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Variational Quadratic Form for Low Frequency Electromagnetic Perturbations:

(II) Application to Tandem Mirrors

H.L. Berk and B.G. Lane

Abstract

In this paper the low frequency quadratic form governing the linear

response of electromagnetic trapped particle modes is applied to a tandem

mirror geometry and several problems are treated. It is shown that the long

wavelength MHD wall stabilization mechanism persists even when the line

bending energy is suppressed by allowing an electrostatic response. In

another problem, the amount of charge uncovering needed to suppress

electrostatic trapped particle modes is determined as the beta of the plasma

rises to its critical MHD beta value, Pcr' and the required charge

uncovering is shown to increase substantially as beta approaches #9cr. A

third problem treats trapped particle instabilities driven by rotation and

field line curvature in diffuse and steep boundary models. The steep

boundary model offers the possibility of an enhanced "robust" FLR

stabilization due to an amplification of the finite Larmor radius magnetic

compressional term when steep pressure gradients are present. Otherwise,

one finds relatively small regions of stability in parameter space when

electric field drifts are comparable to diamagnetic drifts. Detailed



stability plots are presented for parameters applicable to the Tara

experiment.
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(1) Introduction:

In this work we apply the formalism developed in reference (1) to

describe the low frequency linear response of a tandem mirror. We shall use

an equilibrium model shown in figure (1) which is characterized by a three

cell system. The relatively long solenoidal central cell of length L

confines plasma having a uniform azimuthal rotational frequency. This

region has an unfavorable field line curvature. At each end of the cell

region are magnetic and electrostatic plugs which are characterized by good

curvature. These plugs will be referred to as the magnetohydrodynamic (MHD)

anchors. This region can in practice be quite complex being made up of

quadrupole coil sets, choke coils and coils for thermal barriers. However,

for our theoretical model, we will avoid these complexities, and consider

the anchor regions as single cell mirrors that are nearly square well in

shape as shown in figure (1). Besides having a favorable MD curvature,

these cells have a positive potential with respect to the central cell, and

the plasma has a mean rotational frequency that can be different than the

plasma rotational frequency in the central cell.

We analyze the linear stability of this system with respect to trapped

particle modes taking into account the complete electromagnetic response of

the system for non-eikonal perturbations assuming the bounce frequency of

the plasma is arbitrary and that the plasma is collisionless. This analysis

generalizes the work of Berk. et.al. 2 in that non-eikonal modes are treated
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and the bounce frequency is not assumed to be high. Kesner and Lane 3

developed a non-eikonal treatment of this problem under the assumptions that

the perturbations were electrostatic and that the wave frequency was small

compared to the bounce frequency. Liu and Horton4 have also developed a

non-eikonal analysis for electrostatic trapped particle modes for a plasma

with a Gaussian radial pressure profile. In their analysis, electrons are

treated in the high bounce frequency limit and the ions in the low bounce

frequency limit. They also have studied the role of conducting walls on

rotational modes. Byers and Cohen 5 recently pointed out a new axial

rotational shear driven mode for a very special geometry. In the formalism

presented here, this mode is described in a fairly general geometry.

In this work we analyze tandem mirror stability in a non-eikonal limit.

We consider two types of radial pressure profiles: a flat pressure profile

with a steep, but finite pressure gradient at the edge and an isothermal

Gaussian density profile. We first of all consider whether the MHD wall

stabilization condition found for displacement like modes 6,7 in regions of

unfavorable curvature, which require line bending energy for stabilization,

can be destabilized by allowing for excitations that are purely

electrostatic. It is this type of excitation that produces trapped particle

instabilities in the eikonal limit in systems that are MHD stable. We show

that these "electrostatic" modes are in fact of larger magnetic energy than

the MHD displacement-like modes in systems with somewhat steep pressure

profiles. Thus, for long perpendicular wavelengths, the basic wall
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stabilization principle appears not to be altered by considering the

electrostatic type oscillations that produce trapped particle instabilities

at short wavelengths. Although we have not proved that this is true for a

general diffuse pressure profile, we conjecture that it is true.

We then consider a system that has large MD stabilization terms in the

anchor but with a low ideal hD critical beta such that the eigenfunction at

marginal stability is nearly zero in the anchor region and nearly constant

in the central cell. We then show how bending energy transforms the

"electrostatic mode," to an ideal MHD mode, as the beta varies from very low

values to values comparable to the critical beta value for MD instability.

This analysis shows that the marginal stability condition can be reduced

significantly from the one obtained by combining the ideal MHD criterion

with the zero beta charge uncovering stabilization2 criterion of trapped

particle modes.

Finally we consider the problem when equilibrium plasma rotation and

finite Larmor radius effects compete with the MhD drive in a tandem mirror

with strongly stabilized anchor regions so that the excitations are only in

the central cell region when the plasma beta is well below the critical MHD

beta ballooning limit. We then analyze stability with the above three

effects. We point out that for the steep pressure profile model, a robust

stabilization term can arise from the finite Larmor radius term at finite

beta. This term is only of minor consequence if the profile is diffuse. We
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present detailed stability boundaries when this finite beta FLR term is

unimportant. We emphasize parameters associated with the Tara experiment.

which is designed to form an equilibrium for which the passing particles are

all electrons and thereby produce a negative charge uncovering response. We

show that if one neglects the resonant dissipation, stability is possible,

but the bands of stability are rather narrow.

We will not consider the effect of resonant particle dissipation in

this paper. This effect is considered elsewhere 8.9 and it generally leads

to a further reduction in the instability threshold but at a much reduced

growth rate.

In section II we present the basic equations that will be analyzed in

this paper. The equations were derived in Ref. (1). In section III we

analyze effects of the line bending on the trapped particle modes. In

section IV we consider trapped particle modes driven by field line curvature

and rotational drives. In section V we summarize our results.
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II. Variational Quadratic Form

We begin with the variational quadratic form derived in reference (1).
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We list below the definitions of the various quantities appearing in

Eq. (1).

j refers to species

a = mass qj = charge c = velocity of light

B = Va x Ve - B b = equilibrium magnetic field.
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,umj v. /(2B)

1/2 1/2
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The quantity j refers to the conventional ExB displacement and all

perturbed quantities are assumed to vary as exp (WO) where E is the

perturbed electric field. The equilibrium is taken here to be axisymmetric

and the curvature small. Thus terms of order mr have been dropped in the

calculation of the finite Larmor radius (FLR) terms. Equation (1) is

strictly valid only for an axisymmetric tandem mirror as r is taken only in

the Va direction. However, the formalism is still valid for a situation in

which strongly stabilizing non-axisymmetric minimum-B anchors force the mode

to vanish in the anchors. In this case if the passing fraction is small and

W>> WK, w,7B, the non-axisymmetry does not enter the problem in the order to

which we work.
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The further assumption has been made that there are no "hot" species

whose drift frequency exceeds the drift frequency or MHD growth rates of the

background core species. In the absence of such a hot species the

compressional magnetic term Q is generally forced to be of order xr

compared to O/r2 and the most unstable perturbations are incompressible.

Terms proportional to QL in the calculation of the FLR contributions have

been neglected. We note that the MHD limit is recovered when 84/as = ax/as,

while the electrostatic limit is recovered when x/8s a 0. If we treat

qjO(t) + tcy QL (t) _ q ( - x), so that the curvature terms can be

neglected in the kinetic terms, the eigenfunctions will have either even or

odd symmetry about the midplane. Specifically for even modes we can rewrite

Wkin as,

W 87r2 qJ2 daeA F J caF

Wkin _--_ ddedy w i + c _
j mic2  Be qj a/

tb b

dt f dt' d [O (t) - x (t)) d [O (t') - x (t)]
0 dt dt

) Cos (7(t bt <) sin [f(tb#t>)J
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- cot [n(tb,0)] sin [M(tbt)J sin [f(tb't)] (2)

where t> = max (tt'). t< - min (t.t').

We shall consider eigenfunctions 0 and x that are nearly constant in

the central cell and anchor regions but change rapidly in the transition

region from the central cell to anchor by amounts AO and Ax respectively.

Then for the evaluation of the kinetic term we have

d x) - v ( 44 Ax) 8 (5-8 )

where s0 is a point in the transition region. We consider the distribution

functions F in the center cell (which consists of trapped and passing

particles) to be Maxwellian. and for simplicity, without temperature

gradients, so that

n (ca)
F 3/2 x(24T /m )

Then Wkin can be written as,

n 8ir 2 q 2 d - dx) 2 f da (w - WEc *jc) F ided/t
kin 2 2jm c T
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cos (7 (t t 0)] sin [n (tb* t0)1 - cot[O(tb0)] sin2 (t b t0)] (3)

where t0 - t s Ic Mi s - O,)/aa M electric field drift in central

cell. w*jcu (tcT /qjn ) Dn /Da a diamagnetic drift in the central cell.

In this paper we neglect resonance contributions, and thus the term

containing cot [1(tb,0)] is considered small. This is the case if the

anchor length is short compared to the length of the central cell. In this

approximation we have.

2

Wki -2v da(4 - 4x)2  _ Ec **J) ( E f ) n g

c TJ anchor a

(4)
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.i fF dedy cos [17(tbt 0)I sin [n(tb#toA

m
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Ba is the magnetic field in the anchor region and nj is the passing

particle density in the anchor region. Note that gj (w) a 1 if

n (t b 0) « 1.

ITT. Finite Beta Coupling of lectroastatic and Electromagnetic Modes.

We consider in this section the transition from

where 0 ~ 0 (1) and Ox/Os ~0 ( to a plasma whose

electromagnetic balooning mode in which ax/ Os ~ ao/s.

assume w > w and we will neglect terms of 0 (e 2) with C

a low beta plasma

beta permits an

For simplicity we

kxr. Further.

we order ra 2/as 2 ~ ,and w 2  V 2 /r 2 wt2 2 ,2 where V2 - B2/(4rn m.).werdrr2/s 2 -. , a A/ w ~wE A ii

In this/limit the quadratic form to zeroth order in e only involves QL and

the constraint QLa 0 solves the lowest order variational equation. To next

order in c we obtain the variational form.

a
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with Wki given by Eq. (2).

A. Bending Energy in Trapped Particle Mdo

In the original analyses of the trapped particle it was shown that if

the plasma beta is appreciably below the critical beta for NOD stability, an

electrostatic trapped particle mode arises with x 0 to allow for a mode to

isolate itself in the unfavorable curvature regions without expending

bending energy. The quadratic form of Eq. (6) shows that in a non-eikonal

analysis bending energy cannot be entirely eliminated. If we choose x = 0.

then there still persists a bending energy term

=dsda Bar 2 [a( aB \ 2
Wbend f r Y" B 7

We note that this term contributes positive energy and can be important

at low I when compared to the destabilizing curvature drive term

Wcurv rt 2f ds da ___ D2(p +, p
urvB2r D
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Even if 0 is constant we find that at moderate beta, where P > x A.

W b is given by

Wbend -Jdda #2

where

-1 rB 8P

P 8c

as_

O_ ,a . Br2 /2.

B 2

For a sharp profile where A/r;<< 1. (r = r at the plasma edge), we observe

that Vbend is greater than the f a 1 line bending stabilization terms

recently calculated for a radial rigid displacement mode6,7 by roughly a

factor r p/4. Thus, if the beta required for wall stabilization can be

achieved for the f a 1 mode for a plasma with a relatively sharp

pressure profile, the I - I "electrostatic" mode will also be stabilized.

This argument suggests (though it is not proved) that for an arbitrary

radial profile, the lowest energy state of a nearly rigid displacement I = 1

mode requires the condition 0 = x.

We also notice that since the additional bending energy is due to the

term a(OB 1OB/8a)/8s. there is a limit on how sharply the electrostatic
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portion of the eigenfunction can vary in a region of finite beta. If we

denote 0-81/s L -1 and compare W to V we see that the modeeig bend curv

will be stable when

r2 2 0
>2 1 m| (7)

L2 0
Gig 'I

Unfortunately, the electrostatic portion of the perturbation varies rapidly

in a region where the bulk of the particles reflect. This is typically near

the magnetic mirror throat where the pressure is low and where the magnetic

field is high. Thus the rapid variation in O appears to occur naturally in

a region of low beta and probably an accurate eigenfunction does not produce

much field line bending energy.

B. Interaction of Electrostatic and Electromagnetic B&llooning Modes.

We now consider the interaction of MHD modes for which # a x is

normally assumed and electrostatic modes for which x a 0 is normally

assumed. At finite beta these two polarizations interact. To demonstrate

this interaction we consider a tandem configuration with the following

properties: (1) a strongly stabilizing anchor of relatively high beta

produced by magnetically trapped particles, (2) a relatively short

destabilizing region in the central cell which could arise from a choke coil

and (3) a well pumped transition region between choke coil and anchor that
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is relatively long compared to the choke coil length. The eigenfunction

x at 0 a 0cr, the MHD marginal stability point, is then small in the

anchor to avoid the anchor stabilizing effect, rises through the transition

region and is constant through the center cell. The critical beta is then

of order L2 choke transition where Lchoke transition) is the scale length

of the choke coil (transition region). This type of oigenfunction resembles

the shape of the electrostatic eigenfunction. We denote x * AO and we

assume A is a constant. We determine A in the eikonal limit where

V it/re + x aVa. with I an integer and k constant along a field line and

k 2 /B 1 12 /2a + 2Ak, then from the quadratic form given in Eq. (6) with

WE * 0, one finds.

-(+ )+ 2 2 -2 (8)(W + +(Qw - 4ci~ (1A) (kr0)
222

~2(iD -A 2 Pc) a 0

where

f C - Q + P)2
2 k 2 c B 2 r

'fMHD

f An m 
0 2
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2  2 cr ds a ax 2
A~ -a_ 2 tr 4rA

dLn ai 2

with r the critical beta for MHD stability and 0 SrP /B2  We have usedCr rc

the fact that k 2/B and Br 2 are constant along a field line. The "c" ("tr")

under the integral sign refers to integration over the entire central cell

(an end transition region). In the limit where f(tb*to) << 1 and g1() * 1

nj2
Q 4 d2 n dan2

Q 4oca B c2T c fB2

with n the density of passing particles, Oc is the central cell value of

Oand the "a" symbol under the integral sign is for integration in the

anchor.

n 2 jdsn mAQW 402 fds n qjo*c j da 1 2
C F c2T c B2

with w*. a [cTi Dnc/Da]/(qi n ), nc is the central cell density.

We note that A enters in two ways, First in the field line bending term

in which finite A acts to stabilize the mode and second in the charge

2separation term, w w~j Q (1-A) . in which finite A destabilizes the mode.
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If we now extremize with respect to A, we find

S(Qw2

2 2 k 2r2
(WG Q - AQwwi - Pcr ?.HDJ

and the dispersion relation becomes,

(10)

with 7 a w/7MHD '0* /*i IMiD. In the analysis below we neglect the

w~ term. To solve this dispersion relation, we first neglect fl, terms. We

then find for the unstable root,

22

1 flcr +hi hr(2ineq/a)i1y

For-conditions for which the inequality
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2 2

,r2 I -2 <1.+ _ - /cr'
Qpcr

is satisfied, I? can be written approximately as

1

1 + Q(1-p/#r)/k 2 r 2
+ 'Ij

k 2 r 2

ifL < I +

Ocr q

2 r2 2r 2

+cr(+) > 1 + _

T (cr Q

Eq. (11) demonstrates instability for P both greater than and less than Pcr

in the absence of ion FLR. For p/qcr of order one, instability in the

absence of ion FLR is also present. We can explicitly evaluate 172 when

O/Pr 1 + k r /Q whereupon we have that
cr

_ _ _ __-_(12)

(1 + Q/k2 r2) 1/21.

22
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In summary, in the limit when 17, can be neglected, we always have

instability and when i/p r< 1, the growth rate 7 (in units of jMH) is

k2 r 2  1/2
l* a ____ _ 1 (13)

k r2 cr

with the # dependence arising from the coupling of bending energy to the

electrostatic modes.

To investigate stabilization we consider t7, finite and jdQ/Q I<1. We

first consider Q/k 2 r2 large, and if we first assume DQ* and f?< 1. Eq. (10)

becomes.

~~c2 2
(1 -cr ) AQ (1 cr fcrkjr 0 (14)

The stability condition is then

2 4k 2 r2

> r (1)
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and as 17 = A l ,/Q. the assumptions M, and f? < 1 are valid if AQ/Q < 1.

We observe that the charge uncovering term 4Q. needs to become larger as

beta increases and the assumptions leading to Eq. (15) fail as p -. Pcr

For O=cr we return to Eq. (10) and find that if k 2r/Q << 1 and AQ/Q 0

we always get instability with

(kr 2  1/3
()

2

With AQ/Q < 1 but finite and f i ncr, Eq. (8) can be written approximately

as

k2r2

n O* - 12 + a 0.
Q

Then the condition for stability at P 8cr is that

4 )3 k 2 r 2

0 > -... (16)
27 Q Q

which indicates the most pessimistic limit of Eq. (15) as f approaches icr*

If we assume Q << k r 2. Eq. (10) becomesT
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17 (D-A) + 1 a 0 (17)

with the usual FLR stability condition for a flute mode in the central cell

1*7 >2. (18)

For O/p > 1 (where we find AO - Ax). Eq. (18) would appear to be the FLR

stability criterion f or a flute mode in the central cell for arbitrary.

Q/k 2r2 . However, as shown in reference (9). for / > 1, the mode tendsjr O/cr >1-temd ed

to localize in the bad curvature region of the central cell and the

stability condition is actually more pessimistic than Eq. (18).
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IV. Non- Eikonal Analysis of Elegtrostatic Ballooning Modes

We now analyze the quadratic form assuming 9 << 0 cr so that we can

consider modes with X a 0. We shall also assume the anchor length is small

compared to the central cell length, and that the passing particles are

Maxwellian in the anchor region (a reasonable model for electrons, and a

marginal but simplifying model for ions). We consider parameters such that

beta is sufficiently low that we can neglect the term proportional to

B318/Oa in the bending inertia and FLR terms and that the anchor region is

strongly MHD stabilized so that the destabilizing eigenfunction is small

there. We also use that a a Br2/2 which follows from the long thin and low

beta approximations. The quadratic form given in Eqs. (1-4) then becomes

das 12 p

BBr D5-- ( +
c

nimW2  r2 ( 2 . 2

C a B)r2

- n miAi r4 [a2+(j_1 
2

5a rB 2 r2
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-2r i (W - Ec- *j Ew w gj(&)
a B jc 2T

(19)

where the "c" and "a" under the integral signs refer to integration over the

central cell and anchor respectively, and gj(w) is given in Eq. (5).

A . qnation for Sharp Boundary Model

To proceed further, we shall consider two radial profiles. The first

is the sharp profile shown in fig. (2). Here the pressure and density

profiles are taken as constant to a flux a , and then abruptly drop to zero.

The equilibrium electric field is assumed to vary linearly with values

E = Ec r/(2a /B )1/2C p c

in the central cell, and

E a Ea r/(2a /Bc )1/2
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in the anchor. Hence w., and wEaare independent of radius. We can then

solve the variational equations of the quadratic form for i-numbers

satisfying the condition t.da/ap < 1 with 1ai * P1 8P Ba.

In the region a < ap, the Euler-Lagrange equation for the radial

variation of Eq. (19). is

a r ..
ir Tr

2

r2
rP

where r refers now specifically to the radius at the mid-plane, r a

(2a/B)1/2, r (2a /BC)1/2, = B(z = 0). The quantity Q contains the

effects of passing particles,

2 r n q g(w) (w - wEf)/Tj c

( Ec) / - n ai

c B

(21)

(- w )

(w- wE)

We note that in specific limits that we shall study quantitatively, Q will

be independent of w.
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The solution for 0 in the region r < r is then,

~1/2 (.
01 (22)

where I (x) is the Bessel function of imaginary argument of index t and 0

is a constant.

In the sharp gradient region the Euler-Lagrange equation becomes,

a
Br

ar+

2
W.

VA 
2

ar

ar -
Br

A

2
V;

2 W 2

2
rVA

r3 8

ar

(I2- 1)

r

A
_

- (w-wEd 2

r vAYpLA
- 4 Iww..

where
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4 Q 2dm ji r) W (w -wEc) (24)
a B Ti2  fjq -_3~

c B2r B 3r2
rP P

B2

V2 C C
A

4mini

and we assume no temperature gradients for the sake of algebraic simplicity.

We also define

~W (w- wEc)

(w w&Ea)

and note that in the specific limits that we will analyze dQ will be

independent of w. In the layer A >> w2 W 2 (note, however, that A

w2 outside the layer). Then, to the lowest order we have the equation

1aA r3  a (0/-r) 0 (26)
r rv2 8r

A
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with the solution 0 * r/r . If now we set * a 00 r/rp + #, and

integrate over the layer. we obtain the relationship.

A r; a r nr5 r- [2 ' *\

VA2 a (p/r) rdr - r W rr r + rp +r

£22,f7 2 oo2_1)A 2 00
U 00 - e2- + (-wEc'

2 2 r2 V2
; VA p A

+ 0(27)

where we use 1Aa /a ~ w/w and wE - w. We assume the plasma density

10vanishes for r > r . B. Cohen. et.al. have investigated the effect of

density on the outside with walls for a similar model profile but without

trapped particle effects.

Then using that ni (r - r ) = 0. A (r = r) = E
p p ' (4Ec/ at (=

the continuity of a~/8r at r =rp
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(r a r )
p

#0 +

r
p

a# 1 1/ 2 *0
5r r

p

and that < O, we find,

10 (2OEc E 0 1 / 2 )- ~ IwE C o 1 / 2 ,

. . Fql/2

i / 2

I(1/2)

- iA Q (w -wEc)+ 0

where w*i = c iPc/ ri,

- (12 . 1)
- wEd +

-2

24i

S
rp

we assumed , w , and we have defined

Ji CPI +P )

-2 c
HDc 

B2

8rP

B2c

and
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I; Q1/ 2 )

1/2 .
I(Q)

(28)
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r p Br c
P41

op
Ba

Thus we obtain the dispersion relation.

qlf + 1 [2c- (12- 1) ' - AM

+2 -2 2
7MHD +Ec

where

~1/2 _ 1/2
qaQ ,_ _ 12

I (Q1/ 2)

2

rE 0p,2 .0
A4*

= W -'Ec'

We also notice that it is a good approximation to use

~2 I(~1/2
Q1/2 1

I (~1/ 2 )
it

1/2

as this expression is valid for Q small and Q large.
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B. Equation for Diffuse Profile

For the diffuse profile we take all pressures and densities to vary

as exp (- r2/2 r ) so that w 1  is independent of r We also take wE

independent of r and assume that the equilibrium magnetic field is a

constant through the center cell region. Then, variation with respect to 0

of the quadratic form given in Eq. (19). after some manipulation yields.

a expr .
r \

+ xp -

r2 (t () _ (12_ 1) exp
2rp2 ar r (\. 2r2

r 2r G () = 0

r rp

with

(31)

G Mw = -

2~ e22 2_ 2)W2+ MD + Qw-wEc) AQ2IJ-Ecw*i

(w-wE) (wwEc- w*i)

where Q. AQ and '7HD are defined by Eq. (21). Eq. (24) and Eq. (25)

respectively and w*i (tcT/qini)ani/aa.
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Eq. (31) has been analyzed elsewhere 11.12 (using a simpler form for

G(w)) and the eigenvalue condition is found to be.

G(w) - k r2 - I
p

where k2r2  it i + 2 Inm with Inm an integer and k can be interpreted as

the perpendicular wave number in the eikonal approximation.

The dispersion relation for this profile can then be written as

q' r + 2_ [2,~ - (k rp -I Jg.w Q - Q16 J

+ t + W 2 (33)'MHD WE + Uwwi 0

where q' - k 2r 2+ Q, and 4E = 'Ea O Ec'

C. Analysis of Dispersion Relations

If one compares the dispersion relation for the two models one observes

similar features but with several significant modifications. In the steep

1/2_
pressure model, q ~ Iti + Q . while q = mt + Q (for n = 0) for the

diffuse profile. In the steep model a term linear in f7 (the FLR term) is
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proportional to (22- 1)&* whereas the dispersion relation f or the

diffuse profile is proportional to (II| - 1)w . Finally, the sharp

boundary profile has an additional stabilizing term proportional to

(12 - 1)Pwi r /( 24) which can be significant if 4/r << 1. The

corresponding term for the diffuse profile is always small if # << 1.

The dispersion relation for the sharp boundary model simplifies

somewhat if we take AwE= 0 so that Q = Q and AQ = AQ. There are two

important limits that can be considered to evaluate g(w) explicitly. One

is where w < w for all species where b is the axial bounce frequency in

the anchor region. In this case g (w) a I and AQ is proportional to the

difference of the passing ion and electron populations -in the anchor region.

If most of the passing particles are ions, then AQ = Q. while if most of the

passing particles are electrons then AQ t - Q T,/T .

The other important limit is where wbi < W < Wbe* In this case

g (w) - 0 for ions and unity for electrons. Above some moderate value of t,

this approximation can be expected to hold. For these f numbers one can

formally treat the equations as if there were no passing ions in the anchor

region.
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In addition, in these limits gj (w) has a small imaginary part. that is

discussed in Ref. (1). In the applications studied here we neglect the

imaginary contribution. However, these imaginary contributions can produce

additional stabilizing and destabilizing mechanisms, and are discussed

elsewhere

Now, with the further approximations. x I' (x)/I, ix) Iji + x (this

is an interpolation f ormula that is asymptotically valid if x/ I tI << 1.

x/111 >> 1). Eq. (30). the dispersion relation for the sharp profile.

becomes.

Oil+ Q1/2) 1 + J [2wE (j 2 - 1) mw- wi A Q

+2 2  + 2 2  Ip a 0 (34)+t'MHD + E 2.dQl

We then find that there is a band of stability in 2E = E/*i which is given

by

Max [ -At- ]Bill < fE < Min [-A, + BI JI (35)
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where.

A 1 4Q + 12_

2 1/2

U 2 2 + AQ)2 r - (2 1) OrP/2A
4(ItI - 1 + Q 1/22  i i + Q1/2

2 -2
1 YM

r a (36)
-2
w*i

and we minimize and maximize with respect to I. One observes that there is

no stability band in Eif

r > Min ( 2 (22 Q) 2

2AMin 4 ( I + Q1/2

where the minimization is with respect to I - number.

If AQ is positive, one achieves a wider range of stability with 12E < 0

(radial equilibrium electric field inward) but with PE not too large in

magnitude. For r and 0 negligible, the stability in [E is
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[ 2 1/21/21

ma A 2-01) 1 + (Ot + Q 1/2 ) 1/ g(x )]<
Max -_ __ __ __<_ I E

2 + Q1/ 2

Mi .Q+2- 1) s1/21/2 g(x)- 1) (37)

2 ( i -I+Q 1/2

where x AQ + - 1 and

1, x > 0

ag(x) =
-1. x< 0

Note that with [E> 0 stability cannot be achieved with Q 0, but at finite

Q and wE sufficiently small, stability is also possible. For moderate values

of Q and AQ, the t = 1 condition tends to be the most stringent stability

condition.

If 4Q is negative, there is a range of values where stability is

particularly difficult to achieve, viz. 4Q = -t 2 +1 where the negative charge

uncovering from the anchor region balances the positive charge uncovering

finite Larmor radius terms. For -AQ -t2+1 > 0, fE> 0 is most favorable to

stability (an outward electric field) while if -AQ -t2+ 1 < 0, OE < 0 is
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most favorable for stability (an inward electric field); apparently

conflicting requirements.

The Tara experiment13 is designed to have AQ < 0. However, stability

can still be achieved over limited parameter regimes. if IAQI<3. In this

case. for typical parameters, 1- 2 determines the most stringent inequality

of the right side of Eq. (36) and I = I determines the most stringent

inequality of the left hand side of Eq. (36). The stability condition for

P = 0 is then found to be,

1/2 2 1/2
- (1 + Q1/ 2 2 2Q

/2(3 + 4Q)2  _
< (2 + Q1/2) 1 1 + '

4 ( I + Q 1/2 )2

r .1/2_

1/2]

(3 + 4Q)

2 (1 + Q1/2
(38)

For example if r is negligible we find the stability range of "E is

(3+ AQ)

2(1+ Q1/2
-[sg(4Q)(1 +Q1/2 1/2 E < [(3+Q)(2 + Q1/2 )1/2

(39)
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In Fig. (2) we present the numerical evaluation of the stability band

in 17E given by Eq. (35) as a function of Q for AQ/Q a -. 5. This choice

is appropriate for the Tara geometry as we discuss in Section V. The cross-

hatched regions in the figure indicate for which values of "E as a function

of Q the model predicts stability for various values of the stability

2
parameter r= (t-yM/w*.) . The sides of the stable regions are labeled by

the mode number t which imposes the most stringent constraint on stability

in that region of parameter space. Note that when Q a 2(t 2-1) the negative

charge uncovering due to electrons cancels the positive charge uncovering

due to the ion finite Larmor orbit and the system is unstable for all values

of 1E. As r increases, the islands shrink and vanish altogether for a

critical value of r. The stability island corresponding to the lowest

values of Q completely disappears for r = .18. The last stable point occurs

at "E = 0 and Q = 2.7. The width of the stability band for this value of Q

at r = 0 is -.25 < nE < .28.

We now analyze the dispersion relation of the diffuse profile. Eq.(33).

We note that if k 2r >> 1 this dispersion relation is identical with the
T ~p

dispersion relation one would derive in the eikonal approximation. First we

consider 4wE = 0. so that dQ = 4Q and Q * Q. We then find that the band of

stability in E = WE/ w*i is given by

41



Max -Cen - IDtn [

C 1 (ill + 21nj -1+44Q)

n (ITl + 12n] -1+ Q)

= (111 + 2'n + Q)I ll + 2lni-1+A) 2

"~n L4 (111+ 21nj -1+Q)2

d 2, / W 2and we minimize and maximize with respect

rd

Ill+ 21nl-I+Q

to I and n.

If 4Q>0. one achieves the best stability with 1E< 0, but with DE not

too large in magnitude. For r negligible the stability in 1E is,

(21n1+4Q+ jf1-1)[1+( f +2jnj+Q)1/2ag(xn, ]

2 (I + 2 |nI-1 + Q)

1 (AQ +IlI +21nj - 1)

2 ( I t+ 21n1-1+Q)

where xn t 21nj + AQ + Ill-

21nj + Q)1/2ag(x t) - 1)

The stability band disappears if

rd > ( 11+ 21nj - 1 + Q) 2*

4 (Ill|+ 2jnj- 1 + Q)
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(42)

I- Cl + |DI i I
(40)



If AQ is negative, there is a range of t and n values where stability

is particularly difficult to achieve, viz. dQ a It1+ 21nI - 1 where the

negative charge and positive charge uncovering mechanisms cancel. If Q and

-AQ = 1, there is a limited range of parameters where stability can be

achieved. If in Eq. (41) we take t = 1, n - 0 for the left hand side and

1 * 2 for the right hand side we obtain the following stability band,

-1+Q1/2 AQ 2 rd 1/2_ E Q

[ 4Q2 Q 2Q 2 (1 + Q)

(2 + Q)1/ 2  2 -4rd 1/2 (43)
2(i + Q)

If rd is negligible, the stability band is

- (1+Q)1/2sg(4Q) +1] < E < ( [(2+Q)1/2 ag(1+Q)-1 (44)

In Fig. (3) we present a numerical evaluation of the stability bands in

nE for the diffuse profile given by Eq. (40), again for dQ/Q= -. 5. The

stability criteria given by the diffuse profile are more stringent than the

criteria of the steep profile. Note the change in scale in fE from the

corresponding scale and the relatively low values of r which cause the

islands to shrink to a point. The stability island at r - 0 between Q - 0
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and Q a 2 vanishes altogether for r .027 at Q = .92. For this value of Q

the width of the stability band at r * 0 is -.1 < 'E< .1.

We now consider the case when AwE 4 WEa - WEc i 0. The stability

condition found from Eq. (33) is,

[Q+ (k 2 r2 - 1) + - 12

> 4 [k2 r + Q[ rd + (45)

where &E AOE/w*i and Ec - wEc/w*i

If we set rd - 0 and Ecs 0 the only instability drive present is due to the

axial shear in the electric field rotation. This drive for the instability

of a non-flute mode was first treated by Byers and Cohen 5 )f or a somewhat

special equilibrium with zero ion temperature.

The present dispersion relation is for a more general equilibrium.

albeit in the small anchor-length approximation. For AQ < 0, which is

negative charge uncovering, instability is possible if WE < 0, which

corresponds to an inward electric field in the anchor. We assume k r >>

1, and that the frequency will be high enough so that ions do not contribute
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to Q or AQ (therefore Q - - T /Ta AQ m - rAQ). It then follows from Eq.

(45) that the instability band in k2 r2 is determined from the condition,
-ip

k 4 r 4 + 2k r AQ [I - 40E(2 + r)+ 2(1+T )2< 0 (46)

The k-spectrum of the instability is then

k2 r 2

- Y < .A_2 - 1 + 4'E(2 +) < Y (47)

with

Y ( I1 - a7E(2 + 7)) 2 (1 E TV 2] 1/2

Real values for Y exist for -1E > 1, which defines the threshold for

instability. Note that the k values for instability must satisfy

k2 r2
I P> 3 +

so that the assumption k r >> 1 is valid if IAQJ > 1.
~I p

The importance of this instability is that the drive is due to electric

fields in the anchor which can be large compared to central cell electric

fields, since the temperature of the plasma in the anchor can be much larger
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than the plasma in the central cell. If the electric field is inward, the

stabilizing effect of the MHD anchor is subverted by the formation of an

eigenfunction with a negligible amplitude in the anchors.

46



V. Summary

We have applied the variational form derived in Ref. 1 to several

stability problems relevant to tandem mirrors; especially to tandem mirror

trapped particle modes. The analysis in this paper is primarily applied to

long wavelength modes. The problems studied and their results are

summarized here.

(a) Wall Stabilization

Previous calculations of wall stabilization6. 7 assumed 0 - x. or

equivalently, when there is no rotation, zero electric field along the field

line. Wall stabilization of the i a 1 displacement mode then causes an

induced line-bending term. The initial work on trapped particle modes 2

observed that if x a 0, the stabilization due to line bending is removed for

eikonal modes. However, in the non-eikonal theory, additional line-bending

energy exists even if x = 0. Further, if IA/r < 1. where A1 is the

pressure gradient. r the plasma radius and i the mode number, this bending
p

energy is larger than the bending energy arising from the MHD wall-

stabilization for displacement-like modes. Hence, if a system is stable to

an MHD displacement-like mode, it will be stable to the "electrostatic"

(x = 0) displacement-like mode. Our proof depends on the assumption

S<< r . We have not as yet proved that x . is the lowest energy

perturbation for the i - 1 displacement mode in the case A - r . However,
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we conjecture that when there is sufficient beta to achieve wall

stabilization of the I = I displacement mode. X - will be close to the

minimizing energy perturbation when an arbitrary pressure profile is

considered.

(b) Charge-Separation Stabilization of Trapped Particle Mode at Finite Beta

The original theory of trapped particle modes obtained a charge

separation stability condition in a low-beta limit. Tandem mirror designs

are based on satisfying the trapped particle stabilization condition for

beta values approaching, and even exceeding the MHD critical beta limit,

Pcr. We have treated the stability of a finite beta trapped particle mode

for the following type of geometry: an anchor region that strongly

stabilizes flute modes with the lengths in the anchor and transition regions

much shorter than the overall central cell length and with the length of the

transition region larger than the bad curvature region of the central cell.

We then find that the charge separation stability criterion becomes more

severe as the beta aproaches the critical beta for marginal stability. If 0

is not too close to cr' we find in the eikonal limit that the stability

condition is,

2 4k r2

Q /P/Pcr

which is identical to that given in Eq. (15). The reader is referred to the

text for definitions. We note here that AQ/Q is the relative charge
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separation of the passing particles. The formula was derived with the

assumption. AQ/Q;k r2/Q << 1. The factor, ), indicates the

enhanced difficulty of satisfying the stability condition as beta aproaches

the MHD beta condition. The most stringent condition on the charge

separation parameter, (BdQ/Q), occurs as P approaches Pcr' At this value

of P the stability condition is

2 27 k r2 Q 1/2

If the goal of a tandem mirror design is to operate near or above the

critical beta for MHD stability, the above criterion should be satisfied

during build-up to eliminate the non-resonant curvature-driven trapped

particle mode.

In the analysis used to obtain the above results, it was assumed that

the anchor region strongly stabilizes flute modes and that the anchor length

is much smaller than the central cell length.

(c) Rotation and Curvature Driven Modes

We have analyzed trapped particle-rotational driven modes in the

presence of curvature for two pressure profiles: (1) a steep pressure

profile at a radius r = r where we performed the analysis when .4/r < 1;
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(2) a diffuse pressure profile where exact analytic solutions can be

obtained. We found that the steep pressure profile is considerably more

stable than the diffuse profile. One reason is the possibility of a robust

stabilization mechanism, for I > 2. that arises from the finite beta FLR

term. This term becomes extremely important if fr /4 > 1. in which case a

robust stability arises for electric field rotational rates comparable to

the diamagnetic drift frequency. As pointed out in Ref. 6, this robust

stabilization term, together with wall stabilization of the f = 1 term, can

provide for a strongly stabilized system which has only positive energy

excitations.

At low beta, when 6r /A << 1. the sharp boundary model still gives a
p

stability condition that is nearly an order of magnitude more favorable

than the diffuse profile. The reason for the improvement is not clear, and

seems to be the result of detailed quantitative calculations. Nevertheless,

even with a steep pressure profile, stringent stability constraints arise

for the trapped particle mode driven by the combination of rotational and

curvature drives.

We can apply our results to the Tara experiment, which is designed to

operate with only electrons passing from the center cell into the anchor

region. 13 We note that our analysis is restricted to conditions in which

the plasma can be treated as collisionless which requires w ~ wg > V ,
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where Y is the electron collision frequency. Such a collisionality

condition has not yet been fulfilled for i - 1 in the current unplugged mode

of. operation of Tara, but the collisionless regime is expected to be

achieved in upcoming experiments. Analysis of the Tara experiment in terms

of our model is complicated by the addition of axisymmetric plug cells

between the solenoidal central cell and the stabilizing minimum B anchor.

Ions with an average energy of 12 keV are injected into these plugs which

provide the main MAHD destabilizing drive. The longer center cell plasma

with an ion temperature of 400 eV contributes to the inertia and to the FLR

terms. To apply our analysis we treat the plug region as part of the center

cell. This is appropriate to the extent that the mode is flute-like through

the two regions. From Eq. (19) we note that the drive and inertia terms in

each region are weighted by the factor fdt/B2 . Using the steep pressure

gradient model and the long-thin expression for the curvature. c ~ r/Lcv'

where Lcv is the characteristic length of the curvature region we obtain

Lcv c L P

2 B 2 L B2 ElL pL

n m +A
B Bc p

where we assume n. is constant axially. Using Lc = 5m, Lp = im, Lc = im,

Bc = 2kG and B = 5kG, we obtain
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-yHD = 2 x 10 secJ

In evaluating the expression for wg, the contributions from the

pressure on the center cell and plug must be weighted by the appropriate

factor of fdt/B2 . We account for this by introducing an effective

temperature, Teff

-i Ti +L Ti

Tf = c 76O eV
L L

B Bc p

The relevant value of w*j is thus

5c -1
W.. = T -4 x 10t sec

eB r

for rp = 10 cm. We note that AQ defined by Eq. (24) must be evaluated for

Ti = Teff, while Q defined by Eq. (21) is evaluated only for electrons and
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hence involves the center cell electron temperature, approximately 400 eV.

Thus dQ/Q~- .5 assuming that 4wE 0.

We thus conclude that the stability parameter, r =(7MHD/w*i) is

approximately equal to .25. We note that this is greater than the value of

.18 at which the stability island in the steep profile model disappears for

Q = 2.7. The prediction of the Gaussian profile theory is yet more

pessimistic. We note, however, that the numbers are sensitive to the values

chosen for r and Ti. The value of the stability parameter shows that the

excitation of a trapped particle mode in a configuration of the Tara design

is probable.

(b) Axial Shear Driven Mode

We have generalized the description used in Ref. 5 to describe the

trapped particle mode obtained by axial shear in the equilibrium electric

fields when the electric field is inward in the MHD anchor region. In our

description, the geometry is more realistic than given in Ref. 5, and the

analysis is valid even in the non-eikonal limit. The onset for stability is

roughly the same condition as in Ref. 5. However, the large k

stabilization condition differs. We do not obtain their condition as we

have considered a limit of small anchor length. Our stabilization mechanism
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depends on finite T i/T., which was not predicted in Ref . 5. which treated

T i/T e 0.
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Figure Caption

Fig. 1. Equilibrium model of tandem mirror. The quantities BC. Lc' f' 'Ec

denote the magnetic field, length, equilibrium electrostatic

potential and equilibrium ExB drift frequency in the center cell.

The corresponding quantities subscripted by the letter "a" refer to

the anchor region. The quantity B denotes the maximum magnetic

field, a labels distance along the field line from the origin at

the mid-plane.

Fig. 2. Stability windows in "E as a function of Q for the steep pressure

profile model for AQ/Q = -.5 and (ty /* )2 = 0., .1, .18. The

boundaries of the stable region are labelled with the mode numbers

f, which give the most stringent stability criteria at that point

in the WE, Q) parameter space.

Fig. 3. Stability windows in tE as a function of Q for the diffuse

pressure profile for AQ/Q = -. 5 and (tey D/w*)2 = 0., .01. .027.
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