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ABSTRACT

This paper presents advances in the use of high resolution X-ray

spectroscopy for the measurements of tokamak plasmas and the study of atomic

processes. The measurements refer to H- and He-like spectra of Ar (A - 3.7 to

4.2 A) obtained with a new crystal spectrometer at the Alcator C tokamak.

With record count rates of up to 0.5 MHz, time resolved spectroscopy of

individual plasma discharges was demonstrated at the 20 ms time scale. In

particular, the time evolution of ion and electron temperatures, T i(t) and

T (t), was determined and occurrences of transient plasma phenomena were

recorded in discharges with deuterium pellet injection. X-ray line emission

was for the first time observed along different chords through the plasma so

as to determine the radial dependence of the principal plasma parameters T (r)

and T (r). These radial scan data are shown to be of interest for identifying

manifestations of underlying atomic processes and ion transport effects. On

the basis of the present results we assess the future use of x-ray

spectroscopy diagnostics to obtain extended information on the temporal and

spatial dependences of the main plasma parameters together with new

information on transient phenomena as well as on the neutral content of

tokamak plasmas.
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1. INTRODUCTION

The characteristic x-ray radiation from highly ionized atoms in tokamak

plasmas has found rather extensive use as a means of diagnosing plasma

conditions [1]. The main objective of high resolution x-ray spectroscopy

measurements is often the determination of the plasma ion temperature (T )

which is deduced from the Doppler broadening of emission lines [2]. For this

purpose one needs well-separated x-ray lines which are provided by the simple

spectra of few electron systems. Theoretically, the level structures of the

H- and He-like atoms are well known, as are the atomic rates of recombination

and ionization that determine the equilibrium balance of the ion charge

states. This information together with atomic rates involving all relevant

excited states has made it possible to calculate x-ray line intensities to a

high accuracy as a function of plasma conditions (3]. Conversely, line ratio

combinations have been identified that allow one to determine electron

temperature (T ) and density (N ), for instance, from measured intensitye e

ratios [4]. X-ray line spectra are therefore a potential source of

multiparameter information on plasma conditions which can be exploited with

suitable instrumentation and techniques.

High resolution crystal spectrometers have been installed at several of

the presently operating tokamak machines to measure the line emission in the

energy range hv - 2 to 8 keV corresponding to the wavelength range X - 6 to

1.6 A. In this range appear the H- and He-like spectra of elements with Z =

16 to 28 and recent results have been reported on S, Cl, Ar, Ti, Cr and Fe

[5-12]. This selection of elements represents some common ambient impurities

in the tokamak plasmas studied, apart from Ar which is deliberately introduced

into the plasma [8, 11, 12]. The use of such seed elements is the preferred

method for two main reasons: first, it allows one to choose the atomic charge
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Z of the ion that is most appropriate for optimizing the x-ray emission for

given plasma conditions, especially with respect to T . Second, the ion seed

concentration is a controllable parameter in contrast to that of the ambient

plasma impurities, which tend to vary with plasma conditions.

Many x-ray spectroscopy measurements up till now have shown several

limitations. Because of low data rates, and hence problems in achieving

sufficient statistical accuracy, it has often been necessary to accumulate

data over an extended time portion of a single discharge or to sum over

several consecutive discharges. The data rate limitations arise for two

principal reasons. An upper limit is, of course, set by the count rate

capability of the detector. However, up to the detector limits, the data rate

will be that of the photon flux in the spectrometer which is a function of the

light collection efficiency (luminosity) of the instrument used and the line

brightness of the x-ray emission that can be achieved under given plasma

conditions. The line brightness produced by the plasma is limited by the ion

concentration C,- NI/N . A related consideration is the fractional

wavelength bandwidth of the spectrometer (AX/A). By covering an extended

wavelength band, more lines can be measured with a general improvement in the

experimental precision. Another constraint has been the bulkiness of the

instruments which limits their use to a fixed line of sight, usually through

the plasma center.

A high performance spectrometer for tokamak measurements should combine

the attributes of high luminosity (L), large fractional bandwidth (AX/A) and

good wavelength resolution (6A/X). On the practical side it should be

versatile so as to allow selection of A-range and line of sight, and flexible

to allow easy-change in these respects; both these aspects are enhanced if

combined with the controlled introduction of seed elements to the plasma.
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Most instruments in use or planned for x-ray spectroscopy diagnostics are

based on the Rowland circle Johann geometry, where very high resolution (6X/X

< 1/15000) can be achieved partly because of the increased dispersion offered

by the large size geometries usually used [6-9, 13, 14]. Another approach is

based on the spectrometer geometry of von Hamos [15] utilizing small

dimensions, moderately high resolution (6A/A - 1/3000), small wavelength

dispersion and high performance detectors. In this case, capabilities of the

position sensitive x-ray detector with regard to detection area, spatial

resolution and count rate become a crucial part of the spectrometer design.

In this paper we describe a compact and versatile high resolution x-ray

spectrometer of the van Hamos geometry using the x-ray detector described in

Ref.[16], together with a 1-MHz data acquisition system. The instrument was

used on the Alcator C tokamak for measuring x-ray emission in- the X-range 3.7

to 4.2 A, thus covering the H- and He-like spectra of argon. Argon was

introduced into the plasma for this diagnostic experiment especially for

testing the high count rate performance. Results are presented which

demonstrate the recording of single shot, temporally resolved, x-ray spectra

on a 10 to 20 ms time scale for various plasma conditions. Of the major

plasma parameters, Ti was measured (using the Doppler broadening of the main

x-ray lines of the H- and He-like spectra of argon), and T and N weree e

determined from line intensity ratios. The temporal evolution of Ti, Te and

N were measured both for the standard gas fuelled Alcator plasmas and for

those fuelled with pellet injection [171. In addition, the first results on

radial profiles of line brightness, Ti and T are reported as obtained on a

shot-to-shot basis for both H- and He-like spectra. Moreover, the comparison

of x-ray spectra from the center and the peripheral plasma regions is used to

demonstrate interesting differences with regard to atomic population

mechanisms and charge state abundance ratios. The paper is concluded with a
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discussion of x-ray diagnostics using high performance spectrometers and the

envisaged capabilities-to provide spatial and temporal characterization of the

main plasma parameters of single tokamak discharges as well as new diagnostic

information.

2. EXPERIMENTAL

2.1 The Alcator C Plasma

.The Alcator C tokamak is a high field (BT < 13 T) machine with liquid

nitrogen cooled magnets [18]. The major and minor radii were 64 and 16.5 cm

for most of the present measurements. During our measurements, the machine

was operated at plasma currents of I, = 400-500 kA in either hydrogen or

deuterium at N - 1 to 3.10 14cm-3 and T - 1.3 to 1.8 keV (due to Ohmic

heating) in the plasma center. A typical Alcator discharge is illustrated in

Fig.1 which shows the time history of the current, the line average density,

the central chord soft x-ray diode signal (hV - 1-10 keV) and our x-ray signal

(hV 1 3.0 keV primarily due to Ar 6+). The plasma discharge lasts

approximately 500 ms of which the middle 200 ms represent rather constant

plasma conditions. Besides the ordinary gas fuelled plasma discharges we also

studied discharges in hydrogen which were additionally fuelled through

injection of deuterium pellets. The pellet raised the line average electron

density by a factor of about 2; the resulting density profiles were more

centrally peaked with an increase on the plasma axis of about a factor of 3

(17]. The pellet injection made drastic changes to the plasma conditions over

the 1 to 100 ms time scale and offered an opportunity to study the time

response of the x-ray spectra.
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For the characterization of the plasma conditions, Alcator C has an

extensive diagnostic instrumentation [18]. For the present x-ray spectroscopy

measurements, we have made particular use of information on T from the x-ray

continuum measured along a central chord, on T (r) from the electron cyclotron

emission (ECE) measurements, N (r) from the far infrared interferometer

measurements and Z from the visible continuum measurements.

Our spectrometer viewed the plasma through a horizontal port using a 2 x

10 mm aperture in a 4-1/2" conflat flange. A 125 .im thick vacuum window of

beryllium was attached to the flange with epoxy. The spectrometer entrance

slit was 'placed immediately outside the vacuum window at a distance of

approximately 100 cm from the plasma axis. The lines of sight were always

perpendicular to the toroidal axis; the chord height (d) from the plasma

center was variable and could be set between plasma discharges. Radial scan

measurements were obtained from sequences of similar discharges.

In previous measurements -t Alcator C, we observed the emission from S

and Cl at ion densities of N < 109-1010cm-3 ie, concentrations of C, - N/1 N

- 10-4 -10-5 for He-like charge states [10]. The densities of these ambient

impurities, however, vary with plasma parameters as well as with wall and

limiter conditions. For the results reported here, argon was seeded into the

plasma so that N was controllable and could be readily adjusted to maintain

the x-ray signal at the desired level. Argon was chosen because it is easy to

use and it has a suitable ionization potential for the He-like charge state

which gives maximum emission at an electron temperature (T m) of 1.8 keV. The

argon gas was introduced into the plasma through a piezo electric valve which

was open for about 10 ms, starting 20 ms into the discharge. The argon

subsequently recycles, so that a steady x-ray signal is obtained for the

constant portion of the discharge. The plasma seeding technique makes the
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x-ray measurements an active diagnostic, and the seeding levels used are

comparable to or below the levels of intrinsic impurities, and do not

significantly perturb Zeff or the radiated power. A tolerable upper limit of

CI can be defined as the value where the concentration of this medium Z

element gives a certain contribution to the central radiated power loss of the

plasma [19], say 5%. For a typical Alcator plasma (N - 2 x 1014cm-3 and T -e e

1.4 keV) the concentration of argon should be less than C, - 10-3.

Given an ion density NI in a plasma of electron density N the x-ray

volume emissivity is

E - N Q N (1)

Here it is assumed that the population rate for the upper state of the

transition is Q and that the resonance line is populated by electron impact

excitation from the ground state. Experimentally, the line emission would

appear with a brightness

B L f E x d X Q I N N (2)

where Z is the thickness of the radiating plasma. For the Alcator conditions

N - 2,1014 cm-3, Te - 1.4 keV and L ' 20 cm, the n = 2 to n - 1 resonance

line of He-like Ar (assuming C, = 10- and using Q - 3.7*1012 cm3/s from

Ref.[20]) gives a line brightness value of

B - 2.1013 photons/sr/cm2/s

which gives a line count rate of (nL) photons/s
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n - B L (3)

depending on the spectrometer luminosity L. From Eq.(3) we see that in order

to achieve a count rate of nL - 105 s-1, the spectrometer must have

L > 108 sr , cm2 . This design goal for plasma spectroscopy is rather

independent of ion species since Q varies only slowly with Z in the range of

practical interest (Z 16-30) and since Z can be chosen so that T (Z) - T .

However, the line count rate is sensitive to the electron density product

NI N in Eq.(2).

2.2 The .Spectrometer

For extended x-ray sources such as tokamak plasmas, the conventional

spectrometer has been of the Johann geometry. It uses a Rowland circle

geometry, where the crystal is curved in the dispersive direction, and has

been chosen to provide large disperson and high luminosity. In our case, we

have been able to relax the dispersion requirement, owing to the

characteristics of the new x-ray detector and still achieve high resolution.

We have chosen a spectrometer based on the von Hamos geometry [15]. Although

primarily used for point source applications [21], the von Hamos geometry is

suitable for extended sources and distinct advantages present themselves in

the practical spectrometer implementation for achieving large bandwidth, large

spectral scanning range, high resolution including off-axis sources, high

luminosity, compact dimensions, and small entrance window and viewing aperture

to the plasma.

The spectrometer geometry of von Hamos is characterized by simple optics.

It uses a crystal which is flat in the diffractive direction and cylindrically

curved in the dispersive direction as shown in Fig.2. This means that an
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object (defined by the entrance slit) in the plane through the cylinder axis

will be imaged (as recorded by the detector) on the same plane after the

diffraction; i.e., each position along the cylinder axis represents a certain

wavelength defined (in first order) by the lattice spacing (2d) and the Bragg

angle (0) through X - 2dsine. The detector is positioned perpendicular to the

incident photon direction in order to optimize the conditions for the

wavelength determination; the vertical focussing is compromised in this

position but transverse spatial resolution was not required in this

measurement. An important consequence of the transverse focussing is the

increased light collection efficiency per unit detector height.

For the present experiment, we have built a small spectrometer using a

quartz crystal (25 x 25 mm) with a radius of curvature of R - 50 cm. The

lattice parameter of the 1011 plane is 2d - 6.687 A so that for the spectral

scanning range of 0 - 30 to 37* (00 - 33.5*) the wavelength range was A - 3.3

to 4.2 A. The bandwidth is defined by the projected length of the crystal

(1 sinG) and the distance to the entrance slit d - R /sinG, ie AA/X -c sc c

1 sin 20/Rc - 1.5% [22). This allowed us coverage of the entire spectrum of

either H- or He-like argon. Change of A-ranges was accomplished between shots

by adjusting the angles of the crystal and the exit arm of the spectrometer on

which the detector was attached.

The spectrometer luminosity is defined as

L - c A dil (4)

where the efficiency factor (c) is a product of the detector efficiency (c )

crystal reflectivity (E c) and photon transmission in foils (C t), and A is the

slit area (ws*h s). The solid angle subtended by the spectrometer dSI is
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h

d- (5)sc

i.e., the product of the crystal resolving power P and the aperture angle of

the crystal. With hs - 10 mm, ws M 0.2 mm, P N 1/5000 and £ - 0.3 together

with the values as given above, we obtain L - 4*10-8 sr*cm2.

Although the bandwidth and luminosity values were adequate for the

present explorative study, principally to test the important detector count

rate capability, these do not represent an optimum design. Actually both

these values can be increased substantially by utilizing larger crystal,

detector and slit areas together with thinner windows to increase the photon

transmission. A recent study of a practical design indicated that AX/X - 10%

and L - 3'10-6 sr-cm2 [23] are achievable with this spectrometer geometry.

This particular optimization was chosen to allow simultaneous measurement of

the H- and He-like spectra of Ar (or other elements) at line count rates in

excess of 106 s 1 for ion concentrations as low as C, - 10-.

The compact spectrometer was free-standing from the tokamak which

presented measuring flexibility with minimal requirements of port access. The

angle of elevation was variable around a pivot at the spectrometer entrance

and was used to select the line of sight through the plasma as defined by the

chord height distance (d) from the plasma axis; the chord height resolution

was Ad - 3 cm (FWHM). The present radial scan measurements were made on a

shot-to-shot basis but simultaneous multi-chord measurements are envisaged in

the-future by using an array of five or more spectrometers.
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2.3 The Detector

For the photon detection, a new multi-wire gas proportional counter has

been used. It is filled with krypton/ethane gas at 1 atm. and has a detection

area of 35 x 10 mm2 . The position determination is obtained from an LC delay

line readout of the induced cathode pulse. The delay line is laid out on a

printed circuit board and is at the same time the cathode plane. The detector

has very low characteristic impedance (200 9), short pulse length (* 6 ns) and

a signal transit time of less than 28 ns corresponding to 0.8 ns per 1 mm of

detector length. This provides for short duration detector events and hence

high'count rate capability. The design of the detector has been described

earlie'r and here we merely summarize some details pertinent to its use in the

present experiment [16].

The spatial resolution as a function of photon energy was tested with a

well collimated fluorescent radiation source from secondary anodes (Si, Ca, Sc

and Cr) in an x-ray tube [16]. The tests showed no obvious degradation of the

resolution with decreasing energy down to about 1.5 keV, i.e., the spatial

resolution was Ax '. 80 pm or better; the entrance windows (76 Jim thick Be)

prevented tests below this photon energy. This implies that the signal

amplitude has to be at least below that of 1.5 keV photons to reduce the

signal to noise ratio to levels where the position resolution starts to be

noise limited. This confirms the earlier finding (16] that noise makes no

significant contribution to the spatial resolution of the detector for 3 keV

photons which is important for maintaining the high resolution at high local

count rates.
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On the tokamak, the high count rate performance of the detector was

tested by varying the argon concentration and thereby systematically changing

the photon flux. In this way, detector count rates consistent with the

maximum rate of the present data acquisition system (i.e., 1 MHz) were

demonstrated; the theoretical detector rate limit is > 20 MHz. Even more

important is the local count rate for which we have recorded values up to 200

kHz/mm (i.e., over a single x-ray emission line) with no degradation in the

observed line width; i.e., the spatial resolution was better than 150 pm at

200 kHz/mm corresponding to 40 kHz/mm for each anode wire. High count rates

will cause positive space charge build up around the anode wire resulting in a

decrease of the detector gain. At 40 kHz/mm, the expected [24] loss in gain

is about a factor of 2 and there would be a corresponding decrease in the

signal to noise ratio. We have already noted that a factor of 2 change in

this ratio has no observable effect on the spatial resolution of 80 Pm and for

a required resolution of &x - 150 pm we estimate that the signal to noise

ratio can be allowed to decrease at least a factor of four (corresponding to

80 kHz/mm per anode wire) so that the theoretical local count rate limit of

our detector is nL > 0.4 MHz/mm using five anode wires.

The position read-out and the data acquisition system were realised with

fast LeCroy CAMAC electronics. The detector timing pulses were recorded with

a time-to-digital converter (TDC model 4202) used on a 78 ps/channel time

scale. The time resolution of TDC was measured to be 280 ps (FWHM) which is

not quite good enough to avoid contributions to the instrumental resolution.

The measured time histograms representing the position spectra were stored in

a histogramming memory module (LeCroy 3588) before being read into a VAX

11/780 computer. For each plasma discharge, up to 64 spectra were stored.

each comprising 512 channels of memory and representing 10 ms accumulation

time.
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2.4 Spectrometer Performance

Examples of data obtained with the new spectrometer system are shown in

Fig.3. Presented is a sequence of 24 x-ray line spectra of He-like Ar n-2 to

n-1 transitions recorded during a single Alcator discharge each representing

an accumulation time of 20 ms. The time evolution of the intensities of the

spectral lines is displayed in the three-dimensional plot of Fig.4. This

shows that the intensity increases towards the middle of the 'discharge so that

in spectrum number 12 of Fig.3 one reaches a total instantaneous count rate of

500 kHz and a local count rate of nL = 200 kHz in the strongest line. No

deterioration in resolution due to high count rate could be observed and there

was no shift in peak position either for well separated peaks or for adjacent

ones. This line count rate corresponds to a statistical accuracy of ± 1.5% in

the line intensity (assuming 20 ms time bins). If ± 15% is the minimum

accuracy required (corresponding to nL > 2 kHz), the measurement has a dynamic

range of a factor 100.

3. THEORETICAL BACKGROUND AND DATA ANALYSIS

The H-like spectrum consists of the two resonance lines W and W2

belonging to the 2P3/2' 1/2 states (see Table I for a summary). Besides these

principal lines, there are satellite lines which arise from an additional

electron occupying an n-2 orbital or n > 2 orbital. The strongest n-2

satellites are J and T, which appear well separated in the spectrum and three

other ones A, B and Q can also be identified (see Fig.5 and Table 1). The n

3 satellites form foot hills to the resonance lines. The He-like spectrum has

four principal lines due to the resonance line (w), the intercombination (x

and y) and the forbidden transition (z) belonging to the ls2p P, ls2p P1,2
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and ls2s Si, states (see table II for a summary). The strongest satellite

lines are k and q (see Figs.6 and 7). The lines J, T and k form one class of

satellites since their corresponding upper states are doubly excited and are

formed only through dielectronic recombination on the H- and He-like ground

states, respectively, while the q line is a resonance transition of the

Li-like charge state and is thus populated in the same way as w and W1 2 '

In the center of the plasma, the conditions exist for obtaining abundance

ratios of the ion charge states that are close to the balance due to the

atomic ionization and recombination rates (coronal equilibrium). The x-ray

line intensities of the H- and He-like spectra can be calculated for given

plasma conditions assuming coronal equilibrium where the following line

intensity ratios are principal functions of the indicated plasma parameters:

J/W T

w/W T (N He IN HI

k/w Te

q/w T [NLi/NHe]

G - (x+y+z)/w T

R - z/(x+y) Ne

In the cases of w/W and q/w one must rely on the coronal equilibrium

assumption to deduce T from the measured line intensity ratios. A more

detailed discussion of the dependences of these line intensity ratios or

plasma parameters can be found in Refs.[l, 4, 11, 26, 27, 281.

In the peripheral region of the plasma, there is a strong gradient in the

radial profiles of T (r) or N (r), and the abundance ratios can be much
e e

shifted from those of coronal equilibrium by ion transport. For instance, the
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Ar N H/NHe ratio of the coronal equilibrium should decrease rapidly with minor

radius for r - 10 cm in Alcator C because of the fall-off in T Cr). However,

ion transport effects would tend to moderate the radial rate of decrease in

NH NHe given by coronal equilibrium alone. The lines W, w and q give rather

direct information on ion abundance ratios. In the central plasma, where all

three transitions are populated principally by impact excitation, the relative

intensities IW/Iw/Iq will reflect the abundance ratios N(Arl7+) / N(Ar16+)

N(Aris+). In the peripheral plasma regions where recombination is the

dominant population mechanism for W and w, the ratio I /I should indicate the

abundance ratio N(Arl8+) I N(Arl7+). Clearly, in order to extract quantative

information from these line intensities one must perform a detailed

computation of the ionization-recombination rate balance and the ion transport

effects which will be presented in a forthcoming paper [29]. For the

qualitative discussion of the present paper it will suffice to observe that

the N(Arl7+) / N(Arl6+) and N(Ar 8+) / N(Ar 7+) ratios are enhanced above the

value of balance between recombination and ionisation in the peripheral region

of the plasma.

Because of the radial profiles of tokamak plasma, especially Te(r) and

its effects on abundance ratios (for instance NH/NHe), each plasma encompasses

the conditions for the H- and He-like spectra to be populated in turn by

different atomic excitation mechanisms. Specifically, in the plasma center

with T 1.5 keV in our case, the principal population mechanisms for the Ar

spectra are electron impact excitation and dielectronic recombination.

Because of the differences in temperature dependence of the corresponding

rates (the ratio of satellite to resonance line intensities is Is /r 1 l/Te

exp (-E /Te) where E is the excitation energy) the satellites will increase in

relative importance with increasing radius. However, both these mechanisms

involve excitation of a ls electron to the n-2 orbital so in absolute terms
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the rates will decrease strongly with decreasing T (and hence with increasing

r) because of the exponential T dependence exp(-E/T ). Radiative

recombination, e + Ar17+ (Ar16+)* + Y or e + Ar18+ (Ar7+)* + Y, involves

no excitation and its rate increases with falling Te; note that only the

principal lines of the H- and He-like spectra can be populated by

recombination. Therefore, the radiative rate will surpass those of electron

impact excitation and dielectronic recombination at some critical value of the

ratio NH IN (assuming enhancement to above the coronal equilibrium) and Te as

some critical radius is reached [30]. A competing process in this case is

charge transfer recombination involving the neutrals in the plasma, D + Ar17+

+ (Arl6+)* + D+ (assuming a deuterium plasma). The charge transfer rate would

exceed the radiative rate, at a critical neutral concentration of N IN

10-5. This would occur at some certain radius since N IN increases

exponentially towards the plasma edge where it could reach values of N IN

10- [31].

The measured spectra were analysed with a least square line-fit program.

From this we extracted the relative intensities of the resolved lines of the

spectra. The z-line of the He-Like spectrum is merged with the satellite line

j. The intensity of j was estimated as 1.3 times the k line intensity and

subtracted from the sum of z+j measured [11, 25]. The line profile used was

nearly Gaussian (Voigt profile with a small Lorentzian contribution) and this

was kept constant in the analysis of a spectrum except for the height and

width. The width (r) was generally determined by the fit to the strongest

peak in the spectrum and once determined, the same value was subsequently used

to fit the entire spectrum, consisting of at least four individual lines in

the H-like spectrum and ten lines in the He-like spectrum. The wavelengths of

these lines are well known from calculations and this information was used for

the wavelength scale calibration of the measured position spectra. r could
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thus be expressed in terms of AX so that the Doppler broadening due to the

thermal ion temperature T (in units of eV) of an ion with mass M (in amu) is

determined by

T -M AX -T (6)

where C-7.7 - 10-5 and T is the known instrumental resolution expressed as

temperature (in eV). One can also note in this context that the x-ray

measurements can be performed in such a way as to obtain an absolute

determination of wavelengths which in principle allows one to study Doppler

line shifts corresponding to net ion motions down to the level of 106 cm/s as

discussed in Ref.[32].

4. RESULTS

4.1 The H-like Spectrum

A typical example of results on the H-like Ar spectrum is shown in Fig.5.

The spectrum is dominated by the two resonance lines with some low intensity n

- 3 satellites appearing in the same wavelength region. Although some of

these are blended with the resonance lines, their contribution to the apparent

width and intensity of the resonance lines used is of no practical consequence

for extracting diagnostic information. A number of n-2 satellites appear in

the region X > 3.750 A of which T, Q, B, R, A and J can be identified

(ref.[25] and Table 1). The dominant J and T satellites are well resolved and

most suitable for determining T .
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4.2 The He-like Spectrum

Fig.7 shows an example of a He-like Ar spectrum accumulated at high count

rate during 20 ms resulting in sufficient statistical accuracy for all but the

low intensity satellite lines. An accumulation time of 200 ms gave the

spectrum shown in Fig.6, where one can distinguish the four principal lines,

the extended distribution of n - 3 satellites on the long wavelength side of

the resonance line and several distinguishable contributions from n-2

satellites. One can also observe a very weak contribution of spectroscopic

interest in the region X - 4.01 to 4.03 A (Fig.8). These lines do belong to

Ar transit.ions because of their observed correlation with the argon density.

They therefore ought to belong to n-2 to n-l satellite transitions in Ar 1+

which are predicted [25] to fall in this X range. The five strongest

satellite lines due to inner shell excitation and dielectronic recombination

according to theory are given in Table II. The main concentrations of

intensity found in the experiment at X - 4.014, 4.017 and 4.023 (±0.0015) A

occur close to the predicted locations of the strongest dielectronic

satellites, while there seems to be no experimental counter part to the

predicted satellite populated by inner shell excitation; the latter line would

be the transitions in Ar14+ that correspond to the q, w and W1,2 lines in

Ar15+, Arl6+ and Ar 7+, respectively. Since the Ar1 + transitions have both a

low intensity and a complex line structure, the lines of diagnostic interest

here are the principal lines (w, x, y and z) of Ar16+ and satellite lines k

15+
and q of Ar

4.3 Ion Temperature (Ti)

Along central chords of observation, the ion temperature, Ti, was

extracted from the width of the resonance lines of the H- or He-like spectra.
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Since the x-ray emission is peaked at the plasma center (see section 4.6) the

measured Ti refers to the same region. An example of the measured time

development of T is shown in Fig.9, with a time resolution of 40 ms. The

measurement was done for a typical Alcator discharge whose time histories of

I , N and the x-ray signals I and IAr are shown in the lower panel of Fig.9.

A maximum T of 1.1 keV was reached in this discharge compared to a

corresponding T value of 1.45 keV as determined from x-ray bremsstrahlung

measurements. A discussion of the correlation between measurements of T i(t)

and T (t) is presented in Section 4.5. A comparison between our results on

T i(t) and that of the neutral particle analyser is shown in Fig.10 for a

deuterium discharge with deuterium pellet injection. The two measurements

show good agreement.

The ion temperature was measured for different chords of observation

where the distance (d) from the plasma axis was changed from d--7 cm to d-12.7

cm; the maximum d corresponds to 75% of the limiter radius. In this case, we

used the line width data from all four principal lines of the He-like

spectrum. In this way, the statistical accuracy can be improved; this is

especially important for the large radii, where the intensity is low and the

intercombination and forbidden lines are stronger than the resonance line

[31]. The results on the radial temperature profile T (d) are shown in

Fig.ll. For the data at large d, it is important to note that the errors

shown reflect the statistical uncertainties typical for recording of a single

discharge. Furthermore, T i(d) is the experimentally measured profile which

mimics the radial profile T i(r) because of the center weighting along the line

of sight mentioned above. An Abel inversion was not attempted here but will

be presented in the quantitive analysis to be published in a subsequent

paper [29]. Although no other data exist on T i(r), comparison can be made

with T (r) from ECE measurements (Fig.ll). This shows that the T values are
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generally lower than those on T with an overall scale factor of T I/T l 0.8

and a possible radial difference in that the two temperatures are more similar

at the larger radii.

4.4 Electron Temperature

The time dependence of T obtained from the line ratio k/w, is shown in

Fig.12, together with T (t) from ECE. We see that our results and the ECE

data show the same time development although there seems to be a systematic

difference in magnitude. The normalization of the T scale of the x-ray datae

could be directly assessed with simultaneous measurements of H- and He-like

spectra, and higher accuracy could in this way be achieved as well.

The line ratio k/w was measured as a function of d, from which we deduced an

apparent radial temperature profile T (d). The results are shown in Fig.13

and compared with T (r) from ECE. It should be noted that the T deduced from*e e

the x-ray data should be limited to the region d - 8 cm, where we can assume

the satellites are populated by dielectronic recombination. Just outside d Z

8 cm there is still an apparent agreement with T (r) from ECE but at some

point the x-ray data will be affected by the large gradients in T (r) and by

the change of atomic population mechanisms.

4.5 Discharges with Pellet Injections

Some of our x-ray measurements were made during early tests with the

pellet injector on Alcator C. The pellets have a drastic effect on the N and

T of the plasma; in global terms this can be seen from the time traces of

N (t) as well as from the soft x-ray and argon line emission intensities I (S)
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and I (Ar) (Fig.14). The I signals drop at the time of the injection but

recover to the pre-injection level within 15 to 25 ms depending on whether the

I (Ar) signal refers to the H- or He-like spectra; this difference can be

related to the longer ionization time of Ar (Fig.14b) compared to Ar16+

(Fig 14a). The I (Ar) signal continues to rise over a period of 100 ms to

reach a maximum some four to five times higher than the pre-pellet level. The

Ar density should be unaffected by the pellet, so that the I (Ar) signal

should initially vary due to changes in the central electron temperature and

density directly caused by the pellet. However, the large sudden decrease in

the central N ArIN ratio would be re-adjusted by ion transport at the Z 1 ms

time .scale and by ion recycling at a somewhat longer time scale. The rise in

the I signal after the pellet injection can therefore be related to the

increase mainly in N but also in T ; superimposed on this is the increase in

N ArIN with time, due to transport and recycling. The changes in N and T

can be separately seen in the present time resolved spectroscopy data.

The response of the x-ray line emission to the pellet injection can be

seen in the measured time dependence of the line intensity ratios J/W, k/w,

q/w, G - (x+y+z)/w, R - z/(x+y) and the line widths r and r , (Fig.15). It

should be noted that the H- and He-like spectra are taken from different sets

of similar discharges. To improve the statistics of these discharges with

very low seeding levels, we have combined the data from several similar

discharges. The results of each spectrum of Fig.15 represent a time bin of 20

ms and the pellet was injected during the end of spectrum number 11. We

observe that line ratios J/W, k/w, q/w and G show an increase in spectra

nos.ll and 12, indicating the decrease in T . For q/w, k/w, G and J/W we

observe minimum values in the post injection region which show that T not

only recovers but that the pre-injection temperature level is exceeded.

Finally, the shallow minimum in the time history of G(t) is consistent with
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the very weak temperature dependence of this line ratio. Thus, all these line

ratios show a systematic pattern in their time development, demonstrating a

common dependence on T .

The main feature of R(t) is the minimum in the post-injection region

being some 40% lower than the level before the injection. This corresponds to

a factor of four change in density and hence is consistent with the central

density increase caused by the pellet. We may note that the R value of

spectrum 12 remains above the minimum value although N would already have

reached its maximum value at this point. In this interval of rapid change in

T , however, one cannot expect R to reflect only N since'ionization and

recombination are likely to be further out of balance than normal. This would

affect R because of the different recombination contributions to triplet and

singlet states [31, 33].

The results on the line widths show a rather smooth development with

time, but the present time resglution of 20 ms is marginal for detecting any

rapid change at the time of pellet injection. Apart from the transition

region, the line width data for both H- and He-like spectra show a correlation

in the T dependent line ratios. One may also note a possible difference in

the data on r (t) and r (t) which could arise because of the different radial

profiles of the He-like and H-like states; they are both peaked at the center,

but the H-like radial distribution is narrower.

Examples of results for T i(t) and Te(t) deduced from rw and k/w from a

single discharge are shown in Fig.16. With a time resolution of 20 ms, we can

clearly detect the drop in T e(t) at the time of the pellet injection; the

results on Ti show no obvious change at the time of the injection. Also

recorded by the x-ray emission is the post-injection maximum in T (t).
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4.6 Radial Scan Measurements

The brightness curves I(d) of the lines W, w and q for the charge states

Ar1+, Ar16+ and Ar15+ are shown in Fig.17; these extend over more than three

orders of magnitude for d between 0 and 12 cm. All three transitions appear

with intensities that decrease with increasing radius but at different rates.

We note some decrease in the ratio IW(d)/I (d) between d-O and d-5 cm, but

beyond this there appears to be no substantial change which is in sharp

contrast to the continued decrease which would be obtained if the plasma were

in coronal equilibrium. This difference implies that the ion charge state

ratios are affected by ion transport effects as well as by the

recombination/ionization rate balance. This trend is enhanced when

extrapolated to the region d 13 cm. The redistribution of the ion charge

states has consequences for the relative weights of the competing population

mechanisms; this can be seen in the data on relative line ratios.

Examples of He-like Ar spectra measured for chord heights between d=-7 cm

and 13 cm are shown in Fig.18 a-c. The central chord spectrum shown in

Fig.18a is typical for plasma conditions of T e 1.4 keV. An example of

enhanced relative satellite intensities due to lower electron temperature (Te

' 600 eV) is shown by the spectrum measured by d - 8.3 cm (Fig.18b). The

He-like spectrum observed at d-12.8 cm shows a dramatic change in relative

intensities of the principal lines due to a change in population mechanism

(Fig.18c). The relative satellite intensities are also much smaller in this

spectrum. Results of relative line .intensities as functions of d are

summarized in Fig.19 in terms of line ratio combinations S, G, k/w and q/w.

The line ratios k/w and q/w indicate that a change in population takes place

at d " 9 cm where electron impact excitation and dielectronic recombination

processes are replaced as dominant population mechanisms by radiative and
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charge transfer recombination. The change from population by inner shell

excitation to recombination requires the N(Arl7+)/N(Arl6+) abundance ratio to

exceed 2 * 10- which indeed is consistent with the extrapolation made from

the measured I /I ratio (Fig.17).

4.7 Intensity Ratios for Fine Structure Transitions

The line intensity ratios for W2 /W1 and x/y belonging to the 22p1/2,3/2

and (ls2p) 2 P2,1 states respectively, are predicted to be 0.5 and 0.78.

Generally, the experimental results are consistent with these theoretical

values although exceptions have been observed both for tokamaks and

astrophysical plasmas [28, 34]. Theoretical attempts have been made to find

an explanation [34, 35]. In the present experiment we again observe odd

ratios of x/y and W2 /W1 and we have also looked for systematic trends in the

temporal or radial dependences measured. In the time dependence of W2 /W1 we

find a tendency of decreasing values towards the beginning of the discharge

where the plasma is in a state of building up density and temperature. The

x/y line ratio shows no systematic variation with time.. In the radial scan

data, we find no large systematic variation in either of these line ratios.

5. DISCUSSION

We have presented results obtained with a new spectrometer system and

demonstrated the plasma diagnostic capabilities represented by the measured H-

and He-like spectra for argon. The spectrometer, however, is equally suited

for measuring the same spectra for other elements; for instance, by choosing

Z-values in the range Z - 14 - 30, which can be done by using plasma seeding,

the x-ray emission properties can be matched to the plasma electron

- 24



temperatures in the range T e 1-10 keV. Suitable crystals are available with

2d-values in the range 2d - 2.5 to 7A so that the desired A-range can be

covered by Bragg angles in the range e - 20 to 40* which can easily be

accommodated with the used spectrometer geometry. Examples of spectra through

part of the H- and He-like iso-electronic sequences are shown in Figs.20 and

21. These spectra show the same line structure features but there are

specific systematic Z- dependences in the relative position of the satellites

and also in the relative intensities of the principal lines, especially x/y,

and of satellites.

-Because of the difference in temperature of maximum emission for the H-

and He-like spectra, for instance Tm - 2.8 and 1.8 keV, respectively, for Ar,

measuring them simultaneously extends the working T range of the x-ray

diagnostic. This would augment the dynamic range of the.measurement (as

discussed in section 2.4) so that better than 10% statistical accuracy could

be maintained over a wide range of plasma conditions over which the emissivity

of the H- or He-like x-ray lines changes by up to four orders or magnitude. A

large bandwidth spectrometer would therefore allow the recording of the time

history of a plasma discharge over large temperature ranges and radial

profiles covering large radial temperature gradients.

Besides the increased dynamic range and general precision that accompany

the simultaneous measurement of the H- and He-like spectra, such measurements

are also of importance for the determination of T from the x-ray data. As

was pointed out in section 3, T can be extracted from several line intensity

ratio combinations involving the resonance lines (w and W), and the

dielectronic (k and J) and inner shell (q) satellites. However, simultaneous

data on W/w, J/W, k/w and q/w are desirable for studying possible model

dependent effects in the analysis for extracting T values from the individual
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ratios and would result in comprehensively determined T values of high

accuracy. Since the ion temperature is reliably determined from the Doppler

broadening, x-ray spectroscopy is a potential diagnostic of both T and T .

The exploitation of this possibility appears interesting in view of the

frequent observations of large T and T differences in tokamak plasmas. This

question needs more experimental documentation for understanding of the

thermal conductivity and other effects with a bearing on T - T .

The simultaneous measurement of H- and He-like spectra requires a

bandwidth of about 10%. This can be obtained with the present spectrometer

geometry by using a crystal with a length of 5 to 8 cm (the practical size

limit being about 10 x 15 cm2) with a radius of curvature in the range of 35

to 60 cm. The overall dimensions of such a broad band spectrometer can still

be kept small so as to retain the same flexibility as for the- presently used

instrument. The spatial resolution of the detector would ensure that a

spectral resolution of better than 6X/X 1/3000 could be maintained even over

the larger detector area required. The light collection efficiency, on the

other hand, would be increased by a factor of 50 so that even to achieve count

rates in excess of 1 MHz, the ion concentrations would never have to be raised

above N IN - 10 at N - 101 cm 3 . Furthermore, the instrument is -

relatively simple, so that several spectrometers could affordably be used at

the tokamak for simultaneous multi-chord measurements. This would provide

single shot information on the radial profiles of plasma parameters, for

instance T i(r) and T(e r). The multichord measurements would be particularly

powerful in combination with the broad bandwidth because of the different

radial emissivities of the H- and He-like spectra. The same time resolved

spectroscopic information for single discharges could be obtained that we have

here demonstrated for consecutive discharges. However, a new and important
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aspect of these envisaged measurements would be the study of space and time

correlation of spectroscopic data.

The present study was limited to the n - 2 to ground state transitions

but some of the results on the recombination dominated spectra point directly

to the interest for measuring the H- and He-like spectra involving transitions

from the n-3 or higher orbitals [31]. Similar information can be expected

from the n - 3 to n-1 as from the n-2 to n-1 spectra except for the absence of

the intercombination line (y) and the forbidden line (z) in the n - 3 to n-l

He-like spectra. The intensity of the n - 3 to n-l spectra will generally be

weaker with increasing n as far as population due to excitation processes

goes. The n - 3 to n-1 spectra are, therefore, useful in the case one wishes

to suppress the sensitivity to high electron temperature excitation processes

and favour low temperature capture reactions such as radiative or charge

transfer recombination. The latter process is of great interest since it

offers a possibility to probe the neutral content of the plasma. We have

already estimated that the n-2.to n-l spectrum is sensitive to the neutral

content at a concentration level of N IN > 10-5 and T < 400 eV; these plasma

conditions should occur outside some critical minor radius. These sensitivity

limits could be extended towards higher T values and lower concentrations by

measuring the x-ray transitions from orbitals which have the maximum charge

transfer recombination rate. For argon, this is n-lO [36]. In this case, the

sensitivity should be essentially determined by the capture rate and the

N x N(Ar) density product only while the contributions from competing

processes would be effectively suppressed since their rates decrease with

increasing n. X-ray spectroscopy of large An transitions could therefore be

used for determining the radial distribution of neutrals in the plasma,

particularly from the plasma edge region of high N densities, and towards the

plasma center with expected neutral density levels of N 0 107 cm 3 for
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typical Alcator conditions of N -2 .1014 cm-3 and T -1.5 keV [31]. Another

possible

measurement would be along lines of sight that intersect with the trajectory

of pellets or neutral beams, in which case the capability of time resolved

spectroscopy could be used for studying transient phenomena.

6. CONCLUSION

We have presented the design of an x-ray spectrometer suitable for use as

a plasma diagnostic. The capabilities of this spectrometer were demonstrated

in measurements of H- and He-like line spectra of Ar at the Alcator C tokamak.

New results were presented on ion (T i) and electron (T ) temperature as

functions of time (t) and radius (r). The x-ray spectra from.the pheripheral

parts of the plasma show effects of radial ion transport and dominant

population by radiative and charge transfer recombination. The present

experiment has demonstrated the capability to perform time resolved x-ray

spectroscopy measurements with a time resolution of 10 ms. The next stage of

spectrometer development is envisaged to incorporate large bandwidth (AA/X

10%) and several spectrometers i.e., an x-ray instrument that can provide

multi-parameter diagnostic information such as T i(rt) and T (r,t) for single

tokamak plasma discharges.
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TABLE I

Wave lengths of the principal lines and the strongest dielectronic satellites

in the H-like spectrum of Ar.

Key Transition

W1 1S 21/2 - 2p 2P3/2 3.7300

s2 1S 21/2 - 2p 2P1/2 3.7352

1 1
T ls2s S - 2s2p P 3.7544

K ls2p 3P2 - 2p2 D2  3.7557

Q ls2s 3 S - 2s2p 3P2 3.7603

B is2p 3P - 2p2 3P2 3.7626

R ls2s 3S - 2s2p 3P 3.7639

A 1s2p 3P2 - 2p2 sP2 3.7657

J ls2p p1 - 2p2 D2 3.7709

1) Theoretical values from ref.[25]
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TABLE II

Wave lengths of the principal lines and the strongest satellites due to

dielectronic recombination and inner shell excitation (denoted *) in He-like

Ar.

Key Transition X (A)

1s2 1S
0

1s22p 2p3 / 2

1s2 1 S
0

1s22s 2 2

1S22s 2s1/2

ls2 1S
0

1s2 2s 2S1/25

1s22s 2S1/2

1s2 2p 2P1 /2

1s2 2p 2P 1 2

1s22p 2P 3 2

ls2 1 S
0

182282 1S
0

1s2 2s2p 3P 1

1s22s2p 3P

1s22s2p 3P2

1s22s2p 3P1

1s22s2p 1P2

1s22s2p 1P1

- 1s2p 1P1

- 1s2p2 
2s1/2

- ls2p 3P2

- ls(2s2plP)2p
3/2

- ls(2s2piP)2p 
1 /2

- 1s2p 3 P1

- ls(2s2pIP)2p
3 / 2

- ls(2s2p1P)2p 1 /2

- 1s2p 2 2P3 / 2

- 1s2p2 2D3 /2

- 1s2p 2 2 D5 /2

- ls2s s

- 1s2s 22p IP1
- ls(2p22s4P) 3P1

- 1s2s2p 2 3D 1

- ls(2p22s4P) 3P2

- 1s2s2p 2 3D2

- 1s2s2p 2 3D5

- 1s2s2p 2 1D5

1) Theorectical values from ref. [25]
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3.9482

3.9562

3.9649

3.9669

3.9677

3..9683

3.9806

3.9827

3.9852

3.9892

3.9932

3.9934

4.0096

4.0176

4.0179

4.0180

4.0192

4.0219

4.0291



Figure Captions

Fig.1 The time evolution of plasma current (I ) and line integrated

density (N ) of a typical Alcator C discharge. Also shown is the

soft (hv ^- 1 keV) X-ray diode signal (I ) and X-ray emission at hv

3.0 keV (mainly from Ar16+) detected by the spectrometer.

Fig.2 Schematics of the dispersive (A) and focussing (B) characteristics

of the crystal spectrometer used.

Fig.3 Sequence of He-like Ar spectra. Each spectrum was recorded over

20 ms from the beginning (the upper left one) to the end of the

discharge. The z-axis gives the number of counts per channel (with

the full scale value indicated) and the x-axis spans 150 channels;

see Fig.6 explanation of spectral details.

Fig.4 Plot of the measured X-ray emission of He-like Ar as a function of

wavelength and time; the time bin size is 20 ms and the position is

displayed in bins of four channels.

Fig.5 The spectrum of H-like Ar accumulated over ten plasma discharges of

200 ms time integration. The plasma conditions were N - 2.3'10 14

cm-, and T - 1450 eV.

Fig.6 The spectrum of He-like Ar accumulated over 200 ms of a single

discharge with the plasma conditions of RN - 2.91014 cm- 3 and

T - 1250 eV.
e

Fig.7 The spectrum of He-like Ar accumulated for 20 ms over a single

plasma discharge (same as for Fig.6).
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Fig.8 The He-like Ar spectrum from a sum of four discharges over a 60 ms

integration time with N - 1.5-1014 cm- 3 and T - 1500 eV showing
e e

enhanced satellite intensities in the regions of X - 3.970-3.990 A

(Ar is+) and X - 4.015-4.035 A (Ar 14+).

Fig.9 The measured ion temperature (T i) vs time for a typical Alcator C

plasma discharge. Comparison is made with time traces for plasma

current (I ) and density (N ) as well as with the x-ray signals from

the spectrometer (the He-like Ar spectrum, I(Ar)) and a diode

counter (hv 1 keV, I ).

Fig.10 Comparison of results on ion temperature from the present

measurement and from the neutral particle analyser experiment. The

plasma conditions were N - 3.2-1014 cm-3 and T - 1450 eV before
e e

the injection of a pellet at time 200 ms.

Fig.ll Ion temperature profile measured as a function of the distance from

the plasma axis (d). The solid curve is T - T exp -(R/a) 2 with
e 0

T - 1.45 keV and a - 9.2 cm.
0

Fig.12 The measured electron temperature as a function of time compared

to results from ECE measurements; the latter were normalised to

x-ray bremsstrahlung measurements.

Fig.13 The measured electron temperature as a function of distance from the

plasma axiz (d) compared with the radial profile T (r) of ECE

measurements.
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Fig.14 The observed spectrometer count rate for plasma discharges with

pellet injection for two wavelength regions: (a) A - 3.9-4.1 A

representing the He-like spectrum of Ar (I(Ar1 6+)) and

(b) X - 3.6-3.8 A representing the H-like spectrum (I(ArI7+

Comparison is made with the soft X-ray signal (I ), the plasma

current (I ) and the line integrated density (9 ).

Fig.15 The time dependence of the measured count rate, line intensity

ratios and line widths observed in (a) the He-like and (b) and

H-like spectra of Ar for plasma discharges with pellet injection.

Fig.16 Results on electron (T ) and ion (T i) temperature using the data on

the line intensity ratio k/w and the line width r accumulated in

five similar discharges.

Fig.17 The relative brightness measured as a function of distance from the

plasma axis for the resonance lines W1,2 of Arl7+, the resonance

line w of Ar16+ and the inner-shell excitation line q of Arl5+

Fig.18 The He-like spectrum of Ar recorded for three different lines of

sight at chord distances of d - -0.7 (a), d - 8.3 (b) and d =

11.3 cm (c) from the plasma axis.

Fig.19 The line intensity ratios S - (x+y)/w, G - (x+y+z)/w, K - k/w and

Q - q/w of the He-like Ar spectrum measured as a fuction of the

distance d from the plasma axis. The limiter radius was 16.5 cm as

indicated by the arrows.
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Fig.20 Example of iso-electronic sequence of H-like spectra generated in

plasmas of N 3.e' cm 3 and T e 1.3 keV.

Fig.21 Example of iso-electronic sequence of He-like spectra generated in

plasmas of N e 3.1014 cm- 3 and T 1.3 keV.
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