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ABSTRACT

The linearized Vlasov-Maxwell equations are used to investigate the influence

of intense equilibrium self fields on the cyclotron maser instability. A uniform

density (^b) electron beam propagates parallel to an applied axial magnetic field

Boiz with average axial velocity abc. The particle trajectories are calculated

including the influence of the radial self-electric field and the azimuthal self-

magnetic field. Moreover, the linearized Vlasov-Maxwell equations are analyzed

for body-wave perturbations localized to the beam interior, assuming electromag-

netic perturbations about the equilibrium distribution function f = (- /2p
2 2 2 b nb~lp

x 6(p%-ybmV )6(pz-ybmabc). Near the beam axis (wpbr /c << 1), it is found that

the transverse electron motion is biharmonic, with oscillatory components at the

frequencies w and wb defined by w = (2 /2) 1- [1- (2 b /b)(1-6 )]1. Simi-

larly, the electromagnetic dispersion relation for waves propagating parallel

to BOiz exhibits two types of resonance conditions: a high frequency resonance

(HFR) corresponding to w-kabc = W , and a low frequency resonance (LFR) corre-

sponding to w-k$bc = Ob. Both the HFR branch and the LFR branch exhibit insta-

bility, with detailed stability properties depending on the value of the self-field

parameter s = w b c2b. Moreover, the LFR branch is entirely due to self-field

effects, whereas the HFR branch represents a generalization of the conventional

cyclotron maser mode to include self-field effects. The full dispersion relation

is analyzed numerically, and the real oscillation frequency wr = Rew and growth

rate w = Imw are calculated for both types of modes over a wide range of system

parameters s, L1 ,b and kc/wcb. Analytic estimates are made of the cyclotron

maser growth properties in circumstances where 2 y /2 is treated as a small param-

eter. [Here, yZ = (1-a )-.] It is found that the maximum growth rate is given

by w i = (2y )_ [5(2UY5 S)]wcb, which occurs for wavenumber k = km bYzbwcb/C.

As the beam density (s) is increased, the growth rate w. increases to the maximum

value w ax = Yz 2 Wcb/2 for beam density s = sm = 2 y . As s is increased beyond

sm , the growth rate w. decreases to zero for s = so = 2ayz. Similarly, the

instability bandwidth Ak = (2yzWcb/c)[yz - 1~ (s/2) ]1 approaches zero as s

approaches so,
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I. INTRODUCTION AND SUMMARY

There is growing experimental1-3 and theoretical4-9 evidence that the

cyclotron maser instability is an effective mechanism for coherent

radiation generation by intense electron beams. For the most part,

gyrotron devices have been operated at relatively low current, where

equilibrium self-field effects are negligibly small. However, with the

increasing interest in high-power gyrotron applications, it is important

to investigate properties of the cyclotron maser instability under

conditions corresponding to high beam current and density. For suffi-

ciently high beam density, as measured by the dimensionless parameter
10 ,11

= 2

s = _q ,
Wcb

it is anticipated that equilibrium self fields will have a large influence

on detailed stability properties. Here, wcb = eBO/Ybmc is the relativistic

cyclotron frequency, w2 = 4 /2bm is the relativistic plasma frequency-

squared, P b is the electron density, Ybmc2 is the characteristic electron energy,

and B0 is the strength of the axial magnetic field. Previous theoretical studies of

the cyclotron maser instability4-9,12,13 have assumed s<1. However, a recent

calculation by Davidson and McMullin 10 shows that the spontaneous emission by a

test electron in a nonneutral electron beam is significantly modified by

equilibrium self-field effects at moderate values of the parameter s.

The purpose of the present analysis is to develop a kinetic description

of the cyclotron maser instability which includes the influence of

equilibirum self fields in a self-consistent manner.

The equilibrium configuration and particle trajectories are discussed

in Sec. II. A uniform density ( b) electron beam propagates parallel
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to the applied magnetic field Bo , with average axial velocity abc. With-

in the electron beam (r<rb), the particle trajectories are calculated in

Sec. II including the influence of the radial self-electric field Es(x) and

azimuthal self-magnetic field Bs(x) [Eq.(7)]. Near the beam axis

(W 2r2/c2 << 1), it is found that the electron motion transverse to B

is biharmonic with oscillatory components at the frequencies W+ and w

defined in Eq.(19). For electron energy ymc2 strongly peaked around

Yyb = const., and axial velocity azc strongly peaked around OZ Lb = const.,

the frequencies w, [Eq.(19)] reduce to w defined by [Eq.(37)]

± =c 1

wb -2 1
1 b

"3cb

For negligibly small equilibrium self fields, the inequality (2w 2 /Wcb)(1-a

<<1 pertains, and Eq.(37) reduces to b + cb and w + 0.

In Sec. III, including equilibrium self-field effects, the linearized

Vlasov-Maxwell equations are used to investigate electromagnetic stability

properties for body-wave perturbations localized to the beam interior.

Neglecting transverse spatial variations (a/ax = 0 = a/ay), and assuming

perturbations about the uniform beam equilibrium [Eq.(6)]

2np
'b _L z 21T p -'- Ym± . b~c

the resulting dispersion relation for right-circularly-polarized electro-

magnetic waves propagating parallel to Boiz is given by [Eq.(36)]
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2 2 2

-2 -- + (w2-k-abc)1
; c (w-kabc) -W cb(w-kabc) pb b

W W2_2c 2 [wk )2 (W 2/2)(1-a2) 2 2
- 2 b)2-k2c2)[(w-k]bc)2 - + (w-ksbc) (w pb/2)

2c [(w-ka bc) 2 _ Wcb(w-ka bc) + (W /2)(1-a )

Here, s = V /c, k is the axial wavenumber, and w is the (complex)

oscillation frequency with Imw > 0 corresponding to instability. In the

limit of a tenuous electron beam with (2w2 /W2b)(-2 ) << 1, Eq.(36)pb cb)1b)
reduces to the familiar dispersion relation 12 ,13 for the cyclotron maser

instability, which exhibits resonant behavior when the cyclotron resonance

condition w-kabc = Wcb is satisfied. However, for finite, non-zero values

of (2w / 2 )(1-2 ), it is found that the dispersion relation exhibits twopb cb b

types of resonances. These are: a high frequency resonance (HFR)

corresponding to [Eq.(41)]

w-ka +
w-ksbc = wb

and a low frequency resonance (LFR) corresponding to [Eq.(42)]

w-kBbc = Wb

The high frequency condition w-kabc = wbis a generalization of the

cyclotron resonance condition w-k bc = Wcb to include equilibrium self-

field effects. The low frequency resonance condition w-kSbc = wb is new

and is entirely associated with self-field effects.

In Sec. IV, the dispersion relation (36) is solved numerically for

the real oscillation frequency wr = Rew and growth rate w = Imw over a

wide range of system parameters s = 2 /bb and kc/b It isWpb/cb a.L 8, Wcb*
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found that both the HFR branch and the LFR branch exhibit instability.

Moreover, detailed stability properties are strongly affected by the

equilibrium self fields, even at relatively modest values of s( 0.1).

While the majority of the unstable LFR branch corresponds to slow-wave

propagation (|wr/kI < c), it is found that the HFR branch corresponds

primarily to fast-wave propagation (Iwr/kI > c) with wr-kabc W cb for

a wide range of system parameters. This mode is identified with the

cyclotron maser instability, appropriately modified by equilibrium self-

field effects. In Sec. V, the solution to Eq.(36) corresponding to the

cyclotron maser instability is investigated in considerable detail,

treating a y /2 as a small parameter. A careful analysis of the dispersion

relation shows that the maximum growth rate is given by [Eq.(62)]

1 2
= [s (2 ay 4 - s )] b

which occurs for wavenumber [Eq.(63)]

k = km = z2bacb /c.

Here, s = w / 2 and yz = (1-a21, and Eq.(62) includes the full influence ofpb'Wcbb

equilibrium self fields. The instability bandwidth Ak is also estimated

in Sec. V. We obtain [Eq.(70)]

c(Ak) 2 2 s [ (
- 2y -

W cb 0.L2

As the beam density (s) is increased, it is evident from Eq.(62) that wi

increases to the maximum value [Eq.(64)]
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max._ 22
"3 - -Y Z -LWcb
1 2 '2cb

for beam density satisfying [Eq.(65)]

S = sm

As s is increased beyond s=sm, the growth rate w. in Eq.(62) decreases to

2 4zero for s = s0 = 2ayz. From Eq.(70), there is a concomitant decrease

in bandwidth Ak from Ak = 2y ocb/c for s << 2 2y , to Ak=O for s=s

Finally, the derivation of the analytic estimates in Eqs.(62)-(65)

and Eq.(70) assumes y 2 << 2. Correspondingly, 2s = 2(w /2 (1-a )

=a 1 2 is assumed to be a small parameter in the derivation of the

estimates in Eqs.(62)-(65) and Eq.(70). Strictly speaking, the

full dispersion relation (36) should be solved numerically (Sec. IV)

to determine stability properties in a regime where 2s/y( + 1, and the

equilibrium self fields are even more intense.

To summarize, depending on the value of s = 2 /Wcb, the present
"pb "cb'

analysis indicates that equilibrium self fields can have a large influence

on the cyclotron maser instability as well as introduce a new unstable

mode (the LFR branch discussed in Sec. IV). In this regard, a more

precise description of self-field effects will require a stability analysis

for perturbations about a radially confined self-consistent beam equilibrium

fo (H,Pp
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II. EQUILIBRIUM CONFIGURATION AND PARTICLE TRAJECTORIES

We consider an intense relativistic electron beam propagating parallel

to a uniform applied magnetic field Bojz. The mean motion of the electron

beam is in the axial and azimuthal directions, and the applied magnetic

field provides radial confinement of the electrons. In equilibrium

(a/at = 0), the beam is assumed to be azimuthally symmetric (a/ae = 0),

infinitely long, and axially uniform (a/az = 0). To make the analysis

tractable, we also assume that the diamagnetic self field associated with

the beam rotation is negligibly small, i.e., |B (r)I << B0. Therefore,

for this equilibrium configuration, there are three single-particle

constants of the motion. These are the total energy

H = (m2c4 + c p ) - eo0 (r) (1)

the canonical angular momentum

P = rp - eB0r2/2c, (2)

and the axial canonical momentum

Pz z - (e/c)A0 (r) . (3)

In Eqs.(1)-(3), p = (pr'Re'Ez) is the mechanical momentum, *0 (r) is the

equilibrium electrostatic potential associated with the beam self-electric

field, A0(r) is the axial component of vector potential for the equilibrium

azimuthal self-magnetic field, c is the speed of light in vacuo, and -e

and m are the electron charge and rest mass, respectively. Without loss

of generality, it is assumed that the self-field potentials 00(r) and

A0 (r) are zero at r=0. For uniform beam density (Yb it will be shown

later in this section that the self-field potentials in Eqs.(1) and (3)
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scale as w br2/c2 within the electron beam (r < rb). Here, = 4 nbe2 2bm

is the relativistic plasma frequency-squared, and ybmc2 = const. is the

characteristic electron energy. Therefore, near the axis of the electron

beam (w br2/c2 << 1), it follows from Eqs.(1) and (3) that

pz
(4)

(r a ~)

are approximate single-particle constants of the motion. Evidently, the

approximate constants of the motion in Eq.(4) are applicable only for

electron motion near the axis of the beam.

The purpose of the present analysis is to investigate the influence

of self-field effects on the cyclotron maser instability in the

beam interior. Therefore, we consider the class of uniform beam equi-

libria of the form

f = f 2(p2,p (5)

That is, the influence of finite radial geometry is neglected in the

present equilibrium and stability analysis. In addition, although the

stability analysis is formulated for general choice of f (p2,pz) in

Sec. III, detailed stability properties are calculated for the specific

choice of equilibrium distribution function

o = n b Ybmp - 6
b = p -ybmg 6 (Pz Y bmVb) , (6)

where b = const. is the beam density, the constants Vb and V are related

to the relativistic mass factor Yb by Yb = (1 - Vb/c 2 - V2/c2)-, and

the constant Vb can be identified with the average beam velocity in the

axial direction. Equation (6) is a good representation of the beam

distribution function in many gyrotron experiments.
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As indicated earlier, we assume a uniform density (A b) nonneutral

electron beam propagating parallel to the magnetic field B0ez. It is also

assumed that the current density is uniform with JbO(r) = -^besbc within

the beam interior. Neglecting the diamagnetic self field associated

with beam rotation, the equilibrium radial self-electric and azimuthal

self-magnetic fields associated with the beam space charge and axial

current can be expressed as

0 (Ybm/2e)p (x + yk) ,

B = (Ybm/2e)p~bb(A x - xky)

inside the electron beam (r < rb). Here, ^ and are unit Cartesian

vectors in the plane perpendicular to BAez ab = Vb/c is the average axial

velocity,

pb Ybm(8)

is the relativistic plasma frequency-squared,

eB0
Wcb - 0(9)

Ybmc

is the relativistic cyclotron frequency, and ybmc2= const. is the character-

istic electron energy. In the present analysis, it is assumed the electron

energy ymc2 is strongly peaked about ybmc2 = const., where

/ 2 
2

y= L+ 2+ = (10)

is the relativistic mass factor. Making use of Eq.(7), the electron

trajectories [x'(t'), y'(t'), z'(t')] are determined from



10

d 1 / v z

' ~ - Ybmwpbx 1 b) - Ybmocbv(

d 1 V

dt'p = -YbrPby'(1 -bp b + Ybmwcbvx , (12)

d 1 2 2
p2 Ybm apb bc(x'v' + y'v')/c , (13)

within the electron beam. Here, v'(t') = dx'(t')/dt' and p'(t') =

y'(t')mv'(t'). Moreover, the "initial" conditions are chosen such that

(x',p') passes through the phase space point (x,p) at time t' = t.

It is readily shown that Eqs.(11)-(13) possess the single-particle

constants of the motion

d d 2 2 ,2 ,2 1
- H ' - [ymc2 - - mc b( 2 0 (14)
dt' dt' 4 C

d d 1 2 (x 2 2

-P = - P - YbmSbc 2 0 (15)
dt' dt' 4 c

corresponding to conservation of total energy and axial canonical

momentum [Eqs.(1) and (3)]. Certain lowest-order simplifications in the

particle motion are evident from Eqs.(14) and (15) for electron motion

near the axis (w 2 r2/4c2 << 1). For these electrons, it follows from

Eqs.(14) and (15) that y'mnc2  const. and p' = y'mv' ~ const. to lowest

order. Therefore, expressing p' = y'mv' and p' = y'mv' with y' ~ y

(treated as constant), and expressing a' = v'/c with a' ~ az = Vz/c
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(treated as constant), the transverse orbit equations (11) and (12) reduce

to

y d 1 2- - v' - wpx'(1-vzab cb '(
yb dt' x 2 pb

Y' d 1 2- -- v' = - W pb Y(1 zab) + wcbx
Yb dt' 2

Equations (16) and (17) can be integrated exactly to give for the perpen-

dicular velocity,11

v'(t') + iv'(t') = (+~- 1 +[Wv exp(ip)

+ W +-rexp(ie - i7/2)]exp(iw+ T) (18)

- [wv exp(ip) + w+W-rexp(ie-iTr/2)]exp(iWT) ,

where T = t'-t, and w+ and w_ are defined by11

2y2
Ybwcb 12y

2y - bcb

For a sufficiently narrow energy spread, y ~Yb=const., and the axial velocity

z z/C = pz/ymc in Eq.(19) is approximately equal to the average value

ab = const.

In Eq.(18), the initial conditions are chosen such that v'(t'=t)+iv'(t'=t)

= Vx +ivy = v exp(io), and x'(t'=t)+iy'(t'=t) = x+iy = rexp(ie). Moreover,

the contribution proportional to (2ywp/Ybwcb)(1- zb) in Eq.(19) is

associated with electric and magnetic self-field effects. If we take Y Yb

and az = 6b in Eq.(19), it is clear that
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(2w /Wcb (1-6 ) < 1 (20)

is required for the equilibrium to exist and for the orbits to be radially

confined. In the limit at a very tenuous electron beam with (2w b /Wb

x (1-.2) << 1, it is clear from Eq.(19) that + -* WC = eB0/ymc and

W_ + 0, and Eq.(18) reduces to the familiar result v' + iv'x y
v exp(ip + iw T). For finite values of w b 2b, however, equilibrium

Ic pb "cb'hwvreqibiu
self-field effects modify the particle trajectories, and the perpendicular

motion is biharmonic with oscillation components at frequencies w+ and w-.

For particles sufficiently near the axis that w r << v , Eq.(18) is

further simplified to give

v'(t') + iv'(t') = (W+-w)1 w v exp[i(O+W+T)]

(21)

- w_v exp[i(+W T)

In a similar manner, we obtain

v'(t') - iv'(t') = (L+- +v exp[-i(+T)]

(22)

- W-v exp[-i(O+W T)] .
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we develop the general formalism to investigate

cyclotron maser stability properties for perturbations about the class of

beam equilibria described by Eq.(5). For present purposes, emphasis is

placed on wave perturbations interior to the electron beam. All perturbed

quantities 6p(z,t) are expressed in the form

6*(z,t) = 6*expli(kz-wt)l , (23)

where Imw > 0 corresponds to instability, and perpendicular spatial variations

are assumed to be negligibly small (3/ax = 0). The transverse electromag-

netic field perturbations 6E = -(1/c)a/3t(6A) and 6B = V x6A can be

expressed as

6E = i(w/c)(6Axe + 6A y )expji(kz-wt),

(24)

6B = ik(-6A y + A )expli(kz-wt).

Moreover, the vector potential 6A = 6A x + 6A is determined self-

consistently in terms of the perturbed distribution function 6fb(z,p,t) =

6fb(p)exphi(kz-wt)l from the Maxwell equation

/ 2 1 a2  6 4 7Te 3

_7 - - j A =-dv7fb(zPt) (25)
(az c at c

Making use of the method of characteristics, the linearized Vlasov equation

for 6fb(zp,t) can be integrated to give

t

fb(-P)= e fdt'exp[ik(z'-z)-iw(t'-t)]
(26)

S v'x6B+ - (p', '
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where the particle trajectories (x',p') solve Eqs.(11)-(13) with "initial"

conditions x'(t'=t) = x and p'(t'=t) = p = ymv. Substituting Eq.(24)

into Eq.(26), we obtain

t

f = i -fdt'exp[ik(z'-z) - iw(t'-t)]
c

x [v'(t')6A + v'(t')^A ] (27)

xx x y'm y zf~p2p
'm a ( a p' a b

In the subsequent analysis, we define

A = 6A ± i6A , (28)
y

where the upper sign (+) corresponds to the branch with left-hand circular

polarization and the lower sign (-) corresponds to the branch with right-

hand circular polarization. The combination [v'6A + v'6A ] in Eq.(27)x x y

can then be expressed as

[vx'(t')lA + v;(t')lAy]

(29)

= - [v' (t')lA_ + v'(t' )lA+3]
2

where v (t') = v'(t') iv'(t') are defined in Eqs.(21) and (22) to the

level of accuracy required in the present analysis.

In the curly-bracket factor -f (2,p') in Eq.(27), we now

assume that (p',p') can be approximated by (p pz) near the axis of the

electron beam (see Sec. II). This factor is then taken outside of the

t'-integral in Eq.(21). After some straightforward algebra that makes

use of Eqs.(24), (25) and (27)-(29), we obtain the eigenvalue equation



15

( 2  1 a2- 2 1 D A+expfi(kz-wt)

i 4we2

-= - 6 A +e xp Ii (k z- t)
2 c

x d ymW 0 1af 0 p f
jdv p ap _L (ap~ z ap _ )

(30)

0

x Jdexp[-i(w-kvz)r]v (t')exp(±io) ,

where T = t'-t, and v4(t') = v'(t') ± iv'(t') are defined in Eqs.(21) and

(22). Here, z'(t') has been approximated by z'(t') = z + vzt , and use has

been made of

d3p--- = fd4 dpz dp p-

2Tr 0 -w 0

and fdoexp(±2io) = 0 to simplify the right-hand side of Eq.(30). Note

from Eq.(30) that the two equations for 6A+ are completely decoupled.

Therefore, without loss of generality, we consider the lower sign in Eq.(30)

corresponding to right-circular polarization. Substituting Eq.(21) into

Eq.(30) gives the dispersion relation

W2 2 4e2 3
- k2 - -Tfd p

c 2ym 

ymW afp af z af0
- + k b -z b

pL ap apz %L a p

(-i) 0
x (W-- dTexp[-i(w-kv Z)r +epi +T)

- wexp(iWT)] .

Introducing the re-normalized distribution function Fb 2 ' z) defined by

(31)
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p 2,p) = Fb P pz) , (32)

and carrying out the time integration in Eq.(31), the dispersion relation

can be expressed as

W~p 2 +r 2_ 1o C Fa2 2 b2 p 2Fb k Fbc k =- p jdpz = I (ym-kpz) - + kp -- , (33)
c y0 m ap apZ

where the orbit integral I is defined by

y(yw-kpz/m)
I = 2 y~wk /) 2 .(34)

(yw-kpz/m) - "co(yw-kpz/m) + wp 0 b(Y-Yz/mc)/ 2

In Eq.(34), wco = eB0/mc is the nonrelativistic cyclotron frequency, and

S2 = 4Te 2nb/m is the nonrelativistic plasma frequency-squared. In obtaining

Eq.(34), use has been made of the definition of w in Eq.(19).

For present purposes, we specialize to the choice of distribution

function in Eq.(6), which corresponds to

2 1
Fb (P z - (p±b z M p -YbmSbc) . (35)

2 2 2 2
Here, the relativistic mass factor Yb is defined by Yb = (1-V /c -V /c2

where Vb = bc is the average velocity in the axial direction. After

some tedious but straightforward algebra that makes use of Eqs.(34) and

(35), the dispersion relation (33) can be expressed as

2 2 2 (w-k bc) 2

q2 _' 2 ( 1_a2)
c c (w-k bc) - cb (-k abc) + pb b)/2

(36)

w 2-k 2c2)[(w-kabc)2 - (w /2)(1-a)] + (w-k2bc) (2 /2)

2c 2 [(w-kbc)2 wcb(w -kbc) + (w /2)(1-a )]
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where V = V/c, wcb = eBO/Y bmc, and w = 4nbe2 /Yb/m. Introducing

the frequencies w defined by

b

W =11 [1 (222 1B2 )1 (7
b 2 cb [ - pb /cb)(1- )] , (37)

the dispersion relation (36) can be expressed in the equivalent form

2 2 (w-kabc)2

-2 - k 2 = w b b
c c (w-kabc-Wb)(w-k bc-W-)

(38)

2 2 2 22 )[(kb)2 - (w /2)(1-s ) (w-kb2(2 /2)Wb2 (w -k c )Ewkac) p ) + (wkbc) (wpb/2

2c (-kabc-W)2 (w-kabc-W-)

Note from Eqs.(19) and (37) that w (yyb' z=8b)'

Equation (36) [or Eq.(38)] consititutes one of the main results of this

paper and can be used to investigate stability properties for a broad range

of system parameters. In this regard, we emphasize that Eq.(36) has been

derived with no a priori assumption that 2 <<1 or that 2 <<1.
-L b
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IV. ANALYSIS OF THE DISPERSION RELATION

We now investigate the stability properties predicted by Eq.(36). In

the limit of a tenuous electron beam with (2w /Wcb)(1-a ) << 1, the self

fields are negligibly small and w + Wcb and w~ + 0 in Eq.(37). The

corresponding dispersion relation (36) [or Eq.(38)] for the cyclotron

maser instability in the tenuous beam limit reduces to the familiar

result
12 ,13

W2 2 2 (w-k bC)22 2
- k= -{L

c c w-kabc-w cb
(39)

S2 2-k2 2

2c (w-kbc-ocb)

Note that Eq.(39) exhibits resonant behavior when the cyclotron resonance

condition

w-kbc = cb (40)

is satisfied. We refer to Eq.(39), valid for (2w b /cb2)(1-0 ) << 1, as

the reference dispersion relation (RDR).

On the other hand, for finite, non-zero values of (2w /W)b

it is clear from Eq.(38) that there are two resonance conditions. These

are:

'F 2
w-ksbc = cb 1 + 1- b (1-) , (41)b wb :M= b

2 W cb
and

2

w-kBbc = bb = 12 - - 2 (1-6 ) (42)

wcb
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The resonance condition in Eq.(41) represents a generalization of the

cyclotron resonance condition in Eq.(40) to include the influence of

equilibrium self-field effects. The resonance condition in Eq.(42), which

also occurs in calculations of the spontaneous emission from a test elec-

tron, 0 is entirely associated with self-field effects. It should also

be pointed out that the term proportional to s 2 on the right-hand side of

Eq.(38) drives the instability, whereas the first term [the term propor-

tional to (w-kabc) 2] on the right-hand side of Eq.(38) has a stabilizing

influence.

For the case of relatively low beam density satisfying

s )pb /cb (43)

Eq.(38) can be approximated by

W2 2 2 2 (w -k bc)

- k = W b ( --b) (w-k abc -w )
(44)

W 2 2-k2c2 2 - (W /2)(1-s 2) + (W )2(W /2)pb 2 (w c[(b) -(pb/
2 (lb)] b) ~ pb'

+ -2 + 22c (W-W b) (w-kabc-W b)

for the high frequency resonance (HFR) w-ksbcWb , and by

22-w2 2pb b (w~kbc)

c c (W bwb) (w-kabc-Wb)

(45)
2 -2 2 2 2 -2 2

W b 2 ( -k c )(W b - ( /2)(1-6 b)] + (wb) (wpb / 2 )

2c ( + -)~ 2 (w-ka bc-W~)2

for the low frequency resonance (LFR) w-kabc~wb. Note that the final

term in Eq.(45) is proportional to (wb)2, which vanishes in the limit of
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negligibly small self fields with (2w2 /Wcb)(i-) -- 0. Thus, for relatively

low beam density satisfying Eq.(43), the dominant stability behavior is

governed by the approximate dispersion relation in Eq.(44).

The growth rate w = Imw and real oscillation frequency wr = Rew have

been calculated numerically from the complete dispersion relation in Eq.(36)

[or Eq.(38)] for a broad range of system parameters, s , $Sb s = /W b
_L b' pb cb1

and kc. Because most gyrotron experiments operate at relatively small

axial wavenumber satisfying k2c2 cb < 1, in the present analysis the

allowable range of the wavenumber k is restricted to -wcb < kc < wcb*

Shown in Fig. 1 are plots of (a) the normalized Doppler-shifted real

frequency (wr- kabc)/wcb, and (b) the normalized growth rate w . /W cb versus

kc/w cb obtained from Eq.(36) for 6 = 0.5, sb = 0.2 and s = 0.05. In

Fig. 1(a), the solid curves correspond to stable oscillations with Imw = 0,

and the broken curves correspond to the real frequency of the unstable

solutions to Eq.(36) with Imw = w > 0. For each real value of kc, Eq.(36)

supports six solutions for w, with the complex roots occurring in conjugate

pairs. Several features are noteworthy from Fig. 1. First, the unstable solu-

tion with Doppler-shifted real frequency close to wcb in Fig. 1(a) corresponds to

to the high frequency resonance (HFR) defined in Eq.(41). The unstable solu-

tion with small Doppler-shifted real frequency in Fig. 1(a) corresponds to

the low frequency resonance (LFR) defined in Eq.(42). This general feature

(two classes of unstable modes) persists over the entire range of system

parameters s, a and ab* Second, for small positive values of wavenumber

satisfying kc/wcb - 0, the LFR branch in Fig. 1 exhibits two unstable

solutions. In this regard, the unstable LFR mode with wr-k bc > 0 in

Fig. 1(a) originates from the interaction between the two modes w=kc and

w=ka bc+W b* This interaction is expected and the instability persists as

the beam density (as measured by the self-field parameter s) is increased.
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On the other hand, the unstable LFR mode with wr-kabc < 0 in Fig. 1(a)

originates from the interaction between the two modes w = -kc and w = kabc+wb'

this is a weak interaction and the instability occurs only over a limited

range of s and b. As evident from Fig. 1(b), the growth rate of this

particular LFR mode is small. Therefore, this mode is neglected in the

subsequent analysis. Third, as evident from Fig. 1(b), even at moderately

low beam density (s = 0.05), the maximum growth rate of the low frequency

resonance mode can be a substantial fraction of that of the high frequency

resonance mode.

Introducing the wave phase velocity Vp defined by V = Wr/k we

identify "fast" and "slow" waves by V2 > c2 and V2 < c2, respectively.
p p

A careful examination of Fig. 1(a) shows that a portion of the HFR branch

corresponds to fast-wave propagation and a portion corresponds to slow-

wave propagation. For example, in Fig. 1(a), the region kc/wcb < -0.9

(kc/wcb > -0.7) corresponds to slow-wave (fast-wave) propagation for the

HFR branch. Because gyrotron experiments typically operate in a waveguide

or cavity, only the fast-wave solution corresponds to a propagating electro-

magnetic mode where the azimuthal bunching mechanism dominates. On the

other hand, the slow-wave solution, with phase velocity smaller than the

speed of light, is a non-propagating mode in a waveguide, at least in the

limit of a tenuous electron beam. In addition, the instability mechanism

for the slow-wave solution is axial electron bunching in the direction of

wave propagation. We also find from Fig. 1(a) that most of the low

frequency resonance branch corresponds to slow-wave propagation. More-

over, the fast-wave portion of the high frequency resonance branch in

Fig. 1 can be identified with the conventional cyclotron maser instability,

modified by equilibrium self-field effects. In practical circumstances,

the slow-wave portion of the low frequency resonance branch may deteriorate

the beam quality in high-current gyrotron operation.
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As a reference calculation, in Fig. 2 we present solutions of the

reference dispersion relation (RDR) in Eq.(39), valid in the limit of

negligibly small self fields with (2w2 /Wcb2)(1-B ) 0. In particular,

Fig. 2 shows plots versus kc/ocb of (a) the Doppler-shifted real frequency

(r- kBbc)/wcb, and (b) the growth rate wI /Wc obtained from Eq.(39) for

8 = 0.5, ab = 0.2 and s = 0.05. Comparing Fig. 2(a) with Fig. 1(a), it

is evident that the low frequency resonance mode is absent in the reference

dispersion relation (39). Moreover, for the low beam density (s = 0.05)

assumed in Figs. 1 and 2, the real frequency and growth rate of the high

frequency resonance mode calculated from Eq.(39) are almost identical to

those calculated from the full dispersion relation in Eq.(36).. At higher

beam densities, however, the stability properties calculated from Eqs.(36)

and (39) can differ substantially.

Of considerable practical interest are the growth rate and real

oscillation frequency of the high frequency resonance (HFR) mode as the

self field parameter s = w / 2 is increased. Typical results obtainedpb' cb

from Eq.(36) [or Eq.(38)] are shown in Fig. 3, where (a) the Doppler-

shifted real frequency (wr-kabc)/W cb, and (b) the growth rate i /Wcb are

plotted versus kc/wcb for a. = 0.5, 8b = 0.2 and several values of s

ranging from 0.1 to 0.5. In Fig. 3, the solid and dashed curves represent

the fast- and slow-wave solutions, respectively, for the HFR branch.

Remarkably, the Doppler-shifted real frequency (wr-k~bc) of the fast-wave

solution (corresponding to the cyclotron maser instability) is approximately

equal to wcb over the entire range of wavenumber k corresponding to insta-

bility (w. > 0). Equally remarkable, the real oscillation frequency of the

cyclotron maser instability satisfies wr -k bc-W~cb for beam densities

ranging from s = 0.1 to s = 0.5 [Fig. 3(a)]. For a = 0.5 and ab = 0.2, we

also note from Fig. 3(b) that the maximum growth rate of the cyclotron maser
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instability increases as the beam density is increased from s = 0.1 to

s = 0.3, and then decreases for s = 0.4 and s = 0.5.

In order to complete the numerical analysis of the dispersion relation (36),

we now present stability results for the low frequency resonance (LFR) mode

for s ranging from 0.1 to 0.5. Shown in Fig. 4 are plots versus kc/wcb of

(a) the Doppler-shifted real frequency (wr- kbc)/Wcb, and (b) the growth

rate wi/wcb obtained from Eq.(36) for the low frequency resonance mode for

s = 0.5, b = 0.2 and several values of s. In Fig. 4, the solid and dashed

portions of the curves represent the fast- and slow-wave solutions, re-

spectively. Although the growth rate of the low frequency resonance mode

is substantial for the values of beam density assumed in Fig. 4, the real

oscillation frequency is much less than that of the cyclotron maser insta-

bility considered in Fig. 3. In addition, most of the low frequency re-

sonance mode with sizeable growth rate corresponds to the slow-wave solution.

That portion of the low frequency resonance mode corresponding to the fast-

wave solution does have substantial growth rate at moderate beam density.

This fast-wave solution may be a plausible candidate for microwave generation,

in addition to the cyclotron maser instability (appropriately modified by

self-field effects).
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V. CYCLOTRON MASER INSTABILITY

In Sec. IV, we identified the cyclotron maser instability appropriately

modified by self-field effects as the fast-wave portion of the high frequency

resonance branch in Eq.(36) [or Eq.(38)]. Because present-day gyrotron

experiments operate in a regime corresponding to the cyclotron maser

instability, in this section we make use of Eq.(36) to investigate detailed

properties of the cyclotron maser instability including the important

influence of self-field effects. For notational convenience in the sub-

sequent analysis, we introduce the frequency w' and axial wavenumber k'

in a frame of reference moving with the axial velocity $bc of the electron

beam. The frequency w and wavenumber k in the laboratory frame are related

to w' and k' by

W = y + k'8bc) , (46)

and

k = yz (k' + we'b/c) , (47)

where yz = (1-a2)' is the relativistic mass factor associated with the

axial motion. Substituting Eqs.(46) and (47) into Eq.(36), it is straight-

forward to show that the dispersion relation in the beam frame is given by

,2 2 ,2
_ k' 2 = w+

c c W - cbyzw' + pb/2

(48)
2 212 2
b 2 2 (w,2-k'2c2 )(W'2- 2 /2) + w' /2

b 2 2 (w'pb P
2c .2 _ wcbz' + /2)

As evident from Fig. 3(a) in Sec. IV, the real oscillation frequency

' of the cyclotron maser instability is approximately equal to y zwcb
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over a wide range of system parameters a , b and s = 2 /wc . That is,

Wo ~ Yz cb (49)

is an excellent approximation for the range of system parameters investigated

in Sec. IV. A more detailed analysis (later in Sec. V) shows that Eq.(49)

is generally valid provided

1 2 <<«1 . (50)
2

The inequality in Eq.(50) is easily satisfied in the parameter range of

present-day gyrotron experiments. We now introduce the normalized wave-

number c and eigenfrequency Z defined by

=k'c/wcb ,(51)

and

Z = _Yzwcb)Y + -

Wcb 2 
(52)

(w-kabc-Wcb Y z
+ -s.

W cb 2

Making use of Eqs.(49), (51) and (52), it is straightforward to show that

the dispersion relation in Eq.(48) can be approximated by

(Yz~2_2)Z 2 - sy 2Zz~zz

(53)
1 2 2 4 _ 2 2 1 )]=0,+ - y s[y (y - s)]=

where s = w 2 2 is defined in Eq.(43). Equation (53) is a quadraticpbt cb

equation for Z and can be readily solved.
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Introducing the function h(C 2,s) defined by

1 2 2 z ( - s/2)
h 2(C 2,S) = - sa y 2 2 z

2 Yyz C

(54)
1 s 2y4

Z

4 (y2 _ C 2z

the necessary and sufficient condition for Eq.(53) to exhibit instability

(Imw' > 0) is given by

h 2,S) > 0 (55)

In addition, when Eq.(55) is satisfied, the normalized growth rate

Z. = ImZ = ImW'/Wcb for the unstable branch can be expressed as

2
Z. = h(c ,s) (56)

for specified wavenumber (C) and beam density (s). A careful analysis of

the function h2 (2 s) defined in Eq.(54) shows the following properties.

(a) The values of h2 ( 2,s) at c2 = -0 and C 2=0 are given by

h2 (-os =
2  2 1 2 2_

h2(--,s) h - sy Z (2y -s) (57)
4

and

h2(0,s) = h2 = 2 2 S) (58)0 - L . 584

(b) The function h2 2,s) assumes its maximum value

h2(C ,s) = h

(59)

- ss Y (2y-S) + -1 s
4 16

at
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2= c - (2/ 2)(1 - YS 2 /2) (60)

(c) For specified values of s, yz and aL, the function h2 2

vanishes for normalized wavenumber satisfying

2 2 y (2y - s/2)
c 0 22(y 2- s/2)7

(61)

2(y - s/2)(2y 8 2 - s)]
xl ji 1- 2

2 yz(2y2 - s/2)2

(d) Finally, we note from Eq.(54) that h2 ( 2,s) exhibits singular

behavior at C2 = 2
Yz

Shown in Fig. 5 is a schematic plot of h2 2,s) versus c2 assuming

2 2 < 2, which is consistent with Eq.(50). In Fig. 5, only the region

C2 > 0 is physically acceptable. Moreover, the region c2 > y corresponds

to slow-wave solutions, which are excluded in the subsequent stability

analysis.

In the region 0 . C2 < y2 corresponding to the cyclotron maser insta-

bility, the function h2 C 2,s) assumes its maximum value h2(0,s) = h2 at
0

2 0. Therefore, making use of Eqs. (47), (49), (51), (52), and (58), it can be

shown that the maximum growth rate of the cyclotron maser instability is

given by

1 2
[( Z - s)]Iwcb , (62)

2y Z

which occurs for axial wavenumber

k=k = Yabcb/c (63)
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in the laboratory frame. As a function of s, the maximum growth rate

in Eq.(62) increases with increasing beam density (s), and achieves the

maximum value

max 1 2 2
i - Y zaicb (64)2

for beam density satisfying

2 4S = sm = z (65)

For s> sm 2 Y4For s > m = the maximum growth rate in Eq.(62) decreases to zero

as s approaches s = 2 2y .

Shown in Fig. 6 are plots of the maximum normalized growth rate w /Wcb
versus the parameter s for c=0, a =0.5 and ab=0. 2. The dashed, solid,

and dotted curves are obtained from Eqs.(62), (36) and (39) respectively.

The two curves obtained from Eqs.(36) and (62) are almost identical. We

therefore conclude that Eq (62) is an excellent estimate of the maximum

growth rate of the cyclotron maser instability. It is evident from the

dotted curve in Fig. 6 that the reference dispersion relation (39), which

neglects self-field effects, gives an increasingly poor estimate of the

maximum growth rate for s > 0.2.

As indicated earlier, gyrotron experiments are typically carried

out in a waveguide. To maximize the growth rate and efficiency of micro-

wave generation, it is required that the group velocity of the vacuum

waveguide mode be approximately equal to the beam velocity, i.e.,

dw kc2
V =- =- bc . (66)
g dk W

The condition for cyclotron resonance is

w ~ kabc + Wcb .7 (67)
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Solving Eqs.(66) and (67) simultaneously gives k = km = Y b b/c, which

is identical to Eq.(63). This is an alternate way to estimate the wave-

number k = km corresponding to maximum growth.

The condition for existence of the equilibrium in Eq.(20) can be

expressed in the equivalent form

2
S z

2

In circumstances where y2 exceeds 2s by a sufficiently large amount, theuz

quantity 2O defined in Eq.(61) can be approximated by

0 = Yz - -)

(68)

(69)

From Fig. 5 and Eq.(56), we conclude that the cyclotron maser instability

exists only for c in the range -c< C < C. Of considerable practical

interest is the bandwidth of the instability. In this regard, we define

the effective wavenumber bandwidth Ak by

Ak = 2yz 'Owcb/c

2y s( i 2cb
2yz I z ( ~' 

(70)

which represents the range in k-space for which instability exists (w. > 0).

Shown in Fig. 7 are plots of the normalized bandwidth c(Ak)/wcb versus

the parameter s for $ = 0.5 and ab = 0.2. The solid, dashed, and dotted

curves correspond to the bandwidths calculated from Eqs.(36), (70) and

(39), respectively. Evidently, the analytic estimate of Ak in Eq.(70)

gives good agreement with the bandwidth calculated from the full dispersion
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relation in Eq.(36). On the other hand, the reference dispersion relation

(39), which neglects equilibrium self-field effects, gives an overestimate

of the bandwidth which becomes increasingly poor at larger values of s.

Note from Fig. 7 [and from Fig. 3(b)] that the bandwidth Ak of the cyclotron

maser instability decreases as s increases.

Finally, we make use of Eq.(53) to estimate the real frequency shift

6Wr =" r - k bc - Wcb) from exact cyclotron resonance (wr - kabc - Wcb = 0).

The frequency shift dwr is directly associated with the efficiency of

radiation generation. From Eq.(53), it is readily shown that

1 sy2
Zr = ReZ = - z (71)

2 yZ 2

in the unstable region of parameter space [h2 (2 ,s) > 0 in Eq.(55)]. Making

use of the definition of Z in Eq.(52), the frequency shift 6wr can be

expressed as

6W r( -kSbc cb cb 2 (72)2y Y
2z z

From Eq.(72), we note that the frequency shift 6wr increases from zero as

the parameter c2 increases. Shown in Fig. 8 are plots of the normalized

frequency shift 6wr /Wcb versus s for s = 0.5, ab = 0.2, and c= 0

corresponding to the maximum growth rate. The solid and dotted curves are

calculated from Eqs.(34) and (39), respectively. The analytic estimate of

6Wr in Eq.(72) predicts zero frequency shift (i.e., 6wr = 0) for c = 0.

Given the sizeable deviation of 6wr from zero calculated from Eq.(36) for

s > 0.1, it is clear from Fig. 8 that the analytic estimate of 6 r in

Eq.(72) fails at moderate beam density. Moreover, the reference dispersion

relation (39), which neglects equilibrium self-field effects, gives an even
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larger error (as well as the incorrect sign) in estimating the frequency

shift 6'r (compare the dotted and solid curves in Fig. 8).

The maximum frequency shift calculated from Eq.(72) is given by

sW - -1[ s ) wb(3
Sr = (S a, - ,g - ob(3

wu2 = 2which occurs for C2 = , corresponding to the stability boundary

h( Os) = 0 in Fig. 5. In obtaining Eq.(73), use has been made of Eq.(69)

and (72). The frequency shift 6wr in Eq.(73) assumes the maximum value

6 max 1 22 (7
6Wr -Yza-Wcb (4

which occurs at the beam density

1 4 2
s = Y Z .-(75)

2

2 2
Provided YZB2 << 1 [see also Eq.(50)], we note from Eqs.(64) and (74) that

both the real frequency shift 6wr and the growth rate w. are sufficiently

small that the approximation in Eq.(49) is valid. Moreover, because the

estimate of c2 in Eq.(69) has assumed 2s << y2, it should be reiterated

that the expression for the wavenumber bandwidth Ak in Eq.(73) breaks down

for sufficiently high beam density that s + y2/2.



32

VI. CONCLUSIONS

In the present analysis, we have made use of the Vlasov-Maxwell

equations to investigate detailed properties of the cyclotron maser insta-

bility including the important influence of intense equilibrium self fields.

Following a discussion of the equilibrium configuration and particle tra-

jectories (Sec. II), the general stability formalism was developed

(Sec. III) for body-wave perturbations localized near the axis (r=O) of

the electron beam. The resulting dispersion relation in Eq.(36) [or

Eq.(38)] includes the influence of intense equilibrium self fields on

stability behavior. In Eq.(36), two distinct types of resonance were

identified, namely, the high frequency resonance (w-kabco +), and the low

frequency resonance (w-k bc =wb). In Sec. IV, the dispersion relation (36)

was solved numerically over a wide range of system parameters. While the

majority of the low frequency resonance (LFR) branch corresponds to a slow-

wave solution, it was found that the high frequency resonance (HFR) branch

corresponds primarily to a fast-wave solution with wr-k8bc =cb over a wide

range of system parameters. This mode was identified with the cyclotron

maser instability, appropriately modified by equilibrium self-field effects.

In Sec. V, the mode corresponding to the cyclotron maser instability

was investigated in considerable detail. After a careful analysis of the

dispersion relation, treating 2y /2 as a small parameter, it was shown

that the maximum growth rate is [Eq.(62)]

s2= - s)] cb '
2yz

which occurs for wavenumber k = km 2 /c. Here, s = 2 /W 2, andt ibwcbntu spb rtcb d

the influence of intense equilibrium self fields is fully incorporated
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in Eq. (62). In Sec. V, the instability bandwidth Ak was estimated to

be [Eq.(70)]

c(Ak) 2 s-- = 2yz z
Wcb 2

Evidently, the bandwidth Ak decreases monotonically to zero as the self-

field parameter s approaches s0 =2a . Moreover, from Eq.(62),

maximum growth occurs for s = sm = 2 Y .

To summarize, depending on the value of s = w b /Wcb, the present

analysis indicates that equilibrium self fields can have a large influence

on the cyclotron maser instability as well as introduce a new unstable

mode (the LFR branch discussed in Sec. IV). In this regard, a more precise

description of self-field effects will require a stability analysis for

perturbations about a radially-confined self-consistent beam equilibrium

fA(H,PCOE
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FIGURE CAPTIONS

Fig. 1. Plots of (a) the normalized Doppler-shifted real frequency

(Wr-k bc)/W cb and (b) the normalized growth rate w./wcb

versus kc/wcb obtained from Eq.(36) for a = 0.5, 8b = 0.2

and s = 0.05. The solid curves in Fig. 1(a) correspond to

stable oscillations with Imw = 0, and the broken curves

correspond to unstable modes with Imw = w > 0.

Fig. 2. Plots of (a) the normalized Doppler-shifted real frequency

(Wr-kabc)/Wcb, and (b) the normalized growth rate w /Wcb

versus kc/w cb obtained from the reference dispersion

relation (RDR) in Eq.(39) for 6 = 0.5, ab = 0.2 and

s = 0.05. The solid curves in Fig. 2(a) correspond to stable

oscillations with Imw = 0, and the broken curves correspond

to the real frequency of the unstable modes with Imw = wi > 0.

Fig. 3. Plots of (a) the normalized Doppler-shifted real frequency

(Wr-kabc)/Wcb' and (b) the normalized growth rate w./Wcb

versus kc/wcb obtained from Eq.(36) for the high frequency

resonance (HFR) mode for a = 0.5, ab = 0.2 and several values

of s. The solid and dashed curves correspond to the fast-

and slow-wave branches, respectively.

Fig. 4. Plots of (a) the normalized Doppler-shifted real frequency and

(b) the normalized growth rate versus kc/w cb obtained from

Eq.(36) for the low frequency resonance (LFR) mode for

a = 0.5, ab = 0.2 and several values of s. The solid and

dashed curves correspond to the fast- and slow-wave branches,

respectively.
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Fig. 5. Schematic plot of the function h2 2,s) versus c2 assuming

Y 22 < 2 [Eq.(54)].Z -L

Fig. 6. Plots of the normalized maximum growth rate wi/Wcb versus s

for B = 0.5, ab = 0.2 and c = 0. The dashed, solid, and

dotted curves are obtained from Eqs.(62), (36), and (39),

respectively.

Fig. 7. Plots of the normalized bandwidth c(Ak)/wcb versus s for

= 0.5, and ab = 0.2. The solid, dashed, and dotted curves

are obtained from Eqs.(36), (70), and (39), respectively.

Fig. 8. Plots of the normalized frequency shift 6wr/wcb versus s

for B = 0.5, sb = 0.2, and c = 0 corresponding to the

maximum growth rate. The solid and dotted curves are obtained

from Eqs.(36) and (39), respectively. The solution to

Eq.(72) for c = 0 is the straight line 6wr = 0.
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