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Abstract

Off-axis electron orbits in free-electron laser (FEL) beams of finite thickness,

subjected to combined helical wiggler and axial guide fields, have been studied

analytically. A semi-empirical equation for the electron velocity components,

averaged over the electron's oscillatory (betatron) motion, has been derived as a

function of the radial displacement of the electron guiding center. The predictions

from the equation are compared with single particle numerical simulations, and

with free-electron laser experiments. Good agreement is found.
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Introduction

Accurate prediction of the gain and output frequency of a free electron

laser (FEL) requires precise knowledge of the axial and transverse electron

velocity. The full three-dimensional field of a helical wiggler magnet B, has

a strong radial dependence. Moreover, many high current experiments also

use an axial guide magnetic field Ba superimposed on the wiggler field Bw,

thereby causing a resonance in the electron orbits. Consequently, except for

a class of highly constrained electron orbits, it is generally difficult to predict

the exact electron motion. This is particularly true in the neighborhood of the

above mentioned resonance Q, ~ kI 11c, where 11 = eBa/rjmoc is the relativistic

cyclotron frequency in the axial guide magnetic field; 2 = (1- p-2 )3 -1/2 is

the relativistic energy factor; #1 = vj/c with oj as the axial electron velocity and

1 = vI/c with vI as the transverse electron velocity induced by the wiggler

magnetic field; and kw = 27r/1 is the wiggler wavenumber with I as the wiggler

period.

In the original one-dimensional orbit theory1 , the radial variations of the

wiggler field amplitude are neglected and the total externally applied axial plus

wiggler field is assumed to be of the form

B = 6,Ba + B,(6, cos kz + 0, sin k, z), (1)

where e, e6, and 6z are unit vectors along the x, y, and z axis, and Ba and

B, are the amplitudes of the guide and wiggler fields, respectively. This field

configuration has the special virtue of possessing an easily derived class of
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highly desirable, purely helical electron orbits characterized by the fact that the

axial and perpendicular electron velocities are constants of the motion.' These

trajectories are specified by the simultaneous solution of the energy conservation

equation

1/Y 2 
- 1 -2 = constant, (2)

and the velocity relation

k flw11 - l I
= k,f31 c - 0 , (kmIc,/1 c # Ri), (3)

where 11,, = eBw/ymc is the relativistic cyclotron frequency associated with the

wiggler magnetic field. We note that in order to achieve the helical orbits given

by Eqs. (2) and (3), the electrons must be launched into a wiggler field that has

a slow, smooth introduction," 2 and the exact resonance k3 11c = fl must be

avoided.

In the case of a physically realizable wiggler field3 that satisfies Maxwell's

equations V - B, = V x Bw = 0, the wiggler field B, necessarily has a radial

dependence. The combined axial and wiggler fields, expressed in cylindrical

coordinates (r, 0, z), are given by

B = ezBa + 2Bw (,I'I(kwr ) cos(O - kwz) - 6I kwr sn(O - k.z)

+ eII(kr) sin(O - kz)) (4)

where I is the modified Bessel function. It has been shown4 that if all the beam

electrons enter the wiggler exactly on axis, and are then allowed to spiral out in
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the gradually increasing wiggler field, the electrons once again execute purely

helical orbits, just as in the 1d calculations described above. Now, however,

the transverse electron velocity acquired in the magnetic field is given by the

simultaneous solution of Eq. (2) and

2f2J||I1(X)/X(5
kI 11c - f2 - 2 ,Ii1(X). (5)

Here X = #_//0i = ±ker is the normalized size of the orbit, such that X = -kr

when n, > ki#1c, and X = +kwr when fa < kw# 11c.

In practical systems comprised of an electron beam of finite thickness, a large

fraction of the electrons entering the wiggler are not axis-centered, their orbits are

not purely helical, and the axial and transverse electron velocities oscillate about

mean values denoted by (p11) and (81). This is illustrated in Fig. 1, which shows

the trajectory of an electron propagating through a wiggler entrance and well

into the constant wiggler amplitude region. In the entrance region, the wiggler

converts a fraction of the axial velocity #1 = vi/c into perpendicular velocity

P1 = vI/c, and, in the constant wiggler amplitude region, the axial velocity #11

is seen to oscillate around an average value (811). The average axial velocity (p,)

determines the FEL output frequency, and the average perpendicular velocity

(p1 ) determines the gain. Thus, precise comparisons between FEL theory and

experiment require an accurate method of predicting ( 11) and (P1 ) as a function

of y., the radial distance from the axis of an electron's guiding center. Recently,

Freund and Ganguly5 have shown that (under the rather restrictive conditions
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discussed below) the expression for (Oi) for an off-axis electron is approximately

given by

Qt1(#11)Io(kwyg)()
=k(#||)c - a (6)

which when solved in conjunction with the energy conservation equation (Eq.

(2)), yields the values of (011) and (PJ.

The purpose of this paper is to derive a more general equation for (#I).

Although the derivation is of a semi-empirical nature, we will show that it

agrees well with single particle computer simulations, and with FEL experiments.

Moreover, we shall demonstrate that our equation correctly approaches the results

of the previous analyses; namely, when y, -+ 0, we recover the axis-centered

result given by Eq. (5) ; and when X -- 0, we recover Eq. (6) . We note that

the range of y, of practical interest is typically key, < 0.5. In this range the

quasi-helical electron orbits are of sufficient quality to yield good FEL frequency

and gain characteristics. When kwy, > 1 the large betatron oscillations (see Fig.

1) cause serious deterioration of the FEL operation.

Analytic Derivations and Numerical Simulations

It is instructive to examine the origin of the correction terms in Eq. (5) (i.e.

those terms not found in Eq. (3) ). As an electron moves away from the wiggler

axis, it must respond to the axial component of the full wiggler field (Eq. (4)).

(On axis, at r = 0, this component vanishes since I1(0) = 0.) Normally the axial

component is oscillatory; however, for the special case of perfect axis-centered
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orbits, the axial component is constant because 4-kz = const. Thus the electron

feels a net axial field given by

B = Ba + 2B.I(X). (7)

The off-axis increase in the perpendicular wiggler field component is similarly

constant, and the electron feels a net perpendicular field

B = 2BIiN(X)/X. (8)

Note that if we define Q1 = eB1 ,11/ymc and rewrite Eq. (5) as

= 11 - (1)

then the axis-centered three dimensional theory and the one dimensional theory

are functionally equivalent.

Because the denominator of Eq. (5) is small for parameters near resonance,

the difference between the one dimensional theory and the three dimensional

theory is largely due to the axial field correction. Since this correction is inherently

a finite radius effect, it would not be found in a pure guiding center theory such

as that given by Eq. (6) .

Numeric analysis of off-axis electron trajectories for a wide variety of system

parameters shows that the average velocity ( 11) can be accurately predicted

by Eq. (9) if the fields B1 and B11 are set equal to the average axial and

perpendicular fields seen by the off-axis electron as it propagates along its

trajectory. For example, an electron propagating with the parameters stated in

the caption to Fig 3b, initially at radius kwr = 0.6, has a numerically determined
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average axial velocity of (#1) = 0.90568. The numerically determined average

fields are (B1 ) = 646.OG and (B11) = 12904G. If these fields are used in Eq. (9) , the

calculated average axial velocity is (I11) = 0.90554, in good agreement with the

numerically derived value given above. Thus analytic expressions for (B1 ) and

(B11) could be used to determine a semi-empirical formula for non-axis- centered

orbits.

Expressions for (B1 ) and (B11) can be found if the electrons are assumed to

travel without precession (see Fig. 2) in perfectly circular orbits around an off-axis

guiding center, and are assumed to have the same phase relationship. That is,

all the electrons at a given axial position travel in the same radial direction.

This direction is taken to be the direction of an electron in an axis-centered

orbit (Eq.(5)). Without any loss of generality, the electron guiding centers can be

assumed to be on the e^ axis and, at the position z = 0, the electron will be at

the point on its orbit that is farthest away from the wiggler axis (Fig. 2). Then the

exact expression for the wiggler field along the electron orbit is

B = 6zBa + 2B (-6,j'(kR) sin( p - kwz + a) - 60 kwR) cos(So - k~ z + a)

+ 6zIi(kwR) cos(v - kz + a)), (10)

where R2 = r2 + y2 + 2 ry, cos 0, p = - ir/2 = tan-' [r sin 0/(y. + r cos 0)], yg is

the distance of the guiding center from the axis, 0 is the angular position of the

electron along its orbit, and a = 0 or 7r depending on whether Qa < kw(3 11)c or

na > kw(#pi)c. The average transverse field is
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(B 1 ) = 2Bw( {I'i (k.R)] sin 2( p - k.,z) + I Cos2(p -- kz)}) (11)

and the average axial field is

(B11) = Ba + 2B.(Ii(kwR) cos(p - k,,z)) cos a, (12)

where the averages < > on the right hand sides of the above equations are

to be taken over the orbit angle 0, and are carried out by expanding in y,

and r. The calculation becomes extremely involved if higher order terms are

included. Consequently the symbolic manipulation program MACSYMA6 is used

to perform the calculations. However, we note that as a result of the rapid

betatron oscillations, the perfect circular orbit assumption is no longer a good

approximation when the the axial magnetic field Ba is very small or zero.

The procedure employed is to expand the formulas for (B1 ), (B1j), R and V

in Taylor series to fourth order terms in y. and r. Expansion of P also requires

the assumption that either y. < r or y. > r. The Taylor series for (Bt) and (BI)

is equivalent to a power series in sines and cosines, and can easily be averaged

by integrating over the orbit angle 0. The resultant series is then identified as

the sum of modified Bessel functions plus small residual terms. The average

perpendicular field is found to be

(B1 ) ; 2B.Io(keyg)I(X)/X 1 + E , (13)

where

< ~4 (kkry,' - 24k 2r 2Y2 + 24y 2 - 8k 2r 4 + 96r2), (14)
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for yg < r and

f> Z (kw2 2 Y9 4r2), (15)

for yg > r. For kwy, < 1, E is typically less than 0.001, and can be ignored. The

distinction between y, < r and y, > r is a mathematical artifact; there is no

physical discontinuity separating these two parameter regimes. Thus it is evident

that to within an error of e>,

(B1 ) 2BwIo(kyg)Ii(X)/X (16)

for all parameter regimes where r and y. are sufficiently small. The average axial

field is similarly found to be

(B11) ~ B. + 2BIo(ky 9 )I1(X) (17)

which, to fourth order, is.exact for both y, < r and y, > r. Substituting these

two terms into the velocity relation Eq. (9) yields the sought-after expression for

2n.(Pii)IO(key9)Ii(X)/X 
(8

ku,(P3)c - n, - 210Io(kwyg)Ii(X) (18)

In the limit yg --+ 0, this expression reduces to the axis-centered theory represented

by Eq. (5), and in the limit X -+ 0, the expression is identical to guiding center

theory represented by Eq. (6) .

The parameters (011) and (p1 ) are obtained by a simultaneous solution of

Eqs. (2) and (18). The value of y. employed in solving Eq. (18) is the initial electron

radius in the Bw = 0 region outside the wiggler. In Fig. 3 the predicted values

of (0) (solid dots) are compared with the values of (P11) obtained by numeric
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simulation for a wide range of parameters (curved lines). For kyg < 0.6, the

worst case error is [(03)sim - (Pjj)theory]/(PjI)sim < 0.0003. In Fig. 3b we also show

the predictions of the previously derived, pure guiding center theory (Eqs. (2) and

(6)). While this theory exhibits the correct qualitative behavior, it is significantly

less precise than the results obtained from Eq. (18).

The complete three dimensional field along the electron orbit of Eq. (10)

oscillates around the average field values given by Eqs. (16) and (17) and the

oscillation may be substantial, particularly for the axial field (see Fig. 2). A more

detailed description of the electron orbits allowing for azimuthal and radial drifts

can be found by considering the total magnetic field to be a superposition of the

average field denoted as < BO > and a small perturbation B1. If the velocity is

decomposed into a small perturbation vi around the average velocity < vo >,

then, to first order,

~ (viX<BO>+<vo> XB 1). (19)
dtymc

This equation was solved to first order in r in the limit r < y,, and it was found

that v, is equal to a sum of oscillatory terms at the fundamental and harmonics

of k~z, and an azimuthal drift which causes the guiding center to precess around

the wiggler axis7 (Fig 1c). To this order, there is no radial drift. However, the

numeric simulations show that there is a small outward drift for electrons that

are situated very far away from the axis (kwy > 1).

In Fig. 4 the precession frequency predicted by Eq. (19),
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WI> = - (Bi,(131 !) (20)g

yY Ba - 2B 1vfo(kwyy)I (X)' (Ba 7 0), (20)

is compared with the numerically determined precession frequency. The excellent

agreement between the theory and the simulations shown in Figs. 3 and 4, and

the lack of any large radial drifts, confirm the empirical assumptions underlying

the derivations.

Experiments

The validity of Eq. (18) has been confirmed experimentally by measuring the

spectral properties of a free electron laser' as a function of the position of the

FEL's electron beam relative to the FEL wiggler axis. An electron beam produced

by a Marx generator driven thermionic electron gun is constrained to flow along

the axis of a solenoidal magnet. The superimposed bifilar helical wiggler magnet

induces amplification in a co-directional microwave signal of known amplitude

and known frequency w. Amplification occurs only at the appropriate beam

energies corresponding to the radiation frequency10

W = IckweffY + 1 - (Wc/kweff yflh)2]1/ 2}. (21)

Here the effective wiggler wave number is kweff = kw - piWp1/2 1/271111c; WP =

(Ne2/moEo)1/ 2 is the nonrelativistic plasma frequency; w, = 2 + P 2W/h 1/2

is the effective waveguide cutoff frequency adjusted for the presence of the

electron beam; wo is the empty waveguide cutoff frequency; p, and P2 are

frequency dependent numerical factors, less than unity, that are related to the

finite transverse geometry of the system; and D is a correction to the space
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charge dispersion equation due to the combined presence of the axial and wiggler

magnetic fields, and is defined as

b= 1 - {0|I#I/[(1 + 3)j - k.Pg c]}, (22)

where f, = #B/jii, is the normalized transverse velocity acquired by the electrons

from the wiggler magnetic field.10

The wiggler is mounted so that it can be moved freely in the direction

transverse to the axial solenoid field. Note that the solenoid axis and the wiggler

axis remain colinear. Since the position of the center of the electron beam is

defined by a 0.254cm radius aperture centered on the solenoid axis, the wiggler

position can be adjusted so that the electron beam propagates through the

wiggler at any desired distance yA from the wiggler axis. In this way the beam

electrons are allowed to sample different axial and perpendicular wiggler fields

components and amplitudes as prescribed by Eq. (4) . In Fig. 5 we plot the

experimentally determined beam energy required to radiate the fixed frequency

w/27r = 9.55GHz, as a function of the distance between the beam center yb and

the wiggler axis. The dashed and solid lines show the theoretically predicted

beam energy as determined by solving Eq. (2) (18) and (21). We have taken y, in

Eq. (18) to be equal to yb. The experimental data agrees well with the predictions

of the general three dimensional theory. However, the good agreement should

be considered with caution since the beam diameter is large and only somewhat

smaller than the beam displacement Yb.
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Discussion

In the past, there has been some discussion in the FEL community concerning

the merits of the various orbit approximations (Eqs. (3), (5), (6)), when an electron

beam of finite thickness propagates in a realistic helical wiggler and guide

magnetic fields. Users of the 1d theory (Eq. (3)) or the guiding center theory

(Eq. (6)) have questioned, with some justification, the use of the axis-centered

theory (Eq. (5)) for beams of considerable thickness, typically kerb : 0.5, in

which the beam radius and the electron undulations are of comparable size.

On the other hand, comparisons with experiments described here and in earlier

studies have consistently shown better agreement with the axis-centered theory

(Eq. (5)). In this paper we find, by comparisons with numeric simulations, that

the axis-centered approximation is always a better representation of the electron

dynamics than the 1d theory, (Eq. (3) ), and for small values of y. it is also better

than the guiding center theory. We also obtain a precise and general result, given

by Eq. (18) , that can be used for a thick electron beam. This formula accurately

predicts the results of numeric simulations, and it agrees well with experimental

observations. Consequently, the orbit expression Eq. (18) developed here can

be used with assurance over the full range of beam radii of practical interest

(kwrb < 1).
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Figures
Figure. 1 Electron velocity and magnetic field variations as a function of

distance z; y = 1.33; k, = 1.904; Bw = 250G; B, = 1600G. The electron is started

at the off-axis position kwy, = 0.4. The 6 period adiabatic wiggler introduction

begins at z = 10cm. a) Normalized axial velocity 01 and perpendicular velocity

/1 . b) Axial magnetic field B11 and perpendicular magnetic field BI at the

instantaneous position of the electron. c) Projections of the electron orbit onto

the X-Y plane, illustrating azimuthal precession.10

Figure. 2 Coordinate system used in the derivation of Eq (10). The precession

seen in Fig. 1c is neglected here.

Figure. 3 Average axial velocity (911) as a function of the normalized distance

of the electron guiding centers from the wiggler axis kwyg. The curves are the

value of (PII) found numerically, and the dots give the theoretical prediction of

Eq. (2) and (18). a) (#,I) for y = 1.33; B, = 250G; k, = 1.904; Ba = 1600G. b)

(#I) for -y = 3.4; B. = 583.3G; k, = 2.904; B, = 13120G. c) (11) for y = 1.33;

Bw = 250G,kw = 1.904; B, = 4000G. Graph a is for trajectories well below

resonance (k.(PII)c > 0,/-y), graph b is for trajectories very near resonance, and

graph c is for trajectories well above resonance. Graph b also shows (squares)

the predictions of the pure guiding center theory of Eqs. (2) and (6).
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Figure. 4 Precession frequency wl' of the electron guiding centers as a

function of the normalized distance of the electron guiding centers from the

wiggler axis kwy,. The computer simulations are shown by the lines, and the

predictions of Eq (20) are given by the dots. The cases a, b, and c correspond

to the configurations of Fig. 3a, 3b, and 3c, respectively. The arrow indicate the

direction of the precession, which changes sign as k,/ 1jc > Q.

Figure. 5 Experimental results showing the energy required to radiate a

fixed frequency w/27r = 9.55GHz as a function of the normalized distance of the

electron beam from the wiggler axis yb. Data are given for three values of the

wiggler field. Experimental points are shown by the dots, and the predictions of

Eqs (2), (18), and (21) are given by the lines.
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