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Electric probes in plasmas

B. Lipschultz, I. Hutchinson, B. LaBombard, and A. Wan

Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

This paper provides a background for the use

of Langmuir and gridded energy analyzer probes in di-

agnosing plasmas with varied characteristics. Theory

is illustrated which governs the analysis of data

from, and the design of these probes. Several

probe analysis techniques and some of their typical

problems are presented.

PACS numbers: 52.70.Ds; 07.50. + f; 07.50 + x; 06.50.Mk

1. Introduction

Electric and magnetic probes are among the earliest ana most

basic plasma diagnostics. They are used in a wide variety of

plasmas ranging from the low-density, low-magnetic field space

plasmas to those at the edge of fusion research devices. Interest

in probes has increased and waned over the years since Irving

Langmuir first explored their usefulness. They have lately en-

joyed a revival in fusion research because of the recently recog-

nized importance conferred upon the plasma edge. Although electric

probes are fairly straightforward to design, build and operate,

theoretical models used to analyze the resultant data can be

quite complicated. Generally, the degree of difficulty encountered

in applying the selected model depends on what accuracy is desired.
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Choosing a theory depends on two criteria: 1) whether a correct

theory exists for the situation in hand, and 2) whether the

accuracy and difficulty of performing the theoretical analysis is

justified by the accuracy of the experimental data.

This paper presents a brief theoretical background of

theory for the operation of, and analysis of data from, Langmuir

electric and gridded-energy-analyzer (GEA) probes. Further in-

depth theory is available in a number of reterences. 1 -4 Design

criteria and further examples of the use of a variety of probes

can be found in the literature. 5-7 Perhaps ot greater interest

to an experimentalist reading this paper is the discussion of

various data analysis methods.

2. Simple Probe Theory

2.1 Qualitative Description of the Langmuir Trace

The general form of a Langmuir probe current versus bias

voltage characteristic is shown in Fig. 1. In the following

discussion, current being drawn by the probe is designated as

positive. 1p is the plasma potential with respect to the probe

ground. When 5, the probe bias, is very negative with respect to

Op, the electric field around the probe will prevent all but the

highest energy electrons from reaching the probe, ettectively

reducing the electron current to zero. The current collected by

the probe, Isi, is then due entirely to positive ions, which en-

counter only an attracting electric field; thus it is termed the

'ion-saturation current'.

As D is increased, the number of electrons which are able to

overcome the repelling electric field and contribute a negative
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current increases exponentially, reducing I from the value Isi.

Eventually, the electron current collected is equal to Isi

at c = Df. OD is less than 1. because the electron thermal velo-

city is (Mi/me)1/ 2 greater than that of the ions. When the probe

is allowed to 'float', independent of a bias, it quickly develops

the potential of to repel electrons.

Further increase of the probe bias to @p allows the electron

current to completely dominate I. At this probe bias, electrons

are completely unrestricted from being collected by the probe.

Any further increase in (D will simply acd energy to the electrons,

not increase the current drawn. Thus the term 'electron-saturation

current' is used in this limit.

2.2 Sheath Analysis for Non-Magnetized Plasmas

When a probe is immersed in the plasma it strongly perturbs

the potential over a small region designated the sheath. This

perturbation is limited by electron shielding to several Debye

lengths (%Debye = r oTe/nee2]1/2) in distance from the probe. 9

The geometry that will serve as a basis for the following dis-

cussion is illustrated in Fig. 2. The probe surface is designated

by x = xp and the unperturbed plasma by x = w. The sheath thick-

ness, xs - Xp, is assumed to be much less than xp allowing use of

a planar approximation, independent of probe geometry. The plasma

potential at infinity, D(-), is defined to be zero.

The theory of the flow of charged particles to an electrical

probe can be extremely complex. In this section we will introduce

Langmuir probe theory by way of the simplest case 8 : a probe

immersed in a zero-magnetic field plasma with the temperature of
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the ions much less than that of the electrons. The following

additional assumptions are made about the plasma in which the

probe is immersed:

1) electron and ion densities are equal;

2) Debye length << probe dimensions << electron and ion

mean free paths;

3) Maxwellian velocity distributions far away from the probe;

4) no bulk motion of the unperturbed plasma (vdrift << vthermal);

5) no secondary electron emission from the probe surface.

6) fully ionized, z = 1 plasma.

The task of any probe analysis model is to determine the

unperturbed values (in absence of probe) of density and temperature

from the measured variation of probe current with changing bias

potential. Here, we will concentrate on the range of probe bias

where electrons are repelled, i.e. bias potential less than the

plasma potential.

A. Density

First let us direct our attention to the electrons. Their

density, ne(xl), can be obtained by integration over the local

distribution function. The relationship of the distribution

function at an arbitrary x, to that at x = X2 = w, can be deter-

mined by several factors: first, particles are conserved so that

along a particle's trajectory in phase space, (xl,vl) + (x2,v2);

f(xl,vl)dxldvl = f(x2 ,v2 )dx2dv 2 - (1)

Second, Liouville's theorem states that the phase volume occupied

by a set of 'particles' is constant.1 0 In other words dxdv is a
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constant allowing us to equate f(xl,vi) and f(x 2 ,v2 ). Third,

conservation of energy enables us to relate the potential and

kinetic energies at the two locations, (xl,vl) , (x2 ,v2 ), by

1 2 1 2
-mv 1 (x1 ) + eD(x) = -- mv 2(m) + e1() (2)

2 2

We can now write down the local distribution function in

terms of value at x 2 = . and furthermore integrate for ne(xl)

e1/vc 1 2  mv2
ne(xi) f dvin. - - exp[- - -- + e((x 1 ) /kT] (3)

-O 2tkT 2

For the moment T stands for only the electron temperature. The

integration limits are determined by the existence of two classes

of electrons: 1) electrons travelling towards the probe (v < 0),

and 2) electrons that have been repelled before reaching the probe

and are travelling away (0 < v < vc). vc = /2e(.z(xl) - z(xp))/me

is the minimum velocity which electrons need to overcome the elec-

tric repulsion of the probe and be collected there. Completing

the integration we have

n,,
ne(x) = --- exp(e (x )/kT) [1 + erf (/e({(Y - (xp)J7kT) (4)

2

At the xl of interest, near the sheath, 1(xl) - o(xp) >> kT/e and

the Boltzmann relation is retrieved:

ne(xl) = n0,exp(eo(xl)/kT) (5)

For x, > xs the plasma is quasi-neutral. Therefore Eqs. (4) and (5)

apply equally well to ions in that region.
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B. Fluxes

Next let us turn our attention to the ion and electron fluxes,

and thus the current they carry to the probe. The ion velocity

outside the sheath is determined by Eq. (2) where both the

unperturbed potential and the ion velocity at x = w are defined

to be zero. Combining this knowledge with Eq. (5) provides a

description of the ion flux outside the sheath region,

ri(x) = ni(x)vi(x) = neexp(e (x)/kT).(-2e@(x)/Mi)l/2  (6)

(x>xs)

where we have dropped the subscript on x. Since there are no par-

ticle sources within the sheath, the current flowing to the probe

is constant in x. The electron flux to the probe is just the

random flux reduced by the Boltzmann factor evaluated at the probe

potential, so that the total current collected by a probe at bias

V(xp) is

n ee(ek ) e(xs) 2e(xs /2

I = e - -EeApexp 'xp + Asn,,exp Tx)(7
4 kT kT / Mi(7

where As and Ap are the sheath and probe areas, xs the sheath

position and Ce the electron thermal speed. The potential at

the sheath edge, Ds = (x = xs) is as yet undetermined. is can

be determined by solving Poisson's equation in the vicinity of

the sheath.

C. Potential at the Sheath Edge

We now turn our attention to just inside the sheath where ion

and electron densities are no longer equal. To determine the ion

density for x<xs we note that in planar geometry, the ion flux
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must be constant across the sheath and so

ni(x) = nis(vs/v(x)) = nis/* 7 x)

(x < xs) (8)

where nis and Os are the values of ion density and potential at

the sheath edge. Then Poisson's equation inside the sheath

becomes

v2o = -(ens/cE)[(Os/O(x)) 1/ 2 - exp(e(s(x)-os)/kT)I (9)

which, in the region near the sheath, can be expanded8 as:

F 1 e 1
v2o = -(ens/c 0 ) [ - b - T ((x) - ts). (10)

.20sT J
Non-oscillatory solutions of this equation are possible for

Os < -T/2e. The value of do/dx for x xs can be obtained from

Poisson's equation in the quasineutral region outside the sheath. 3

(x) has infinite slope for os > -T/2. Therefore we determine

that

Os = -T/2e. (11)

There are no solutions of Poisson's equation (no sheath) for

Cx P) > -T/2e.

D. Total Current to Probe

Substituting the value for the sheath potential, Eq. (11),

into Eq. (7), the current collected by the probe is then

I = IseeXP(eo(Xp)/kT) + Isi (12)

= -eAp [1/4nCe.exp(es(xp)/kT) - n.(Te/Mi)l/2exp )

Ise = -eAp(1/4n-Ce) (13)
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Isi = .61n.CsAp e (14)

The sheath area has been taken to be approximately equal to that of

probe. CS is the ion sound speed. The floating potential can be

solved for by setting Eq. (12) to zero:

eef/Te = .5[ln(2wme/Mi) -11 (15)

Te can be obtained by examining the slope of the curve described

by Eq. (12) in the exponential region between Iis and Ies-

Then the density can finally be deduced from Eq. (14).

Throughout this discusson we have effectively assumed the

ion temperature should be low enough such that 0.5Miv 2 (=) <.

-eo(xp). If finite ion temperature is allowed at x = -, then the

specific ion orbits and probe geometry must be included in the

model. No simple formulae exist for replacing Eq. (14) because

of the numerical integrations involved, but some results indicate

a weak dependence of the constant .61(=e-1/2 ) in that formula.

Results for monoenergetic ions with Ti = .01.Te and .5.Te incident

on a spherical probe4 yield coefficients of .57 and .54 respec-

tively. Therefore, in practice, Eq. (14) is widely used.

3. Refinements to Langmuir Probe Theory

3.1 Practical approach to probe theory with non-zero magnetic field

The above theory is even further complicated by the inclusion

of magnetic field effects. Ions and electrons spiral around the

magnetic field lines with a radius, in the plane perpendicular to

the field line, of r1 = mv/eB. If this Larmor radius for both

ions and electrons is much greater than the probe dimension, a,

then the previous zero-magnetic field results are recovered.
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The determination of Te can be divided into three regimes:

rne >> a; rne << a; rne ~ a. The first, as described above, is

equivalent to that of the unmagnetized plasma. In the second

regime, one must assume that the electron term of Eq. (12) is

unaffected other than a fractional reduction (R) of the current

due to the limiting rate of cross field diffusion.

Ie = R -- nCeexp(e(xp)/kTe); 0 4 R < 1 (16)
4

Such a reduction parameter was derived by Bohm.4 R decreases

as some monotonic function of the ratio of perpendicular to

parallel diffusion coefficients. Such an effect can be brought

about by increasing magnetic fields or with large sized probes. 1 3

Eq. (16) allows Te to -be deduced in the usual fashion.

In the remaining regime, rne ~ a, Te should be determined by

fitting Eq. (12) to the data only over that portion where rle < a.

Once Te is determined from the above recipes, then the unper-

turbed density, n., follows from Eq. (14) assuming, for rli < a,

that the probe area is reduced to its projection along the mag-

netic field.

3.2 Analytic result for non-zero magnetic field, Ti ~ 0

An analytic treatment of probes in a high magnetic field

plasma similar to that outlined in section 2 does exist.'1

Collisions are allowed sufficient to provide the minimum particle

source required to make this one-dimensional problem soluble. Too

many collisions causes an ion to lose its memory of the potential

where it was borne along the potential gradient. The values of

the sheath potential, ion flux and floating potential are modified
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as follows:

Os = -0. 8 54.Te/e (17)

ri = Asnl(2Te/Mi)1/2 (1/7r)s- 1 /2 =.49n.CAs (18)

Of = (Te/2e)ln(4me/Mi) (19)

As is again the projected area of the sheath along the field line.

Although the sheath potential is significantly modified with

respect to the zero-magnetic field results, the coefficient for

the ion-saturation current is not. Given the accuracy of typical

probe data, a coefficient of .5 in Eqs. (14) and (18) is adequate

for most cases, except perhaps when the ion flux is reduced by

limits on perpendicular diffusion into the probe flux tube.

3.3 Non-zero magnetic field, Ti > 0

A kinetic treatment of the general case of strong magnetic

fields and a range in Ti is given by Emmert.12 Unfortunately

the assumption that ions are borne with non-negligible ion tem-

perature leads to unphysical results for Ti>>Te. In this limit,

the predicted ion flux to the surface becomes twice the random

value. The calculation of the sheath potential, however, is

probably reliable.

Possibly the most general theory that can be applied to the

variety of situations outlined above is that of Stangeby.13 This

approach, in contrast to others discussed, is a fluid treatment

which is not rigorously correct in a nearly collisionless regime.

Nevertheless, most results obtained by kinetic treatments can be

reproduced by this model in the appropriate limits. The primary

attraction of this model is from an application point of view.
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It purports to cover the complete range of non-magnetized to

magnetized plasmas.

4. Gridded Energy Analyzer (GEA) Analysis

The Langmuir probe is a small but rugged diagnostic for

determining electron temperatures, through the electron distribu-

tion function Eq. (12), and ion densities. Unfortunately it can-

not be used to determine the ion temperature nor the existence of

non-thermal components in either species.

The GEA complements the Langmuir probe because of it's ability

to measure those different parameters as well as Te. What is

sacrificed in going to this type of probe is small probe size and

a straightforward density measurement. Examples of its use are

found in the work of Matthews 1 4 and others. 15 -1 7

A typical GEA geometry is shown in Fig. 3a. The entrance

to the GEA can either be a grid or a more rugged knife-edge slit

depending on particle and heat flux considerations. The purpose

of the entrance aperture is to produce a sheath which simultan-

eously reduces the electron heat flux to the interior of the analyzer

and retains the Maxwellian nature of the ion distribution function. 1 2

In other words the aperture should be small enough to allow the

sheath potential perturbation due to the presence of the detector to

extend uniformly across the slit, but large enough to allow a

detectable flux to enter. The entering current would then be

that of Eq. (12) with the same caveats (that OPlasma-Oslit>*sheath)-

The slit width or grid spacing should be less than 10 * Adebye,

or roughly two times the sheath perturbation distance, to achieve

this result.
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A diagram describing the potential at each grid biased for

the measurement of ion temperatures is shown in Fig. 3b. The

first grid, Gl, is used to repel the unwanted species, in this

case electrons. The bias, 02, of the second grid, G2 , is then

varied to limit the collection of ions to those with unperturbed

velocity (x = -) less than vc = 42e(02 - *plasma)/Mi. The last

grid is biased to suppress secondary electron emission from the

collector. For measurement of the electron temperature, most ions

must be repelled. Gl should be biased such that ol > Oplasma +

6.Ti, >> 1. 02 is varied negative with respect to oslit to

'sweep out' the electron distribution function.

To determine the temperature of either species one examines

the variation of current drawn at the collector with varying G2

bias similar to the determination of Te from a Langmuir probe

trace. Specifically, in determining Te, when 02 is negative with

respect to Oslit, the electron current collected will just be the

standard Langmuir electron current:

I = -e.TF(electrons)Aslit(1/4n.me)exp(02 - $plasma) (20)

where TF is the transmission factor of the grids. The exponential

term is just the Boltzmann factor for the reduction in the random

electron flux. For the purposes of obtaining Te, Eq. (20) can be

rewritten

I = Ioexp(e(02-Oslit)); 02 < Oslit (21)
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The ions are only slightly more complicated:

I = TF(ions)eAslit(.5n.Cs)exp[-e($2 - Oplasma)/kTi];

t2 2 tplasma

= TF(ions)eAslit(.5n.Cs); t2 . tplasma (22)

Again we have assumed Itplasma - *slitl > |sheath potentiall and

that the ion flux entering the aperture is .5nwCs with a minimum

parallel velocity of 12e(tplasma - tslit)/Mi-

The primary drawback of the GEA probe is its size which

neccesarily creates a larger perturbation than a Langmuir probe.

The distance between the entrance slit and the leading edge of

the GEA housing limits the amount of plasma that can be sampled.

Estimation of the unperturbed density is much more compli-

cated than for a Langmuir probe. Transmission factors, which are

energy and species dependent, must be calculated with the use of

Monte-Carlo methods to follow individual particle orbits. 1 4 ,1 5

The perturbing effect of such a large structure must also be taken

into account. 1 3

5. Fitting Techniques and Practical Considerations

In this section the subject of fitting the above models to

the data is addressed. For most cases, the comments pertaining

to Langmuir probes are equally applicable to the GEA so that

explicit references to the GEA analysis will be limited to some

examples in section 5.3.

5.1 Logarithmic determination of Te

The advantage of this technique is its simplicity. An

estimate of Isat is made utilizing the knowledge that it is equal



- 14 -

to the total current collected at large negative biases. The

estimated Isat is then subtracted from the current measurements

at probe voltages, 0 < Oplasma, Fig. 1, leaving only the expo-

nential portion of Eq. (12). Te is determined by fitting a

straight line to the logarithim of that difference. Appropriate

transformation of the data weighting must be included1 8 in the

least-squares fit. Once Te is determined, the ion density is

calculated using the estimated value of Isat and Eq. (13).

There are several obstacles implicit in obtaining Te in this

fashion from a Langmuir trace. The ion-saturation current is

estimated by averaging current measurements in some appropriate

voltage region. Similarly, the fit to the exponential part of

the trace must also be limited to a range of points below electon-

saturation and above the voltage where (I - Isat) is on the order of

the uncertainty in Isat. These limits must be determined at the

initiation of the fitting procedure. In practice the upper-voltage

limit to ion-saturation, Vis, is usually predetermined by external

input. Ves, the voltage at the onset of electron-saturation, which

can be set equal to the upper-voltage limit to the exponential

fit, can be determined visually by the appearence of a 'knee' in

the collected current above Vis.

A numerical algorthim can also be used to determine the 'knee'

in the ln(I) plot, Fig. 4. A first value of Ves should be guessed

either from pre-analysis input or from a previous time-step fit.

Then, straight lines are fitted to ln(I - Isat) on either side of

it. The intersection of those two lines provides a new guess for



- 15 -

Ves. The iteration is continued until the change in Ves from one

iteration to the next is less than some predetermined parameter.

Let us consider how accurate this determination of Te is.

We have estimated Isat by an average over k data points where the

electron current is approximately zero. The error in determing

Isat is then e//7, where e is the average signal uncertainty.

If those points where (I-Isat) is of order e/T are included in

any linear fit to the logarithmically transformed data, the slope

will be flatter than l/Te, thus overestimating the value of Te.

The error in Isat can be reduced by increasing k, the number

of data points with current in ion-saturation. If the digitiza-

tion rate is held constant, the result of increasing k is that

either the time resolution is degraded or the number of data

points used to determine Te is reduced.

There is one extra step that can be undertaken in pursuing

better accuracy in Isat and Te by this technique. After deter-

mining the limits in voltage over which the logarithmic fit

should be applied, the value of Isat and thus Te can be iterated,

based on the deviation of the data from the fitted line. The

deviation of the data will change in sign depending on the sign

of the difference between 'real' and guessed Isat- The merits of

performing these extra iterations are dubious in light of the

minimal gain in accuracy and the advantages of the exponential

fit which will be described next. An example of the logarithmic

fit to one Langmuir trace, without this last iteration, is shown

in Fig. 5.
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5.2 Exponential fit

A more accurate, but minimally more complicated technique is

to fit Isat and Te simultaneously. After finding the 'knee' in

the data at Ves, as outlined in section 5.1, the data for lower

bias voltages can be analyzed by a least-squares fit to a version

of Eq. (12)

I = Isat + bexp(-V/kTe) (23)

which is linear in b and Isat, but non-linear in Te. If we define

Z(V,Te) = exp(-V/kTe) then Isat and b can be solved for in terms

of Te through the usual linear least-squares fit. Therefore, in

practice, the nonlinear least squares fit to all three parameters

can be found by iteration on one (Te). This technique fits the

data with uniform weighting and negates the need for a large

number of data points at large negative bias. Results for an

exponential fit are also shown in Fig. 5.

A version of the above exponential fit can be used to apply

the Stangeby probe modell 3 to Langmuir probe data. 1 9 Unfortunately,

the process is significantly more complicated. In addition, the

benefi.ts gained by choosing said model are questionable.1 9

5.3 GEA fit

As discussed in the beginning of section 4, the fit to GEA

data -is very similar to that for Langmuir probes. First let us

discuss the case of determining the ion temperature. A plot of

ion current versus positive G2 bias is shown in Fig. 6a. There

is a 'knee' in this data, corresponding to 02 = Oplasma (Eq.

(22)), below which the current is unaffected by bias. This is
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because the ions are 'borne' with the plasma potential far away

from the probe. After determining this 'knee' voltage in the

fashion described earlier, the ion temperature can again be fit

either by logarithmic or exponential methods.

A plot of electron current versus G2 bias is shown in

Fig. 6b. There is no need to find a 'knee' in this curve as per

the Langmuir probe analysis. All of the data shown should be

useful in determining Te. A direct fit by either logarithmic or

exponential methods is appropriate. In fact, the logarithmic fit

should be simpler for the GEA than for Langmuir probes if for

large negative G2 bias, the collected current reduces to zero as

it should.

In the case of a non-thermal component or two-temperature

population the GEA analysis becomes significantly more complicated.

Care must be taken to increase the magnitude of the G2 bias swing

to appropriately reduce the collected current to zero. Then an

iterative technique, assuming knowledge of the temperature of

one component to fit the other is repeated until convergence.

5.4 Bias Voltage Waveforms

To maximize the time resolution of the analyzed probe data,

it is useful to examine the relative merits of different waveforms

for biasing the Langmuir probe or GEA. Short period voltage

sweeps increase the time resolution of the analyzed data, but

also increase the uncertainty of the result due to fewer data

points. The error signals caused by stray-capacitance-induced

displacement currents are also increased. In practice, most of
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the induced error signal can be subtracted at the initiation of

data analysis.

The number of points sampled with the probe in ion-saturation,

exponential or electron-saturation during a single sweep is trans-

formed by the bias voltage waveform. A sinusoidal waveform has

the advantage of only one frequency component, but the disadvantage

of sampling the greatest number of points in electron and ion

saturation. A triangular, or sawtooth sweep is a better choice

from this point of view. It is also easily generated by analog

waveform generators, and a greater percentage of the data is

taken in the exponential part of the Langmuir trace. An even

greater fraction of the data can be taken in the exponential

part of the Langmuir trace if the experimenter has the ability

to digitally preprogram more 'exotic' bias waveforms. V(t)

= arcsin(t), for -l<t<1, is such an example. It is partic-

ularly well suited for the determination of Te by the exponential

fitting technique of section 4.2.

Such flexibility in generating waveforms can also be applied

to GEA grid biases as well. For example, Gl and G2 can alternate

from one sweep to the next, between bias potentials needed to

measure ion and electron temperatures. 1 5

6. Summary

Theory that provides an exact description of the operation of

a given probe can be quite complicated. However, in practice, several

simple formulae reviewed in this paper can be applied with reason-

able accuracy. Numerical algorithims are also outlined which can

provide efficient computer analysis of Langmuir probe and GEA data.
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Figure Captions

1. Standard Langmuir trace of current drawn to the probe versus

probe bias.

2. Illustration of potential perturbation caused by a probe.

3. Gridded Energy Analyzer geometry (a), and grid bias (b) for

measurement of ion temperature.

4. Determination of Ves, the onset of electron saturation.

Circles are the data, lines are fits to the data above and

below Ves-

5. Langmuir trace: circles are the data, solid line is the

logarithmic fit, broken line, the exponential fit.

6. GEA data: for measurement of ion (a) and electron (b) tem-

peratures. Circles are the data, solid line the exponential

fit.
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