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ABSTRACT

In this paper, the energy extraction stage of the gyrotwystron is investigated by using

a self consistent rf field model. In the low field, low current limit, expressions for the self

consistent field and the resulting energy extraction efficiency are derived analytically for

an arbitrary cyclotron harmonic number. To our knowledge, these are the first analytic

results for the self consistent field structure and efficiency of a gyrotron device. The large

signal regime analysis is carried out by numerically integrating the coupled self consistent

equations. Several examples in this regime are presented.
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I. INTRODUCTION

In the gyroklystroni, the electrons entering the energy extraction resonator are pre-

viously bunched in their phase angles by the buncher stage. As a result, high efficiency

can be expected. Stable single mode emission is anticipated because the beam current

can be lower than the threshold current for parasitic mode excitation in the output res-

onator. Important applications include rf driven accelerators2 , radars3 besides the obvious

application in rf heating of fusion plasmas.

The gyrotwystron 4 can be regarded as a gyroklystron in which the energy extraction

stage consists of a travelling wave section. Compared to the gyroklystron, its main char-

acteristic is the quasi-absence of a wave reflection by the cavity, resulting in a minimum

cavity Q. The feedback is thus provided by the presence of the electrons in the cavity.

In general, two different theoretical models are employed to describe the rf field-

electron interaction in the energy extraction resonator. The first model 1-2,4-6, which is

the simplest one, assumes that a rf field spatial profile can be prescribed (usually a Sine

or a Gaussian function for the axial field distribution) independently of the electron beam

current. This model can somehow be improved by including the effect of the electron

current on the wave frequency 2 . In a previous paper', we have adopted this simple ap-

proach in order to examine the optimum operation in gyroklystrons in terms of a minimum

number of normalized parameters.

The second model treats the rf field-electron interaction self consistently and has

extensively been used in the analysis of single cavity gyrotron8 9 where the electrons are

not prebunched. This approach is proven to be more appropriate than the first model for

low-Q resonators. For multiple cavity gyroklystrons, a small signal theory based on this

approach has been given in refs.10 and 11.
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In the present work, we adopt the self consistent approach to investigate both the low

field, low current regime and the large signal regime in the energy extraction resonator

of a gyrotwystron. The basic model is briefly reviewed in section II. In section III, a

comprehensive analytical study is presented in the low field, low current regime, assuming

a simple expression for the bunched electron distribution at the entrance of the energy

extraction resonator. Analytical expressions for the self consistent field profile as well as

the energy extraction efficiency are obtained for all cyclotron harmonics; these results may

also serve as a useful test for nonlinear self consistent numerical codes. Section IV describes

a numerical procedure to solve the self consistent equations, based on the finite element

method. Applications of this method are illustrated for the case of the gyrotwystron in

the low current regime as well as in the high current regime. Comparison with the results

obtained from the simple fixed field model is also examined. Finally, the conclusions of

the present work will be outlined in section V.
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II. PHYSICAL MODEL AND ASSUMPTIONS

II.A Basic Equations

In the present analysis, we consider an annular beam of magnetized weakly relativistic

electrons interacting with the transverse electric (TE) field

Et (r, P Z t) = E, f (z) i,,(r, ,zt),(t)
k 1 (z)

where imp denotes the familiar TEmp eigenmode in a cylindrical resonator

em rm Jm(kiLr) ,/r + kJ(kr] ei(ot-M().

The transverse wave number kj = vmp/R (vmp and R are respectively the pih nonzero

root of J and the cavity radius) is a slowly varying function of the z coordinate. The

dimensionless function f(z) in Eq.(1) describes the spatial profile of the rf field and is

normalized to its maximum value. Throughout the analysis, we assume that

a. only one mode is present in the resonator

b. the interaction occurs near the cut-off frequency of the resonator (k1 < k1 )

c. the collective effects are negligible

Within the assumptions mentioned above, the electron dynamics can be described by

a slow time scale model where the fast cyclotron motion is averaged out. By choosing an

appropriate normalization, the single particle, single mode equations for the electron mo-

tion at the nh cyclotron harmonics can be reduced to the well-known first order differential

equation for the complex momentum P (see for example refs.8,9):

dP
+ i(A - 1 + w)P = -inFf( )w~ 1  (2)

d g
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with the following definitions:

P = ( Y, exp(i'6) (3.a)

w = P (3.b)

2kz (3.c)213 110

= 2 (3.d)

EF"~ = nn- 1 \,nn~-~F * -In! ck) (3.e)

In these equations, the subscript o designates quantities defined at the entrance of the

resonator, 3 j = vjL/c, 31 = vj /c are respectively the transverse and the parallel velocities

normalized to the light velocity c, -y is the relativistic factor, w,, is the relativistic cyclotron

frequency, B is the static magnetic field and Re is the electron beam radial position. In

addition, an appropriate transverse momentum distribution for the bunched electrons at

the entrance of the resonator (depending on the chosen model for the prebuncher) should

be given to specify the required initial condition for the differential equation (2).

Using the expression for the rf field given in Eq.(1) and the Maxwell equations, one

can obtain9 the equation for the field profile function f:

[ 2/f 2 f, 2 ) 2
d2+(k2 - k2 = -k- {P (4)dZ2 I k-L \20po F

where a weakly wall tapered resonator has been assumed. In the rhs of Eq.(4), I designates

a dimensionless current proportional to the beam current IA (in Amp.) as defined by

16 eIA 2(n-4)0, na n 2 j2 ±.(ki )1 =r -L R (5)7r fomeyoc L o (2nn! (V2 - m2)j2 (V.,)

and (- ) defines an ensemble average over the electrons. Assuming a negligible field

amplitude in a cutoff section at the entrance of the resonator (z = zin) and the radiation
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condition at the resonator output (z = zOOe), the appropriate boundary conditions for

Eq.(4) can be formulated as

k=0 
(6.a)

d f'
= -i kjf (6.b)

dz k-L z=z,,, kL. Zz"U

II.B Conservation Relations

Multiplying Eq.(4) by f*/k_ and integrating from zi to zout yield

2k rkl |f/k-1| 2 o 'xi (7.a)

2k [|ddz (f/k)|2 - k f/k 1
2 ] dz _ IX (7.b)

where we have introduced the complex coupling term defined as

xxr+ixi - ( k f(P) dz= f'(P)d (8)F F0

On the other hand, it can easily be shown from Eq.(2) that the transverse energy conversion

efficiency 77L = 1 - (w(z 0 ut)) is related to X by

il= F2 X, (9)

Therefore, the relation (7.a) states that the power emitted by the electron beam is balanced

by the rf power diffracted through the output section of the resonator. The second relation

(7.b) describes the frequency shift due to the presence of the electron beam. It is interesting

to note that the same conservation relations can be derived from the time-dependent wave

equation (assuming for example a fixed, Gaussian rf field profile) and the conditions for

equilibrium
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In high-Q resonators where the rf field profile f(z) can be approximated by an empty

cavity eigenmode (obtained by solving Eq.(4) with I = 0), these relations can be used

to determine the steady state output power as well as the oscillation frequency, once x

is known from numerically integrating the electron equation of motion with a given field

magnitude F. For low-Q resonators, the rf field profile equation (4) should be calculated

self consistently with the electron equation of motion (2); the relations (7) then can serve

as an useful diagnostic for the numerical procedure.

7



III. LINEAR ANALYSIS

In this section we want to derive analytically the efficiency in the small signal regime

.from the self consistent gyrotron equations given in Eqs.(2) and (4). For the sake of sim-

plicity, we assume that the electrons emerging from the buncher stage are monoenergetic

and have a phase angle distribution given by7

0( = 0) =0 + qsin 0 - Od, 0, uniformly distributed over [0, 22r] (10)

where q is a dimensionless bunching parameter and Od is a constant free-streaming term.

In addition, we assume that the gyrotwystron output section has a constant radius (k1 =

const.) and a constant magnetic field (A = const.) along the z-axis. The interaction region

is characterized by an effective length p (normalized accordind to Eq.(3.c)) which can be

defined either by changing abruptly the magnetic field or by introducing a weak irregularity

on the cavity wall radius, at some position in the travelling wave tube. The wave equation

(4) can then be written in the following dimensionless form

d2 f Id f+ r.2 f (Pd 2  F
(2 2 ') (2 ) k(11)

In the limit of small F, Eq.(2) together with the initial condition specified by Eq.(10) can

be readily solved to the first order in F. Then, by averaging P over the initial electron

phase angle distribution, one obtains the following expression

(PW) _--i'() {J(q) e-"'/ + d ' j dc" [fe*(51)" - J 2 (2q)e-2i8,L f-e-iP(I")

+ in d fei** } (12)

o A d'
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The first term in the rhs of Eq.(12) designates the unperturbed prebunched electron cur-

rent. For low current I and optimum prebunching (q ~ 2), the contribution from this term

is dominant and a straightforward integration of Eq.(11) yields to the lowest order in I

If()q e- ~ e A5 {1 -ei(ICA)s sin c eKe(P} (13)

The complex coupling term x defined by Eq.(8) can then be calculated and finally, em-

ploying the definition of the transverse efficiency in Eq.(9) yields

r/1 =Ip3J (q)G(ry p

G (, y = 2 f1 - cos(x - y) +1 [cos 2x - cos(X + y) + cos(X - y)] (14)G(x, y)+1-o(4
X + y (X - y)2 2x X - y X + y

One can note that the dimensionless parameters x = ip and y = Ap can be written in

terms of the physical quantities as

x = k11L = (w2 _ L,2n/R 2 ) L/c
(15)

y = (w - nwc) LvII,

The function G, shown in Fig.(1), exhibits several maxima corresponding to the different

longitudinal modes that can be excited in the cavity. The first maximum occurs at A = 0,

k1iL = 1.69 ~ 7r/2 and is equal to 0.519 ~ 16/7 3 .

By comparing these results with those derived from the gyroklystron model7 in which

the resonator is characterized by a minimum Q ~ 47rL 2 /A2 and a Gaussian field profile,

one can note that the dependence of the efficiency 7Li on I, M, q is the same for both

models, although the rf field profile in the gyrotwystron, given in Eq.(13), is not Gaussian.

Moreover, the optimum 77_ occurs at A = 0, q = 1.84 in both models and has the same

value, provided that the width of the Gaussian is sligthly smaller than the gyrotwystron

length, iGaussian - 0. 8 7 /pGTW-

The bandwidth can be estimated from Eq.(15) and Fig.(1) as

(- ~I - 6X2 = 0.07 - (16)
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This relation shows that the bandwidth is only a function of the interaction length L/A.

The same bandwidth dependence is found in the fixed field model since the bandwidth, in

that model, is inversely proportional to Q which goes as L2 /A 2 . It should be pointed out

here, that the simple small signal results obtained above are applicable for any cyclotron

harmonic n.
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IV. NONLINEAR ANALYSIS

This section presents a numerical procedure to solve iteratively the self consistent

single mode equations (2) and (4) which describe the steady state in the gyrotwystron

output resonator. The frequency of oscillation w in this resonator is fixed by the operating

conditions at the buncher stage and is then considered as a known parameter in our

analysis. At the entrance of the resonator we assume that the electrons are monoenergetic

and have an initial phase angle distribution characterized by only one parameter q as

specified by Eq.(10) [the constant term Od can be dropped by the substitutions P -

Peioi, f - feO in Eqs.(2,4)]. However, more realistic initial distributions can be easily

implemented in the present procedure.

By choosing a convenient normalization defined by R = RIRN, ZVmp/RN, O

wRN/CVmp, f= FRf, where RN is an arbitrary normalization radius, the set of coupled

differential equations to be solved can be rewritten as follow

dP + i(A - 1 + w)P = -n , I = *L. 02 (17.a)
d R 2#110

0 ( O) = 0, + qsin 0, 00 uniformly distributed over [0,27r] (17.b)

d 2 f 2 2

+ o 22/_1* (17.c)d 22 R 2 2#|| R

f(Zin) = 0, f'(s0 s) = -i (2 / 2 ) tj (17.d)

The problem is then completely defined by giving a resonator geometry as specified by

R = R(2) and the set of dimensionless parameters n, I, q, #_o, 01o, A and 0.

The iterative procedure to solve the coupled differential equations (17) can be sum-

marized as follows:

a) The iterations are started with (P) in the rhs of Eq.(17.c) approximated by its un-

perturbed values given in Eq.(12). By using the Finite Elements method", it can
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be shown that the Eqs.(17.c,d) can be discretized into a linear system of algebraic

equations. This system of equations is tridiagonal because the first order linear el-

ements are chosen and therefore, can be solved by the very fast forward-backward

substitution method".

b) Once the field profile f(2) is found, the equation of motion (17.a) is integrated by a

first order predictor-corrector method. At the end of this step, the average complex

momentum (P) as a function of 2 (or ) is calculated so that the step a) can be

repeated with the updated values of (P).

The iterations are performed until the efficiency ijj converges to a constant value.

Experience shows that 3 (for low current, low efficiency cases) up to 50 iterations are

required to obtain the convergence. The accuracy of the solution is checked by computing

at each iteration the error in the conservation relation (7.a). In most cases presented

hereafter, relative errors less than 10-3 are achieved with 128 equidistant mesh point on

the z-axis and 128 particles.

For low current and n = 1, q = 2.0, ,OL = 0.4, #Io/#6Io = 2.0, R(2) = 1 for

0 < 2 < 15, the transverse efficiency ?ij as a function of C and A, calculated with the

procedure described above, are compared with the analytical result, Eq.(14). Figure 2

shows such a comparison for I = 10-'. The optimum efficiency obtained numerically is

3.45% at o = 1.0070, A = 0.054 while the small signal model yields an optimum 1j equal

to 3.75% at C = 1.0064, A = 0. For normalized currents lower than 10-3, the agreement

becomes indeed better.

Increasing the current I yields a larger transverse efficiency as shown in Fig.(3) where

I = 0.075 with the other parameters being the same as in Fig.(2). Both the optimum

magnetic detuning parameter and the optimum frequency of oscillation increase (Aot =
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0.86, v = 1.0232) with an optimum efficiency equal to 66.8%. Figure 3 also shows that for

each frequency, the efficiency can be optimized by adjusting A (i.e. the magnetic field).

As a result, the bandwidth remains almost the same as in the low current case.

The field profiles for I = 0.001 and I = 0.075 are shown in Fig.(4) as a function of

Z. The presence of a backwards wave can be noticed by examining the field amplitude

in the high current case, near the end of the interaction region. Agreement between the

complex field obtained here and the analytical expression given in Eq.(13) is good for the

low current case.

The optimum efficiency as well as the parameters for obtaining this optimum are

plotted as functions of the dimensionless current I in Fig.(5.a) and the normalized interac-

tion length vmpL/R ~ 27rL/A in Fig.(5.b). Comparisons of these optimum characteristics

with the results calculated by assuming a Gaussian field profile 7 show a qualitatively good

agreement, as have been already found in the low field, low current case, in section III.

As a final remark, we should note that the present numerical code can be employed

to analyze more realistic gyroklystrons or gyrotwystrons (R = R(z), A = A(z)). Fur-

thermore, a more sophisticated description of the prebunched beam at the entrance of the

resonator than the simple model implied by Eq.(10) can be implemented in a straightfor-

ward manner to the present version of the code.
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V. CONCLUSION

In this paper, we have made use of the self consistent equations to investigate in

detail the steady state of the energy extraction stage of a gyrotwystron. In order to

gain some physical insights, we have derived analytically the self consistent field profile

[Eq.(13)] as well as the transverse efficiency [Eq.(14)] in the small signal regime (low field,

low current). To our knowledge, these are the first analytic results for the self consistent

field structure and efficiency of a gyrotron device. These results can also be used to test

nonlinear numerical codes. In the large signal regime, we have employed the finite element

method to solve the nonlinear self consistent field equation (section IV). Inspection of the

results shows that the self consistent model and the fixed field model (Gaussian profile)

yield qualitatively the same results at optimum operating conditions.

Finally, some extensions (more sophisticated initial conditions for the prebunched

electron beam, introduction of velicity spread) to our numerical procedure can be worked

out with modest efforts. The resulting code should be very useful for the design study of

any multiple cavity gyrotrons.
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FIGURE CAPTIONS

Figure 1 Contour levels for the function G(x, y) defined in Eq.(14).

Figure 2 Comparison between the numerically computed efficiency (solid line) and the

analytical result given by Eq.(14) (dashed line) for I = 0.001, PmLIR = 15,

q = 2, 13j = 0.4, / = 2, at the fundamental cyclotron harmonics. The

cross near the a-axis designates the position where the numerically computed

efficiency is maximum. The contour lines show the efficiency decrease from this

maximum at the rate of -1dB.

Figure 3 Transverse efficiency contour levels for the same parameters as in Fig.(2) except

that I = 0.075. Note that the position of the maximum efficiency is now shifted

to A = 0.86, o = 1.0232. The maximum efficiency here is equal to 0.668.

Figure 4 The rf field profile for I = 0.001 and I = 0.075 versus the normalized axial

coordinate 2 = vmpz/R.

Figure 5 The optimum efficiency qL, magnetic detuning parameter A, rf field magnitude

F, oscillation frequency Co versus (a) the dimensionless current I and versus (b)

the normalized interaction length umpLIR.
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