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ABSTRACT

In this paper, the optimization of gyroklystron efficiency is investigated by employing

a two-step procedure. As a first step, the prebuncher is analyzed using a small signal

approximation, since the cavity(ies) here serve mainly to modulate slightly the velocities

of the electrons, which will be bunched in the field-free drift section(s). It is found that the

electrons entering the energy extraction cavity can be characterized entirely by only two

dimensionless parameters: a bunching parameter q and a relative phase 0. The numerical

simulation of the extraction cavity, based on the nonlinear pendulum equations describing

the interaction between the electrons and the rf field, supplemented by the initial conditions

specified by q and ;, constitutes the second step. The final result of this two-step analysis is

the efficiency, rj ,,pt optimized with respect to q, ; and the magnetic detuning parameter

A. This efficiency depends only on the normalized cavity length js and the normalized rf

field F of the energy extraction section. The efficiency as well as the conditions required

to attain this optimum (qopt, Aopt, and kopt) are presented as contour plots on the (F, p)

plane and can be used efficiently to design gyroklystrons of any frequency and output

power.
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I. INTRODUCTION

In a single-cavity gyrotron, the energy extraction occurs in the same cavity as the

phase bunching. However, for efficiency improvement, the multiple cavity gyrotron (or

gyroklystron) may be advantageous because the electrons entering the energy extraction

cavity have their phase angles properly bunched in the previous cavity(ies). In addition,

mode locking by the prebunching cavity(ies) can be effective in the output cavity, which

results in a stable single-mode operation.

Experiments with a two-cavity gyroklystron amplifier operating at 28 GHz were re-

ported in Ref.1. An impressive gain of 40 dB was obtained, but only an efficiency of 10%

was observed, probably due to spurious oscillations in the drift tube connecting the two

cavities. Recently, Bollen et al.2 reported efficiencies as high as 30% in their three-cavity

gyroklystron, achieving a maximum output power of 51 kW.

The theoretical analysis of the gyroklystron usually consists of numerically integrating

the equations of motion of the relativistic electrons subject to the rf fields in each cavity'.

The main drawback of this brute force method is the large number of parameters (even for

a two-cavity device) needed in the calculations, which prevents the extensive parametric

studies of the gyroklystron efficiency that are necessary for optimum design. On the

other hand, analytical small-signal calculations, based on Vlasov-Maxwell formalism 4 or on

single-particle equations of motion5 , although useful for providing some physical insights,

are not sufficient for an accurate description of the gyroklystron performance.

In this paper, a linear approximation is used to analyse the electron phase bunching,

which is shown to be characterized by a bunching parameter q. The nonlinear equations,

describing the strong interaction between the beam and the rf fields in the energy ex-

traction cavity are then solved numerically to obtain the output efficiency. Moreover, by
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employing a normalization procedure well known in the Soviet gyrotron literature (see e.g.,

Ref.6), an extensive parametric analysis is carried out for the gyroklystron operating at

the fundamental. As a result, the optimum perpendicular efficiency of the gyroklystron,

rji, as well as the conditions for obtaining this optimum (the detuning parameter A, the

bunching parameter q, and the relative phase of the rf field ;b), depend only on two param-

eters: the normalized length of the energy extraction cavity p and the normalized beam

current I (or the normalized rf field amplitude F). The results of this comprehensive ana-

lysis are very general and can be applied to the design of a gyroklystron of any frequency

and power, operating either in the amplifier regime or in the locked oscillator mode. It

should be noted that Ergakov et. al ' have performed similar calculations for a two-cavity

gyroklystron with feedback; the case we consider here has no feedback.

The paper is organized in the following manner. In Section II, the basic equations of

the interaction between the beam and the rf fields, as well as the normalized parameters

used in this paper, will be briefly summarized. In Section III, a linear analysis, based

on these equations is done for the prebuncher of a two-cavity gyroklystron. Extension to

the general multiple-cavity gyroklystron is also examined. Section IV is devoted to the

discussion of the numerical results obtained by a nonlinear analysis of the energy-extraction

cavity. Finally, the conclusions of this paper will be presented in Section V.
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II. BASIC EQUATIONS

In Ref.8, Fliflet et al. gave a very detailed derivation of the slow time scale equations

for an annular electron beam interacting with the circular TEmp electric field given by

Et(r, P, z, t) = Re E, J'(k r)i + J(kr)I f(z)e"'-i(wtmj (1)
I~ ( kjr Jri fJe1

where Jm is the Bessel function, f(z) describes the axial profile of the rf field (normalized

such that its maximum value is one) and k 1 is the transverse wave number

k= vmp/Ro, (2.a)

where vmp is the pth nonzero root of j,, and R, is the cavity radius; in gyrotron resonators

ki ~ k = w/c = 27r/A (2.b)

In this derivation, a single-mode interaction and a weakly relativistic electron approxima-

tion (n#'/2 < 1, where n is the cyclotron harmonic number) have been used. Further-

more, by redefining the dependent and independent variables according to (in the following,

the subscript "o" denotes quantities at the entrance of the interaction region)

P = 0yI-/yo!3 ±, (3.a)

= no - wt" + , (3.b)
2'

= 7r, L, (3.c)
f311. A'

where 0 is the fast time scale phase angle of the electron, t, is the time when the electrons

enter the interaction region and I is the relativistic factor -y = (1 - #2 - P20)-1, it

can be easily shown that the equations of motion for the electrons given in Ref.8 reduce
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to the pendulum equations, also known as the Yulpatov equations in the Soviet gyrotron

literature6

= Ff( )p"~1 sin e (4.a)
d

dO = -(A + p2 - 1) - nFf (g)Pn-2 coso. (4.b)

with p(g i) = 1 and O(Gin) = 80, 0, being distributed over [0,27r). In this study, we use for

f a fixed Gaussian profile given by

f() =e- (5)

In the energy extraction cavity, the limits in = -v'3pt/2 and gout = V3//2 are taken

because they are a good approximation to actual tapered gyrotron resonators6 '1 1 . In the

prebunching cavities, the same limits are chosen but, since linear theory applies for those

cavities, the results are insensitive to the choice of limits. As a result, for a given initial

distribution of 0, the system (4) is parametrized only by the normalized cavity length A,

the normalized field amplitude F and the frequency detuning parameter A defined by

A = I (6.a)
00i A

F = B n0 \ -n,)Jm±n(k Re) (6.b)

* = 2 (6.c)

where L is the cavity length, B, is the static magnetic field, Re is the beam radial position

and wco = eBO/- 0 m, is the relativistic cyclotron frequency.

The perpendicular electron efficiency can be obtained by performing an average over

the initial phase angles 00:

r1- KP2 ( out)e (7)
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The total electronic efficiency rie1 is simply related to r7 by ri1 = y 0fiL/2(Yo -

From Eq.(7) and Eq.(4.a), an alternative expression for r7_ can be written as

r7j = 2 JFf (p sin0),, d' (8)

which expresses the energy conservation for the electrons in the electromagnetic field given

by Eq.(1). By taking into account the balance between the power radiated by the electron

beam and the losses (by diffraction through the cavity ends as well as by wall heating) of

the system, a steady-state condition can be found. These losses can be characterized by

a total quality factor Q. In terms of the dimensionless parameters defined in Eqs.(6), the

power balance is expressed as

r7-I = F 2 ()

where I is the normalized current which is defined as follows (in the case where f(s) is a

Gaussian)

I 2 eQIA -2(3-.) { ( nn 2 Azn(k-LRe) (0
\7r (3o) - m 2)J (mp) (10)

In Eq.(10), IA is the beam current (in Amp.). There exists a starting condition for oscil-

lations which can be derived from Eq.(9) as

I > I.,t EE lim -- (11)
F-0 ?7j

In a single-cavity gyrotron where Oo are uniformly distributed over [0, 27r], r?_ can be

calculated by solving Eq.(4), using the smallness of F and Eq.(8) or Eq.(7). This gives

4 e2x2
I.,t(A ) = - n , X / (12)
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By using the kinetic approach, the same expression for It has been obtained'. For a given

yu, the threshold for oscillations, Immn, can be defined as the minimum value of It:

Imin(P) Ist(Aminji)

Amin = 4 Xmin// (13)

Xmin 1/2 (n/ + / n2 /t 2 + 1)

Therefore, in the 3-D parameter space (I, A, A) of a gyromonotron, we can distinguish

a region I > It(Ip, A) where at least one stable equilibrium point always exits, and the

region Imin(j) < I < It(j, A), where stable equilibrium points may still be found. The

latter region corresponds to the hard excitation region, while the former one is called soft

excitation region, according to the known terminology employed in nonlinear oscillator

theory (see e.g., Ref.10). Extensive parametric studies, based on Eqs.(4-13) have been

done1 1 '1 2 for a single-cavity gyrotron at cyclotron harmonic numbers n varying from one

to five.

Finally, before closing this Section, it is interesting to note that a system of slow-time

scale equations similar to Eqs.(4) can be formulated for a quasi-optical gyrotron operating

in a TEMOO mode, with the resonator axis (y-axis) oriented transverse to the electron

beam axis (z-axis). By using Eqs.(3), one can show that the equations given in Ref.13

reduce to

dp -Fcos(kyg - nr/2)f ( )p" 1 sine (14.a)

d
dO -(A + p 2 - 1) - nFcos(kyg - nxr/2)f( )pn 2 cos 0. (14.b)
d

where k is the wavenumber (k = 27r/A), yg is the coordinate of the electron guiding-center

along the axis of the mirrors and f( ) is still given by Eq.(5). Except for the detuning

parameter A, the other dimensionless parameters should be modified according to

0 = (15.a)
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E #"-4 (nn~I
F = L * (15.b)

Boc 2n-In!

2 eQIA #-2(3-n) A /A 2 ( n 2

r4 Coyomec3 -o d wo 2nn!

Here, d is the mirror spacing and wo is the radiation beam waist. For an annular beam

(yg = Re sin a, a E [0,27r] ), an additional average over the electron guiding centers yg

should be done to obtain the efficiency for a quasi-optical gyrotron. However, for a pencil

beam (kyg = const.), Eqs.(14) are exactly the same as Eqs.(4). This implies that most of

the results of this paper will be applicable for both waveguide and quasi-optical (in the

pencil beam limit) gyrotrons.
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III. LINEAR ANALYSIS

In a gyroklystron device, a prebuncher consists of a cavity followed by a drift section

which is designed (in the ideal case) in such a way that no rf field can be excited. The

prebuncher cavity serves mainly to modulate slightly the transverse momentum of the

electron beam, and, due to the energy dependence of the relativistic mass of the electron,

the inertial bunching mechanism will take place in the drift section. As a result, provided

that the phase of the rf field of the energy extraction cavity has an appropriate value, the

bunched electrons will interact efficiently with the cavity field. Additional cavities in the

prebuncher can be useful in improving the bunching effects while keeping the length of the

drift section as well as the field amplitude F in the cavities at a reasonably small value.

A. Two-cavity gyroklystron

Let us first consider the case of only one cavity in the prebuncher. Since F is small,

the pendulum equations, Eqs.(4), describing the interaction between the electrons and the

field can be integrated analytically by expanding p and 0 in the small parameter F as

follows
P = (0 + PM" +

(16)
-=(") + 0" +

where p(k) and O(k) contain F to the power of k (EP). By inserting this expansion in

Eqs.(4) with n = 1 (in the rest of this paper, only the fundamental cyclotron resonance is

considered), we get the following system of linearized equations

dp (()

- 0 (17.a)

d 1
d0= - (A + P ((j) - (17.b)

dpi )
= -Ff( ) sin 0() (17.c)
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- -2p(OP) Ffp(" - cos) (17.d)
d p(O)

The first two equations describe the unperturbed state of the electron beam

p'">(g) = 1 (18.a)

8(0)(0) = . + A(i - = c (18.b)

where 8a (and consequently 0,) are uniformly distributed over [0, 27r]. The Eq.(17.c) de-

scribes the electron momentum modulation by the rf field. Using Eq.(18.b) and the field

profile given by Eq.(5), Eq.(17.c) can be easily integrated, and we obtain up to the first

order in F

p(gout) = p'01 (%tst) + p")(out) = V - FyG(x) sin . (19)

where the function G is defined by

G(x) = -2 cos(2xt) dt e2 (20)

and x is given by Eq.(12). Within the same order in the small parameter F, the bunching

of the electron phase angles is given by Eq.(17.d). Adding the result readily obtained from

this equation to Eq.(18.b), we get

3(-ut)= F., -2 y sin 0, + Ax cos 0. - cos 0, (21)2 2

The first two terms within the braces in Eq.(21) come from the integration of the first term

in the RHS of Eq.(17.d) which describes the inertial bunching; the last term characterizes

the force bunching. In most cases of interest, only the first inertial term dominates since

A is usually larger than one, and

A - 1< 1 (22)

10



due to the requirements that the starting current I't of the prebuncher cavity should be

high in order to prevent self-oscillations [see Eq.(12)].

In the drift section, p remains constant (since F = 0 as pointed out at the beginning

of this Section) and is equal to the RHS of Eq.(19). However, the phase angles 0 evolve

according to

dO
- = -Ad+ /Flipe -sin 0c (23)
d

Here, the subscripts "i" and "d" have been introduced to denote quantities defined respec-

tively in the first cavity and in the drift section. The bunched phase angles of the electrons

at the end of the drift section (of length Ad) can be obtained by solving Eq.(23) with the

initial condition specified by Eq.(21)

O= D '- $1 A +ksdAd) +qsin0, (24.a)

q = 1/WFIgle~- v i + Ad (24.b)

where the approximation (22) has been used to drop the term proportional to cos 0,. This

expression differs from the one employed in Refs.13 and 14 only by the additional bunching

term v/3- /2 which is retained here to deal with the case /Ad - A,.

As a result, the electron phase angles, at the input of the second cavity, can be

parametrized by a bunching parameter q which is defined in terms of the characteristics of

the prebuncher, and a constant phase 4' which accounts for the phase difference between

the cavities and the electron rotational drift [juA terms in Eq.(24.a)]

0,2 = Oc + q sin 0c - 0 (25)

In the case of a Sine profile (f(g) = sin(x2/A), 0 < < ji), the bunched angles 0.,2 are still

given by Eq.(25), provided the bunching parameter q is appropriately defined by

47rcos (ptA,/2) A [ A - tan
q4= Fll d + - 2 2 tan
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Negecting the bunching effect in the cavity (A, < Ad), we recover the expression given in

Ref.1.

The small-signal efficiency in the second cavity can be calculated by solving the linea-

rized equations (17) with the initial conditions specified by Eqs.(19) and (25). To the first

order in F, and F2 , the transverse momentum at the output of the second cavity is

PoUt, 2 = 1Ae- Fas1 ~ sin c - --- F2i 2 e -sin [0,2 - - 2 A2 ] (26)

Making use of Eqs.(7),(25) and (26), we obtain

r71= VF 2 pA2 e j sin [ ,+ qsin0c - - -- p 2 A 2 I (27)

since (sin c), , = 0. The integration yields finally

r7-L= 0FF2 .p2e~' J 1 (q) sin(O + -- p2A2) (28)2

where J, is the first order Bessel function. From the definition of the starting current,

Eq.(11), one can deduce that, provided q has a nonzero value,

ISt,2 = 0 (29)

for the second cavity. For any given current 12, the cavity will oscillate and, using the

power balance, Eq.(9), the field amplitude F is given by

F2 = J + 3p2 A 2 ) (30)

The optimum efficiency in the small-signal regime will take place when

q = qopt = 1.84 (31.a)

A2 = A 2,OPt = 0 (31.b)

1 5
= opt = r, -r,... (31.c)

and is equal to 7 l,opt = 1.03 F21 2  (31.d)
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As will be found in the Section IV where nonlinear calculations will be performed, values

of qopt even higher than 1.84 are required to obtain optimum energy extraction in the

strong field F region. Although one can achieve arbitrarily high values for the bunching

parameter by choosing the operating A, and 1A close enough to the starting current It

of the first cavity (in order to obtain high F), it can result in a very unstable operation

because small perturbations of the device parameters such as the magnetic field or the

beam current lead to large changes in q. On the other hand, increasing the prebuncher

length to increase q [see Eq.(24.b)] could deteriorate the electron bunching in the drift

section, due to the effects of the electron velocity spread1 ,3. From these considerations,

the power needed to drive the first cavity must be sufficient to attain the desired value

of q for optimum efficiency of energy extraction and stable operation. This power can be

fairly high in some cases. In order to alleviate this constraint, a gyroklystron with many

prebuncher cavities will be considered.

B. Multiple cavity gyroklystron

The analysis of such a scheme can be done by a straightforward extension of the

previous one. In this analysis, we assume that there is modest gain from cavity to cavity

except for the last (energy extraction) cavity, and that linear theory can be used to describe

each cavity in the prebuncher. We also assume that the inertial bunching dominates

over the force bunching. Solving successsively the linearized equations, Eqs.(17), for each

cavity and the field-free pendulum equations, Eqs.(4), for each drift section, the normalized

momentum at the output of the jth cavity, pout,j, and the phase angles at the midplane

of the (j + I)th following cavity, 0,,j+, can be expressed as

Poutj = 1 - 2 FkUpez sink c,k (32.a)
k=1
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ec,j+i = cj + dj -z sin Oc,k - 0j, i = 1,.. .,N - 1 (32.b)
k=1 d,k

where

A d,j = j + Adj, (33.a)

gj = ,Fj A pj e-, (33.b)

Oj= y/jLjAj + /Id,jZ~d,j + js+l.,+, + ('k,+1 - 0',), (33.c)

and N is the total number of cavities in the gyroklystron (the Nth cavity is the energy

extraction cavity). In Eq.(33.c), Oj denotes the rf field phase in cavity j, while Oj is the

difference of phases between cavity j + 1 and j, plus the rotational drift of the electron

from the midplane of cavity j to the midplane of cavity j + 1. With 0,,,, which is the

electron phase angle at the center of the first cavity and therefore, is uniformly distributed

over [0,27r], Eqs.(32) describe completely the electron bunching process. At the input of

the last (energy extraction) cavity, the electron phase angles are simply given by

00,N : Oc,N + NAN (34)
2

The complexity of the expressions in Eqs.(32) can be greatly reduced by assuming that

q, < q2 < - - - < qN-2 < 1 (35)

which is consistent with a modest gain in successive prebuncher cavities. As a result, we

obtain from Eq.(32.b) the same simple expression for the electron bunching, as the one in

a two-cavity gyroklystron:

OCj+1 = OC,1 + gj sin Oc,, -- j, j = 1,...,N - 1 (36)
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Repeating the calculations which lead to Eq.(30), with the aid of Eq.(33.b), it is straight-

forward to get

F 2 ~IJAj eZqj_,sint1  (37.a)

-= - Ae sin tpj, j =2,...,N-l (37.b)
q,, 2 3

where the approximation J, (q) s- q/2 has been used. The bunching parameter q,, produced

by the first cavity can be determined simply by invoking the power balance between the

input power, the power absorbed (or emitted) by the electron beam and the power lost by

the cavity (wall heating, diffraction). The requirement that the first cavity does not self

oscillate is fulfilled if I, min,,, where Imtn,i is the threshold current defined in Eqs.(12)

and (13). Thus, using q, and Eqs.(37), the field amplitude and bunching parameter can

be obtained in successive cavities by iteration. The equation (36) then gives the input

bunched phase angles for the electrons entering the final (energy extraction) cavity.

In the case of constant guiding magnetic field and identical sizes for the buncher

cavities as well as for the drift sections

Al= -=pN-I =

(38)
'd,i = -- =d,N-1 = AD,

an upper limit for q,/jq_, can be written as

5-_ 2-- -24e (39)
gy _j 2

For a given A, the first cavity will operate in an absorption regime when the frequency

detuning is small (x, < 1/, or A, 4/A); this results in a very small initial bunching
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parameter q,. Therefore, the overall efficiency of bunch formation would be very poor,

although the RHS of Eq.(39) is maximum for x, = 0. On the other hand, the positive

contribution from the electrons becomes maximum when A , approaches the value given

by x, = Xmino, provided I, < Imin,I. For example, taking I = 0 .8 Imin,i, Mn = II = 3

(which corresponds for instance to a 80 kV electron beam, a velocity ratio a = 1.5 and

length ratio L/A = 1.5), the maximum multiplication factor qy/qj i can be as high as 8

(power gain of 18 dB per stage) if x, = xmino.

As a final remark, we should mention that a detailed analysis of Eq.(32.b) reveals that

a better bunched electron beam can be formed when qj have the same order of magnitude,

i.e., when the inequality (35) does not apply. Such a regime of operation can result in

a somewhat higher efficiency at the expense of a lower gain. The analysis of this case,

however, will not be carried out further in this paper.

In summary, from the linear analysis, after traversing the prebuncher consisting of one

or several cavities, the bunched electron beam can be modelled by only two parameters as

follows

Pin = 1, (40.a)

Oin = 0, + qsinOc - , ,c uniformly distributed over [0, 2r], (40.b)

at the input of the energy extraction cavity. The modulation terms [see Eq.(32.a)] have

been neglected in Eq.(40.a) since the rf field in this cavity is much stronger than in the

previous ones for high energy extraction efficiency. Then, by a numerical optimization of

the nonlinear efficiency based on Eqs.(4), (7) and (40), we readily obtain the desired values

of q and 0, necessary for design of the prebuncher. This will be examined in detail in the

next Section.
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IV. NONLINEAR ANALYSIS

As the bunched electrons flow through the energy extracting cavity, a strong inter-

action between the electrons and the resonator rf field will take place if the field phase

has an adequate value. The mechanism of this interaction is described by the nonlinear

pendulum equations (4) and the initial conditions (40). A more convenient form (suitable

for a numerical treatment) for these equations can be written as

dP (A - 1 + p P + iFf(g) (41.a)

P(= ) = -i(,c+qsin e-), O uniformly distributed over [0,27r] (41.b)

in the fundamental cyclotron harmonics (n = 1) case. A Gaussian profile defined by Eq.(5)

will -be used to model f( ) in all the following calculations. The perpendicular efficiency

is simply defined by

r7- = r7(F, A, A, q,tk) =1- |p(g = 2rIt)1 2 dl. (42)
0 27r

The efficiency rj, as a function of q and t is determined in two steps. First, Eq.(41.a)

is integrated (using a first order predictor-corrector method) for an unbunched beam,

e.g. with a set of initial angles Oin = 0, uniformly distributed over [0,27r], to tabulate

P( = gout) versus 0,. Then, by employing a linear interpolation from these tabulated

data, r1 is calculated from Eq.(42) for any pair (q, b). By this method, we perform the

integration of (41.a) only once for any given set of q and 0. (This method is virtually the

same as the one employed in Ref.13 to investigate the quasi-optical gyroklystron).

A numerical optimization follows in order to determine the maximum of r?± with

respect to q and V). A further optimization versus A results finally to the optimum efficiency
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as well as the optimum conditions which depend only on F and yA as follows

?L1,opt = ?0L,opt(F, p)

A opt = Aopt(F, A)

(43)
qopt = qopt (F, A)

Oopt = Oopt(F, A)

and - - -- 0 at Aopt, qopt, opt (44)

Using the power balance, Eq.(9), the independent variables F, tt in Eq.(43) can be trans-

formed numerically to I, A in order to obtain the operating conditions for a given current

and a cavity length.

The equation (41.a) was integrated for 128 particles with different 0, distributed

equidistantly in [0,27r] and 256 intervals on an equidistant c-mesh have been used to

obtain reasonable accuracy in ?_ calculations. Agreement with the results derived in the

weak-field limit, Eqs.(31), is found to be excellent for F < 0.02 and A satisfying Fg < 0.2.

The alternative expression for rij (8) has been used for higher F values as a diagnostic for

the numerical integration.

The contour plots of 71,op,, Aopt, qopt and ?Popt in the (F,My) plane are depicted in

Figs.1. Efficiency as high as 90.8% has been found for F = 0.14 and /I = 15.5 provided

that Apt = 0.538, qopt = 3.17 and t4,,t = 0.84 7r. As shown in Fig.1c, the optimum q in

the high field region is slightly higher than the value of 1.84 found in the linear regime,

due to the presence of higher order terms in F in the expression of r7-.

Another feature of interest in Fig.1a is that the region where the efficiency is greater

than 80% is fairly extensive in the (F, 1) plane. Notice that this level of efficiency is

not accessible in a gyromonotron (unbunched beam) where the same Gaussian profile is

assumed. Furthermore, when compared to the isoefficiency curves of a gyromonotron,
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shown in Fig.2, it is interesting to note that the high efficiency contours of a gyroklystron

migrate towards the low F and 1y region, as a result of the prebunching effects. One

important implication of this, as discussed in Ref.15 is the possibility of lower order mode

operation in high frequency ( 100 GHz) and high power ( 1 MW) gyroklystrons.

For very high field amplitude F, the optimum efficiency exhibits a second maximum

in the (F, 1z) plane. In that region, after a rapid deceleration stage, the electrons can regain

energy from the rf'field before yielding again their energy to the rf field towards the output

end of the cavity while in the low F region (including the first efficiency maximum), the

energy transfer from the electrons is always a monotone increasing function of , once the

"bunch" has been formed. It is interesting to observe that the transition between these

two regimes occurs in a region of the (F, p) plane where the change in r7_ is smooth but

the change in q and 0 is very steep. This is explained by the jump of the optimum values

of q and ip from one local maximum to another local maximum of the efficiency in the

(q, 0) plane as the field amplitude F increases across the transition region.

In Fig.3, the isoefficiency curves are shown in the (I, yt) plane. Also shown in this figure

(dashed line), is the curve Imin~p) which is defined in Eqs.(12) and (13). For I < Imi

no oscillations are expected unless the electron beam is prebunched. (In a gyromonotron,

the Imin-curve is precisely the rlj = 0 isoefficiency contour). In this region, which can be

referred to as the amplifier regime, high efficiency occurs for a short cavity length and near

the boundary I = Imi where efficiency higher than 60% can be obtained for t :; 7. Higher

efficiency can be reached in the I > Immn region which can be referred to as the locked

oscillator regime since the cavity can still oscillate even when the prebunching is turned off.

From Fig.3, it can be seen that the maximum efficiency peak of 90.8%, mentioned above

requires a beam current 16.7 times higher than Imn. The next efficiency peak occurs
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at it = 22 and I = 193 Imin. Such large currents could lead to problems regarding the

stability of the working mode against competing parasitic modes' 6 .
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V. CONCLUSION

From a linear analysis of the prebuncher where the weak-field approximation can be

assumed, a simple two parameter model for the bunched electron beam was derived for a

two-cavity gyroklystron. For a multiple-cavity device designed such that the gain per stage

is modest, we have shown that the bunching can also be described by only two parameters.

A major result from the analysis of such device is the possibility of large gain enhancement

by additional prebuncher cavities in a gyroklystron operating as an amplifier.

Utilizing the bunching model derived from linear theory, a thorough optimization was

then carried out to determine the optimum efficiency of energy extraction in the output

cavity, as a function of the normalized field amplitude F and the normalized (output)

cavity length p. This optimum efficiency, as well as the different optimum parameters were

presented in a convenient graphical form in Figs.1 and 3, from which design studies (such

as the ones discussed in Ref.15 for a single-cavity gyrotron) can be performed efficiently

for gyroklystrons of any frequency and output power. Furthermore, these results can be

applicable for a quasi-optical gyroklystron when the electron beam radius is much smaller

than the radiation wavelength (pencil beam), as pointed out in Section II.

The influences of the electron velocity spread (hot beam) and the space-charge field

on the gyroklystron performance were not considered in this paper. However, the effect

of velocity spread can be easily simulated by solving the pendulum equations (4) for a

population of electrons having different velocities. The influence of the space-charge field

can be taken into account by including an additional force term in the RHS of Eqs.(4)

as shown by Bratman and Petelin". For a specific gyroklystron design, these additional

calculations would be complementary to the performance curves obtained in this paper.

As a final remark, this two-step technique can be employed to analyze other devices

21



based on prebunching of the beam such as the gyrotwystron. It can also be extended to

the harmonic operation of these devices.
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FIGURE CAPTIONS

Figure la The gyroklystron perpendicular efficiency r7-, optimized with respect to A, q and

i, versus the normalized field amplitude F and the normalized cavity length it.

Figure lb The optimum frequency detuning parameter A.

Figure 1c The optimum bunching parameter q.

Figure id The optimum relative phase ,.

Figure 2 The gyromonotron (q = 0) perpendicular efficiency r7_, optimized with respect

to A, versus the normalized field amplitude F and the normalized cavity length

A.

Figure 3 The gyroklystron perpendicular efficiency i_, optimized with respect to A, q and

t, versus the normalized beam current I and the normalized cavity length p. The

dashed line represents the threshold current I,i for an unbunched beam.
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