300 and sine = 1/y. Top: frequency tuning ob-

tained from Eq. (8). Bottom: wiggler strength parameter aT ob-

tained from Eq. (26). Bottom figure applies only to the fundamental

n = 1.

Fig. 4. Computer simulation of the Transition FEL for a 11.1MeV, lkA/cm 2

electron beam traversing, at an angle e = 3.24x10-2rad., a modulated

dielectric K = 1 + 0.002(1 + cos[100rz(m)]). Initial energy spread

AY = 0.003.

Fig. 5. Computer simulation of the Transition FEL for a 5.7MeV, 7.75kA/cm2

electron beam traversing, at an angle e = 7.1x1- 2rad., a modulated

dielectric K = 1 + 0.002(1 + cos[1000z(m)]). Initial energy spread

Ay = 0.003.

Fig. 6. Frequency tuning characteristics of a Transition FEL for the case of

a sheet electron beam skirting a modulated dielectric slab, as cal-

culated from Eqs. (4) and (47). Curve (a) is for Ko = 2 and kwa =

27x10-4; curve (b) is for Ko = 2.5 and kwa = 2x10-4; curve (c) is

for Ko = 2 and kw a = 27x10 3 (a is the slab thickness).
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