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An analytic equilibrium for a tandem mirror with quadrupole symmetry is

derived. We simultaneously expand in P (plasma pressure / magnetic

pressure) and A (long-thin parameter) using a maximal ordering so that both

effects enter competitively. These new long-thin corrections extend the

results of Pearlstein, et al', 2 , and can be shown in some cases to be the

dominant terms. The new terms make the flux surfaces more diamond shaped

than previously thought, and change the scaling of the flux surface

distortions with P. Using model pressure and field profiles, simple

analytic expressions for the new corrections and flux surface are found and

compared with the results of the VEPEC 3D equilibrium code. 3  For the

Constance mirror we find good agreement with the code for flux surface

shapes and P scaling.



11. Equilibria Eguation-

We consider the equilibrium of a non-axisymmetric tandem mirror

described by the tensor magnetostatic equations given by

,(p, + B2/2) - Q s = 0

8p/OB = pi1- p1/B

VOB =0 (1)

where Q = B2 + p - p ,=.Vb , b = /B. The pressures p and p are

assumed to satisfy the isorrhopic conditions: p,(O.B). p,1 (O.B) with 0 the

total magnetic flux.

This is a specialization of the general situation in which p. = p

($,6e,B) , p1 = p 1 (0.,B) where 0 and 0 are flux coordinates related to the

magnetic field by

B = VO x Ve (2)

The analysis also requires an explicit expression for J * This

expression, known as the parallel current relationship (obtained by setting

V*J = 0 and solving for J ) is given by

bkv(QJ /B 3 ) = 1/B2 bk(v (p4 + p I) x 5) (3)

In order to obtain non-axisymmetric equilibria, we simultaneously

expand in 0 (plasma pressure / magnetic pressure) and A (long thin



parameter) using a maximal ordering so that both effects enter

competitively. If A is treated as the basic ordering parameter, then the

long-thin low # expansion is given by:

a/Bz .- A

VT = a8/8x + y 8/ay ~- 1

# 2,6 A2  (4)

The corresponding expansion for the fields has the form:

Bz =B 0 +Bz 2 +

DT' T1 +T3 '3

jz z3 + JZ5.

T 'T2 + T4+...

P P 2 + P 4*

P= P 2 + pT4 + .

Kz X "z3 + r-z5+.. .

5T 5 T2 + ET4 .'-..()

Here, the subscript "T" refers to the (x,y) rectangular vector components,

nand the numerical subscripts refer to the order in A i.e. fn ~ A

Before proceeding with the analysis we give a summary of the sequence

in which the calculation is carried out.

(1) Leading order:

a) calculate the long-thin vacuum fields

(2) First order in A2



a) calculate Bz 2 from transverse pressure balance.

b) calculate J 03 from leading order parallel current relation.

c) calculate 1T3 from V*D * 0 and V x a n J.

d) calculate the 0 and long thin corrections to the field line

trajectories, to within a free homogeneous solution, from the magnetic

fields.

e) calculate the free homogeneous solution from the first order

parallel current relation.

III. Analysi

A. Leading Order

Substituting the expansion into the starting model leads to the

following set of leading order equations:

VT B2 /2 =0 (6)

VT*BTI = -8B0 /az (7)

ez VXT1 zi =0 (8)

The solution to Eq. (6) - (8) is obtained as follows. Eq. (6) implies that

B = B (z) (9)

The quantity B0(z) represents the applied mirror field. Next, from Eq (8)

we can write

BT1= VT 41 (10)



where 1 (x.y.z) is a potential function. Substituting Eq. (10) into Eq. (7)

yields:

TI I a /dz (11)

which has as its solution:

4 1 (-r2/4) dB0/dz + A r2/2 cos 20 (12)

Here, the first term gives rise to the small component of Br associated with

the mirror field and the second term is a homogeneous solution describing

the applied quadrupole field of amplitude A(z).

Converting to rectangular coordinates (x.y) it is straight forward to

calculate the vacuum field line trajectories from the magnetic line

equations.

dx/dz - B / B0

dy/dz = B y/ B0  (13)

we find

x = x0 a(z) B X/ B0 = x0a, =

y = y0 r(z) B y/ B0 = y0r = YT'/r (14)

where xO and yo are the coordinates of the field line at the midplane z=0,

Bc = B0 (0) is the axial field at the midplane and

a(z) = (Bc/ BO)1/2exp [ f ( A / B0 )dz'

A/Bc a Cr ' - a r)/ 2a2 2

r(z) = (Bc / B )1/2exp - ( A / B )dz']

B! B c 
(15)



Hereafter, for convenience and in order to facilitate comparison with

Pearlstein et al., we express all relationships in terms of a(z). r(z)

rather than B 0z) and A(z). Note that quadrupole symmetry implies that

B0 (z) B0(-z)

0(z) - r(-z) (16)

finally we obtain an expression for the vacuum flux coordinates (.,60) by

observing that the flux surfaces are circles at the midplane, z=0. Thus,

setting 20/Bc = x2 (0) + y2 (0) and tan 00 - y(0)/x(0) yields

/ 2 2 2  y 2 2

tan 0= yO/ X0 =Cy)/(rx) (17)

It is easily verified that the vacuum fields satisfy 8 = VO x VO

B. First Order

There are a number of steps required to calculate the P and long thin

corrections to the vacuum fields. Following the general sequence previously

discussed we begin as follows:

1. Calculate Bz2

The perturbed axial field Bz2 is calculated from the first nonvanishing

correction to perpendicular pressure balance:

VT pE B B 2 /2) - bT (bvov) (B2 2 (b*V)bT = 0 (18)S B/ B x B BT ,B / 2) - BVk +08T
where b T= (B xi/ B )2x + (B yj! B 0)'Qy .bveV = a/az + bTOVT.



and for convience the subscript "2" has been dropped from p . After some

simple rearrangement, Eq. (18) can be rewritten as:

VT p + B (B2 - 1/az)J 0

The first term represents the perpendicular particle pressure and the second

term represents the magnetic pressure due to the diamagnetic part of the

axial field. Eq. (19) can be integrated yielding:

B Z2/ B0 = I/B0 o / az - 1/B2 p ( , B0) + f1(z) (20)

The free function f (z) represents a small correction to the applied mirror

field. If the conducting wall is moved to infinity then f1(z) = 0. Under

this assumption, Bz 2 /BO can be separated into a P contribution and a long

thin contribution as follows:

BZ2/ B0 = -p /B2 + (21)
B20  1/ 0  (21)

where 1/B 0 W/z = ar/2 [ x2 , 2 *y 2 (T,2/(,2a))J

2. Calculate 3

The first nonvanishing contribution to J can be determined from the

leading order parallel current relation [Eq. (3)]. It is convenient to

carry out the calculation in terms of vacuum flux coordinates, (x0,y0 l)

given by: x x0 al)

y = y0

z 1 
(22)



In this system, the operator b' v a (a/a1) Y Thus, the leading order

contribution to the left hand side of Eq. (3) reduces to

b*VQ J,,/ B ~a/al Jl/ BO (23)

The right hand side of Eq. (3) can be evaluated by noting that

52  bvev bT - ex x0 a' + 2 y Y '

V B I [ x (/ ) + y (y0/r) (24)

1/B 2 b.V (p + p, ) x r ~ -x0 y0/ B0 8/aa (p L+ p 1 ('' -I'' )

Integrating to obtain J 3 yields

J i 3(O' y0, 1)/B 0  0 y0 fy dl'/ B0 8/l (p + p 1 (o '' - '

(25)

3. Calculate BT3

The equations determining BT3 follow from the first order corrections

to VeB = 0 and b*(J - V x B) = 0:

8Bx3/ax + BB/8y = -aBZ2/az (26)

aBy3/lx - aB/ay = JII3 - bT*( V x D )2 (27)

Equations (26) and (27) are solved by writing

Bx3 = M 3 /ax + 8A3/ay + B0 x [ K( 0. 1) -(G'/ a)pj/ B J

By3 = 8 3 /ay - aA3/8x . B0 y [ K( ,. 1) -('/ r)p / B2 (28)



Here 03 and A3 are scalar and vector potentials to be determined. The terms

in the large brackets correspond to part of the particular solution which

balances the e independent terms in -8B z2/z. This balancing determines

K(#.l). Substituting into Eqs. (26) and (27) yields the following equations

for K(,), ) 3(x,y'z) and A3 (x,yz)

K = 1/(2) 8/81 f p/ B2 d#' (2g)

V2 3  - 20 /8z2  (30)

V2(1

T A3 - B; yar as/ao (31)

where

S(,1) = -1/B 1 dl'/ BO (p, + p,, )(2'' - r'') - C 2 ,2)K (32)

The solution for 03 is easily found by substituting * from Eq. (12).

For boundary conditions we assume that there are no third order sources at

infinity (i.e. no rmcos m6 , rmsin me terms). This yields

0 3 (xy.z) = -B/64 ( + r') a2 2) ' r4

- Bc/48 (ra' + ar')/ a2 2).'r4cos 26 (33)

The solution to Eq. (31) is somewhat more complicated. For A3 regular

at infinity, the solution has been given by Pearlstein. et. al., using a

Greens function technique. Also, for convenience their calculation is



carried out in vacuum flux coordinates (x0 ,y0 ,l - .60,1) rather than

Eulerian coordinates (xy.z). The result is

A3 C 0,y0,1) --2/PB0( + ) 2)

Im do' S(O',l) I + 4'/0 [pe 21 21 0)2) 1/2

(34)

where p U (r - a))/(r + ), 20/Bc = - + yo, tan 20- 20'

At this point in the calculation the P and long thin corrections to the

magnetic field have been completely determined: BZ 2 from Eq. (21). and Bx3

and By3 from Eq. (28) with K, 03 and A given by Eqs. (29). (33) and (34).

4. Calculate tb and 0

The final step in the analysis is to calculate the P and long thin

corrections to the flux coordinates. In particular we wich to determine the

modifications to the vacuum flux surfaces. This slightly lengthy

calculation can be carried out as follows. To begin, we expand the vacuum

field line trajectories as

y = yv +

z1 (35)



where xv -x (l). yv - yr1) and (x0'y0' . 1(x',1) are small

2corrections due to P and long thin effects. We assume C/xv - /yv - A2.

Since the magnetic field is known, C and q can be determined by solving

the field line trajectory equations:

dx/dl = B / Bz

dy/dl = B y/ Bz 
(36)

2to next order in A2. We find:

8/81 (/ca) = RC

8/81 ('7/r) = R (7
7(37)

R (xo'YOl) = (1/B 0 )( 3 1x -(x Ol/8z) + 1/BA A3 ay 0 + x0K(#b,1)

R ,(xo.y 0 ,l) = (1/rB 0)(03/Y y</r 1/az) - 1/BcOA 38x0 + yOK(O,1) (38)

In Eq. (38) the terms in the bracket are to be expressed in terms of yacuum

flux coordinates, x = x0Oa y = y0 r, z = 1. The quantities R and R are

known functions. Thus. Eq. (37) can be integrated, yielding

C(XO 0yl) a R (x 0 yo,')dl' + xy

q(x0'y O'l) R (xo.y,l')dl* +r,(x 0,y0) (39)

where i and -q are two free functions of integration to be determined

shortly.

The next step in the calculation is to express the flux coordinates in

terms of C and q. If we focus on a flux surface whose vacuum labels are



given by 2#/B a x2 + y2 tan 90 * y0 /x0  then this flux surface, in

presence of P and long thin corrections is given by

20/Bc + y (x - 0/)2 + ((y -

tan 0 YONy - n)/r(x - (40)

For small f and t

20/Bc ~ x2/ 2 + y2 2 - 2xf/2- 2y7/r2 (41)

tan 80 ~y/rx (I +/x - 9/y) (42)

Note that in Eq. (41). f and t7 can be expressed to the order required as:

fXO'0' fw' Y/T ') q(XO-yO,1) ~ "Wxa, y/r, Z)

A further relation of interest is the equation for the z=0 midplane

flux surface. From Eqs. (39) and (41) we find

20(x~y,z=)/B c= x2 + y2 - 2xj(x.y) - 2yi(x.y) (43)

Thus, what remains in the calculation of 0 and 60 is the determination

of the free functions f(x0 'y 0 ). (xO.y0). The first relation between i and

, arises from the assumption that 0 and e0 are legitimate flux coordinates;

that is, 0 and 80 must satisfy 0 - VO x V 0. Since the fields have already

been determined, a comparison of the left and right sides of this equation

should be a verification of the self consistency of the algebra. Upon

carrying out the comparison, we find that the x and y components exactly

balance and that the z component leads to the relation

1/ 8/axo + 1/ / an/8yo = -Bz 2 /B0 (44)



The particular solution to f and q [see Eq. (39)] balance the Bz2 /B0 term

and we are left with a constraint relation between j and tj.

Bc/Ox0 + Di/8y0 M 0 (45)

From Eq. (45) we can introduce a stream function x(x 0 .y 0 ) such that

*x ., 0 = -Ox/Ox0  (46)

Introducing cylindrical flux coordinates (r0 te0 ) defined by

x0 = ro cos e0

Yo = r0 sin 80 (47)

we find that the midplane flux surface [Eq. (43)] simplifies to

2r(x 0'IO)/Bc o - 28a/8e0  (48)

The second relation between i and q arises from the P and long thin

corrections to the parallel current relation. Specifically, the corrections

to Eq. (3) gives an equation for aJ 5/81 in terms of previously determined

lower order quantities (including j and 1). The boundary condition that J

vanish across each end of the machine imposes a constraint on the lower

order solutions and it is this constraint that leads to the second

relationship between i and -q. The exact unexpanded form of the parallel

current constraint is given by

C f ds/B2 key (p p ) x = 0

where s is arc length along the magnetic field.



The leading order contribution to Eq. (49) is of fourth order in A and

vanishes by symmetry. The first non-vanishing contribution is of sixth

order. After a straightforward but tedious calculation, this correction can

be calculated and set to zero. This yields the final relation for X which

can be expressed as

1 a2-/a + E + E Z 0 (50)

Here 17 is a constant governing low P flute stability

H= fL dl/Bo 8p/8 (ca'' + rr') (51)

with p(OB 0 ) = (p 1 + p)/2. The quantity E , first calculated by

Pearlstein. et al., represents the flux surface distortion due to the #

corrections.

E (r0 ,a ) =

f Ldl/B0 p/a (aa' + Tr') dl' a 2A/M

+ ' - 1,' dl' a/8e&(rosin 26o8/aro+ cos 2e0 8/0e0 )A

+ [0, - r 2)(rocos ao A/8r0 - sin 2e0 BA/e 0)

- (a2 2 )rBA/ol' ) (52)

and A = A3 /B. '



The quantity Z describes the flux surface distortion due to long thin

corrections and it is this term which extends the results of Pearlstein. et

al. We find

EA(r, 0) -

1/8 ro sin 4e0 f- dl/B0  1CB082P/a#8B0 ) + 42 8p/O) (53)

where AV, and A2 are functions of 1 alone, given by

A = ''- ,2 a2

A2 = 'a )[0 + 4(a 2 2

+ 2Co'r" - a)(ra - a'

+ [(a' - rr')f0 0 2 22 + 4 4

+ 4aa' 1[('/a)f + (a2 2 2 Idl'

- 4rr'' f [(r'/r)f + (a2 2 2g*dl-

with

= r 2 W a2 0'- r2 (r r2

k= Cr/8 (ra' + ar')/a2 2

g = ar/6( (Ta' - ar,)/a2 2



Observe that the long thin corrections introduce a pure fourth harmonic

correction to the flux surfaces.

IV. Applications

In this section we derive analytical expressions for Z and E using

certain simplifying assumptions. We then apply these expressions to

describe the equilibrium of actual mirror experiments. If we assume

cz R-1/2

= e -cz R-1/ 2 (z) (54)

with a mirror ratio R(z) = B0 /Bc = 1 + (Ro - 1)z2/L2 and assume cL >> 1,

(values of c and L for three magnetic geometries are given in Table 1.) then

the largest terms in (53) are

A (U) 2 4 4c1 A 2

A2(1) 4 2 4c4 e4clA/R2  (55)

with all other terms smaller by at least a factor of 1/Lc. A comparison of

these analytical expression with the exact computer generated functions A

and A2 is given in figure 1., and shows close agreement.

To evaluate (53) we assume a separable pressure profile:

p(O.B) = W(#)P(B ) (56)



where P(B ) vanishes at the mirror throat, but dP(Bo)/dBOIB P, 0.

Using the expansion

P(Bo) P (B - Bm ) (57)

with P < 0, and substituting (54), (55) and (56) into (53) we find:m

E --11(16) 2) 3 44cL (8
R (rO'O) / R) c r0 4e 0' P' sin 48 (58)

If we assume a linear pressure profile

S1 -59)

then

Z (r'0) = 1/(16 2) 3r4 4cL4
A~O~O)R; c roe P' sin 48o (60)

Using the pressure profiles (57) and (59) and magnetic field profile

(54) as well as the Lc >> 1 assumption we now find an analytical expression

for E . Our starting point is Eq. (B7) of Pearlstein et. al. with a minor

typographical error corrected. Using Lc >> 1 gives k1 z) >> k2(z):

-. c2  22 L .22 2cz'

k1 (z) ~ 4P cR 0- 1)/(B0 a
2R;) z dz' (1 - z'2/L2) e (61)

where the large exponent allows the substitution of the constant R for

R(z). Substituting (61) into



802/(3B ) sin 4 0 f dz Po''/B dz' k (z)

we obtain

4 ,4cL -^ 2 4 2 2~-rsin 46o e 2P (O-1 / (30BcR0L)

Because P' < 0, EAm

magnitudes of EA n

and E are of the same sign and add. Comparing the

E , we find

2 4L22IZ 1 6P' CR0 - 1) / (34PBc L R0) (64)

Note that the ratio scales with P, so E is much more important than E at

low p. In the Constance mirror, L-40 cm., c-.069 cm.1, R0 =2, and if we use

the approximation P -pB thenm c

I E,/EA Constance ~ 2.5k (65)

In Constance the p in the core plasma is no more than 10%-15%. so E is

dominant eveywhere in the machine.

We have now calculated all the terms in Eq. (48) except the interchange

stability constant H. Using the same pressure and field profiles Eq. (51)

yields

1 ~ 2c 2 dz P (BO - Bm)W e 2 cz/(BOR) (66)

(62)

(63)



H - P (RO - 2)e /(OOBL) (67)m0

Note that here, as in the calculation of E and E , the large exponential

allows the substitution of R0 for the function R in the denominator,

simplifying the integral.

Combining equations (48), (58), (63) and (67) the midplane flux surface

is:

(r0 ,e0) 

B r2/2 1 - r2/2 cos 460 e2cL [Lc 3/(16Rt) + 2(R0 -1)pl/(3r LcR )] (68)

where rB = (20B/Bc)1/2 is the radius at which the pressure vanishes.



V. Comparison with Codes

In this section we compare our calculated equilibrium with two equilibrium

codes, the VEPEC 3D code and the new "Long Thin Equilibrium" (LTE) code at

Livermore.

We have evaluated Z and E for three magnetic geometries: the Constance-B

mirror, the anchor of the TARA tandem mirror at MIT, and a modified IIX-IIB

coil set used by the groups at Livermore to benchmark their codes. The

parameters of each machine are shown in Table 1. We obtain the results in

this section by numerically evaluating Eqs. (53) and (65), but throughout we

have found that the simple analytic expressions (63), (66) and (71) agree

with our numerical evaluations within a factor of 2.

Figure 2. shows the amplitude of the long-thin quadrupole distortion to the

midplane flux surface as a function of normalized flux for Constance. The

quantity A4 A /AO is plotted, where the equation of the flux surface is

r 2 (0,0) = A0 (0) + [A4 A(0) A 4P (0)] cos 40 (69)

The two lines in the figure show the long-thin contribution to the

quadrupole distortion for a pressure profile which drops to zero only

part of the way up the mirror. The z location where the pressure vanishes

was chosen as the electron cyclotron resonance location for two typical

values of magnetic field. This pressure profile corresponds more closely



with what is found experimentally in Constance than the profile of eq. (57),

and also leads to reasonable values of A 4A/Ao. If the pressure is continued

all the way to the mirror peak, an unphysically large value of A 4 A/AO

results. This is due to the fact that the fanning region of Constance is

not well described by the long-thin approximation, and thus the long-thin

expansion on which our theory is based breaks down if much pressure extends

into this region. Figure 3. shows typical Constance flux surfaces obtained

with our theory. For this graph the core P = 15% is assumed.

Figures 4. and 5. are plots of the quadrupole distortions for the TARA

anchor and the IIX-IIB . A core P of 15% is assumed in each case, and this

finite P contribution is shown serarately and may be compared with the long-

thin contribution of the vacuum field, which is also graphed.

The weighting of the pressure against the exponential fanning of the field

lines and curvature in eqs. (51), (53) and (62) implies that our results are

very sensitive to the exact axial pressure profile. As an example, if the

pressure in the IIX-IIB case extends to only 40 cm. instead of the the full

75 cm., we find that the flux surface distortions are smaller by a factor of

15. Thus in comparing our results to equilibrium codes we do not expect

numerical agreement to better than a factor of 2 or 3, and instead we look

at the scaling with p.

The VEPEC code results for Constance are shown in figure 6. Note that there

is a significant distortion even at very low P. which scales linearly with

flux. Although the magnitude of the distortion is lower than we predict by

a factor of about 3, the existence of distortions at vanishing pressure and



the scaling with flux are in agreement with the predictions of our analytic

equilibria including the new long-thin terms.

The results obtained with the LTE code are shown in figure 7. The p

corrections are smaller than we predict by a factor of 3. The long-thin

corrections are not part of the physics which is included in the code, so we

see only corrections which scale linearly with P.

The results of both the VEPEC and LTE codes are at this time open to

question. Benchmarking of the codes continues, and as of this writing,

whether VEPEC converges for very long-thin geometries is still uncertain.



VI. Conclusions.

We have derived an analytic equilibria for a tandem mirror with quadrupole

symmetry which extends the results of Pearlstein, et. al. In some cases the

new long-thin corrections are shown to be larger than the finite f

corrections, making the flux surfaces more diamond shaped than previously

thought. Using model field and pressure profiles, we have derived simple

analytic expressions for the corrections and flux surfaces.

We applied the theory to three magnetic field geometries and calculated the

quadrupole flux surface. distortions. These were compared with two

equilibrium codes and agreement was found for flux surface shapes and P

scaling. In particular, the VEPEC code showed quadrupole distortions at low

p. which agrees with our predictions.
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Machine L c Plasma radius

- I(cm.) (cm.) (cm.)

Constance-B 1 40 1 .069 1 10 1

TARA Anchor I 50 1 .03 1 15 1

IIX-IIB 1 75 1 .032 1 3 1

Table 1.



L= 40. C=0.069

o = LRMDR 2
- = FIT USING 4wCww4EXP(4CZ)/R/R
+ = LRMDR1
x = FIT USING -Cww4EXP(4CZ)/R/R -

1.0-

0.0-

0 10 20 30 40
Z IN CM.

Figure 1. A comparison of the analytic expressions for I and A2 versus the
exact computer generated functions shows close agreement. Constance
parameters were used.
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Figure 2a. The long-thin contribution to the quadrupole distortion of the
Constance midplane flux surface as calculated in our theory. The two lines
show the value of A4 / for cases where the pressure extends only part of
the way up the mirror. ie top line has a pressure cut-off at 25 cm. and
the bottom line has a cut-off at 17 cm. These values are the position of the
electron cyclotron resonance location for two typical operating magnetic
fields.
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Figure 2b. The beta contribution to the quasdrupole distortion of the
Constance midplane flux surface is much smaller than the contribution due to
the long-thin term in our theory. The two curves correspond to the same
preesure profiles as in figure 2a.

0 = Plasma to 3200 . res once
= Plasma to 2400 g. reson nce

2 -

1-

U.0



FLUX SURFACES
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Figure 3. Typical Constance midplans flux surfaces as calculated from our
theory. Note that the distortion is diamond shaped.
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TARR Anchor

o = VACUUM AMPLITUDE
A = BETA CONTRIBUTION
+ = TOTAL AMPLITUDE
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Figure 4. Quadrupole distortions for TARA anchor. p = 15%.



IIX-1IB Central Cell
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Quadrupole distortions for IIX-IIB central cell. p -15%.
Figure S.



VEPEC RESULTS FOR CONSTANCE
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Figure 6. VEPEC code shows definite vacuum contribution which scales
linearly with flux. In fact the finite p contribution (1 * i5%) is barely
visible.
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LTE code shows a smaller p than we find for IIX-IIB.

JJX-IIB LTE Results
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Figure 7.


