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The kinetic stability properties of an intense relativistic electron

ring located at the midplane of an externally applied betatron field are

investigated within the framework of the linearized Vlasov-Maxwell equations,

including the important influence of electromagnetic effects and surface-

wave perturbations. Stability properties are calculated for eigenfrequency w

near harmonics of the relativistic cyclotron frequency w in the applied

betatron field. Making use of the large-aspect-ratio assumption (R0 >

a closed algebraic dispersion relation is obtained for the longitudinal

instability, assuming that the electron ring is located inside a perfectly

conducting toroidal shell. Several points are noteworthy in this analysis.

First, transverse electromagnetic effects can provide complete stabilization

provided the ring current is sufficiently large. Second, for the case where

the betatron focussing force exceeds the self-field defocussing force

2 2 2
(cz / b/y >O), it is found that stabilization occurs at sufficiently

low transverse temperature of the beam electrons. Third, for the case where P<0

and the transverse temperature of the beam electrons is sufficiently low,

it is found that surface perturbations on the electron beam drive a radial kink

instability.

t Permanent Address: Naval Surface Weapons Center, White Oak, Silver Spring, Md. 20910
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1. INTRODUCTION

There is a growing literature1-16 on the equilibrium and stability

properties of intense relativistic electron rings with applications to

high-current betatron accelerators,' including the conventional high-current

betatron as well as the modified betatron (Fig. 1). An intense relativistic

electron ring is likely subject to various macro- and micro-instabilities.
1 0-1 6

The most deleterious instabilities appear to be associated with the class

of longitudinal instabilities, including the negative-mass and tesistive-

insabiitis.13-16
wall instabilities. The majority of previous analyses of the longitudinal

stability properties of an intense electron ring have been carried out

within the framework of a rigid-beam model.5'1 6  In a recent calculation,1 4

we developed a kinetic formalism describing longitudinal instabilities in

a relativistic electron ring, including the important influence of finite

beam temperature, wall resistivity, and self-field effects on stability

behavior. Strictly speaking, a more accurate theoretical analysis is

required to incorporate the full influence of electromagnetic effects

and surface perturbations on longitudinal stability properties. In this

14
regard, the present article extends the previous kinetic treatment

to a broader range of system parameters, eliminating various restrictive

assumptions, and incorporating the important influence of electromagnetic

effects and surface-wave perturbations. In particular, the present analysis

allows for kink-like perturbations with D/DZ' # 0 in Fig. 1.

The equilibrium properties and basic assumptions are briefly summarized

in Sec. 2. The eigenvalue equation is derived in Sec. 3, making use of the

linearized Vlasov-Maxwell equations. The analysis is fully electromagnetic.

Moreover, in obtaining the perturbed distribution function, and subsequently

the perturbed charge and current densities, we take toroidal effects into

account. In particular, the radial variation of the azimuthal electron

velocity produces surface-charge and surface-current perturbations corresponding
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to a kink-type perturbation with a/a4 0 0. In order to simplify

the expression for the perturbed distribution function, we assume that the

eigenfrequency w is approximately equal to a harmonic of the electron cyclotron

frequency wcz in the applied betatron field. In the limit of large aspect

ratio, the eigenvalue equation [Eq. (45)] is solved analytically in Sec. 4,

leading to a closed algebraic dispersion relation [Eq. (66)] for the complex

eigenfrequency W.

Detailed stability properties are investigated in Sec. 5, with particular

emphasis on the influence of electromagnetic effects and surface-wave

perturbations on stability behavior. In order to illustrate the strong

stabilizing influence of electromagnetic effects, we consider the case where the

conducting wall is located very close to the surface of the electron beam

(a %a), and the surface-wave contributions in the dispersion relation (66)
c

can be neglected (Sec. 5.A). In a parameter regime corresponding to the

conventional negative-mass instability (=2 /2 y2 0), it is found

that electromagnetic effects can lead to complete stabilization of the instability

provided the beam current is above some critical value [Eq. (75)]. The

important stabilizing influence of electromagnetic effects is found for both

conventional and modified betatron accelerators.

To clarify the terminology used in the preceding paragraph, it is clear

that the terms proportional to W/ck in Eq. (66) are related to electromagnetic

effects. In this regard, it is customary in conventional treatments of longi-

tudinal stability properties to approximate terms such as 1 - abw/ck by

I - ab, where use is made of w ~ kw z = ka c. Here, bc= R W is the mean
b~ whrcs smeo0 b b Ocz

azimuthal velocity, and k = */R To be more precise, we should express

1 - Sb =1 - - Sb ck)

which is the procedure followed in analyzing the dispersion relation in Sec. 5.
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Indeed, retaining the contributions proportional to abX = $ b-(wwcz)/ck, it is

found that the inclusion of the concommitant "electromagnetic effects" can have

a large influence on detailed stability properties as summarized in the previous

paragraph.

The effects of surface-wave perturbations on stability behavior

are also investigated (Sec. 5.B), including the surface-wave contribution in

the dispersion relation (66), but (arbitrarily) turning off the (stabilizing)

electromagnetic contribution. Two points are noteworthy from the stability

analysis. First, in the case where the focussing force of the betatron

field exceeds the self-field defocussing force, it is found that the negative-

mass instability for the modified betatron is stabilized by reducing the

effective transverse temperature of the beam electrons to sufficiently

low values. For the conventional betatron, it is shown that there

is a range of parameters for which the system is stable. The stability

criterion is easily satisfied provided the electron density is sufficiently

large [Eqs. (82) and (83)]. This stabilization results from the inclusion

of surface-wave perturbations. Second, in the case where the betatron

focussing force is less than the defocussing self-field force, conventional

theory predicts that the system is stable. However, by reducing the effective

transverse temperature to sufficiently low values, the present analysis

(including surface-wave perturbations) predicts that the system is unstable.

The instability, which originates from the surface-wave contribution

in the eigenvalue equation, corresponds to a radial kink instability.16

Although the radial kink instability can be derived from fluid or rigid-

beam descriptions, only a kinetic model based on the Vlasov-Maxwell

equations can accurately predict detailed stability behavior because of the

sensitive dependence on transverse thermal effects.
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2. EQUILIBRIUM PROPERTIES AND BASIC ASSUMPTIONS

As illustrated in Fig. 1, the equilibrium configuration consists of

a relativistic electron ring located at the midplane of an externally

ext ext
applied betatron field BOr (r,z)r + B z (r,z)z. In addition, the electron

ring is located inside a toroidal conductor with minor radius ac. An

externally applied toroidal magnetic field B exte together with the betatron

field, act to confine the ring both axially and radially. Here, r' a

and & are unit vectors in the r-, e-, and z-directions, respectively.
ext

For B = 0, we recover the conventional betatron configuration.08

The equilibrium radius of the electron ring is denoted by R0 and the minor

dimensions of the ring are denoted by 2a (radial dimension) and 2b (axial

dimension), respectively. In addition to the cylindrical polar coordinates

(r,e,z), we also introduce the toroidal polar coordinate system (p,0,6)

defined by

r-R0  = pcosD, z = PsinD (1)

where p is measured from the equilibrium radius R The characteristic

mean azimuthal velocity of the ring electrons (V =%_c) is in the positive

6-direction, which produces a self-magnetic field B (x). The ring is

also assumed to be partially charge neutralized by a positive ion background

with fractional charge neutralization f. That is, n 0(r,z) = fn0(r,z),
i b

where nb r,z) and n (r,z) are the equilibrium electron and ion densities,

respectively, and f = const. = fractional charge neutralization.

To make the theoretical analysis tractable, we make the following

simplifying assumptions in describing the electron ring equilibrium

by the steady-state (3/at=0) Vlasov-Maxwell equations.
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(a) The minor dimensions of the electron ring are much smaller than its

major radius, i.e.,

a,b << R 0 (2)

To further simplify the analysis, it is also assumed that the minor cross

section of the electron ring is circular with a=b, which is consistent

provided the external field index n satisfies

n = 1/2, (3)

where n=-[r32nB ext(r,z)/3r] .
OZ (RO,O)'

(b) Consistent with Eq. (2), it is also assumed that the transverse (r,z)

kinetic energy of an electron is small in comparison with the characteristic

2
azimuthal energy Ybmc .

(c) The maximum spread in canonical angular momentum SP is assumed

to be small with 16P.1 a ybm bcRO

(d) Finally, it is assumed that

V N ee2
27T e e<< 1 (4)

Yb 20R0 mc
2 yb

2. 2
where v=(Ne /2rR 0 2( 2mc) is Budker's parameter, N e is the total number of

electrons in the ring and e 2/mc2 is the classical electron radius. For

further discussion of the basic assumptions used in the present analysis,

the reader is referred to Ref. 14.

For azimuthally symmetric equilibria (3/3e=O) with both r- and z-

dependence, there are two exact single-particle constants of motion in the

equilibrium field configuration. These are the total energy H,
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2 4 2 2 1/2
H = (m c +c p ) - ep0 (r,z) , (5)

and the canonical angular momentum P ,

0Pe = r[p - (e/c)A0 (r,z)] , (6)e6

where =ymy is the mechanical momentum, $ (rz) is the equilibrium electrostatic

0potential, -e and m are the electron charge and rest mass, respectively,

c is the speed of light in vacuo, and A0 (r,z) is the 0-component of the

equilibrium vector potential. Within the context of Eqs. (2) and (3),

14
it can be shown that the canonical angular momentum

^2
P = pP' - (e/c)B 2 , (7)

ext-
in the plane perpendicular to the toroidal magnetic field B e is an

approximate single-particle invariant for a thin, circular electron ring with

a=b and a<<R. In Eq. (7), Bi is defined by 0 B gt (R,0).

For present purposes, we consider the electron distribution function

specified by1 4

2
0 P b R0A 6(H-wb -ymc )

fb(H,P ,P 2 2A27 Ybm (P 0 +

where 0b=n (RO,0) is the electron density at the equilibrium orbit (r,z) =

(R2O), Wb=const. is the angular velocity of mean rotation in the O-direction,

A is the characteristic spread in the canonical angular momentum P0 , and ^

is a constant. After some straightforward algebra, it can be shown that

the combination H-wbpo occurring in Eq. (8) can be expressed in the

approximate form1 4
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H-~ w 2 2 + p(rz)
Db = Ybmc + PI/ 2ybm (9)

2 2 2Here, Pi = pe+ - bbp) is the transverse momentum-squared in a

frame of reference rotating with angular velocity wb about the toroidal

axis. The envelope function i(r,z) in Eq. (9) is defined by1 4

(r,z) = 1 b22 (10)

for a thin ring with circular cross section (a=b). Moreover, the effective

focussing frequency Q is defined by

2 2 2
W =b W 0 b + L , (1)

where

2 1 2 1 2 2
W OZ + Wpb b (12)

Here, b b 2 /m is the relativistic plasma frequency-squared of thepb b b

beam electrons at (r,z) = (R, 0 ), and w = eBxt (RO,0)/ybmc and wce =

eB /ybmc are the relativistic cyclotron frequencies in the betatron and

toroidal magnetic fields at the equilibrium orbit (r,z) = (RO,0).

Substituting Eq. (9) into Eq. (8) and evaluating the electron density

0 rj3 0
profile nb(r,z) = d bP fb we find

n (r,z) = nbU(a-p) , (13)

2 2 1/2
where a=[2 (^y-yb)c /yba ] , and U(x) is the Heavisides step function

defined by U(x) = +1 for x>0, and U(x)=0 for x<0. For the equilibrium
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2 2
to exist, it is necessary that y>yb and 0 >0. The condition 0 >0 can be

expressed in the equivalent form

W-<W<W+ (14)
wb wb <b

where the laminar rotation frequencies b are defined by

b 2 2 (15)

ce

Making use of the definitions of w b in Eq. (15), the effective focussing

frequency 0 defined in Eq. (11) can be expressed in the equivalent form

2 + -
S \(b b b b (6

It can be shown that the equilibrium pressure tensor in the (p,D)

plane perpendicular to the 9-direction is isotropic with the perpendicular

pressure Pp) = 0 ( (p) given by

00b (p ) T+(PP
oo a 2 2

0 p (PY b
n (p)TO(p) = 2Tr dp±p±J dp 9  2 U 0 (17)

b f -00 2 bm

0
where T,(p) is the effective transverse temperature profile. Defining

1 2 2 1 2 2
I = 2 yb a = -ybmw rL , (18)

and substituting Eq. (8) into Eq. (17) gives

T.(p) = T.L(l-p /a 
(1
(19)
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for 0 < p < a. In Eq. (18 ),.rL is the characteristic thermal Larmor

radius of the ring electrons in the azimuthal magnetic field Be. Making

use of Eq. (18) to eliminate 0 in Eq. (11) in favor of r , we solve

Eq. (11) for the rotation frequency wb and obtain

1/2

W+ ce qb=±o + - (20)

which relates wb to the thermal Larmor radius r . The two signs (±)

in Eq. (20) represent fast (+) and slow (-) rotational equilibria.

Whenever the Larmor radius rL approaches zero (rL /a+), the rotation

frequencies defined in Eq. (20) approach the laminar (cold-fluid) rotation

frequencies defined in Eq. (15).
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3. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell

equation to investigate electromagnetic stability- properties of the

equilibrium ring configuration discussed in Sec. II. In the stability

analysis, a normal-mode approach is adopted in which all perturbed

quantities are assumed to vary according to

6(x,t)= 6((r,z)exp{i(Z-wt)} ,

where Imw > 0. Here, w is the complex oscillation frequency and Z is

the toroidal harmonic number. Integrating the linearized Vlasov

equation from t'=-- to t'=t and neglecting initial perturbations, we

find that the perturbed distribution function can be expressed as

6f (x't 6 ;,Dep-w)

where
.0

6fb~g~g)= e f dT exp(-iwt)

(21)

x + (; ') + (l/c)' x 6() f

In Eq. (21), T = t'-t, 62(x) and 6B(x) are the perturbed electromagnetic

field amplitudes, and the particle trajectories x'(t') and v'(t')

0 0
satisfy dx'/dt' =v' and dk'/dt' = -e(E +v'xB /c) with initial conditions

x' (t'=t) = x and v'(t'=t) = v. The Maxwell equations for 6E(x) and 6B(x)

are given by
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Vx6E = (iw/c)6B ,

(22)

Vx6B = (47r/c)6j - (iw/c)6E

where 6 = -e d Pv6fb is the perturbed current density. From Eq. (22),

it is readily shown that

( V2 + = 4i[V6 - i(w/c 2)6 ] , (23)

which is the form of Maxwell's equations used in the present stability

analysis. In Eq. (23), Sp = -efd3P6fb is the perturbed charge density.

For present purposes, we consider the case where the toroidal

conductor (radius p=ac) has large aspect ratio with

ac < R (24)

It is further assumed that Rew ~w cz, and that the waves are far

removed from resonance with the transverse (r,z) motion of the

electrons. That is, it is assumed that

-1 > - , (25)

w R

where 0, are the characteristic (r,z) orbital oscillation frequencies

defined in Eq. (15). To lowest order, consistent with Eq. (25),

the azimuthal and radial orbits can be approximated by14

e' =6+ (w 11/YbmRt

(26)
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' 0 cz b m RO r

where 6P. = P P, and the oscillatory contributions (at frequencies w )

have been neglected in Eq. (26). Here, the negative-mass parameter p is

defined by

2 / 2 1/y 2  (27)
cz S b

2 2 2.2

where w = wcz/2 + (Wpb/ 2 ) [b-(l-f)]. Within the context of Eq. (25),

and the assumption of a thin electron ring, we approximate 6 (g') =

6E (r',z')exp(ik6')^ and = (-ic/W){-(9/3z')6E0 (r',z')k' +

-1
(r ) W(/3r'){r'6Ee (r',z')]ez} x exp(ike') on the right-hand side of

14
Eq. (21). In this regard, the perturbed electromagnetic force in

Eq. (21) is approximated by

-e 6E(x)+ c =-e exp(ite')

-(r'SE ) + (28)

+ ' (r E) - a Ee

where. 6E= 6E(r',z'). Substituting-Eq. (28) into Eq. (21) and making

use of the identity af = '' (f /aH) + r'^'(af / ), it is
b. b Ie be

straightforward to show that the perturbed distribution function for

the 9'th harmonic component can be expressed as

0
afb 0

6fb (r,z,q) = e a -- dt r' 6E
bt ap 6 ,"0 6'
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+ v 6Ei + vr r'F (r' )J exp ik(e'-e)-iw-r] (29)

0f 0
+ e a dTv6Eexp[iZ.(8'-i)-wit ]

where 8' and r' are defined in Eq. (26), and use has been made of the

0fact that afb /H and af /ape are independent of t' (i.e., constantb f

along a particle trajectory in the equilibrium field configuration).

Making use of the identity

(T r'6E, (r' ,z')exp (ik8 '-iwT ))

(~. iiv' v'
= exp(ikO'-iT)r' -iw6E + '6 E+ )+,

the term in the integrand proportional to 3f 0/aP in Eq. (29) can be

simplified to give

V,
r' )6i + a 6Ei + K (r'6ij) exp(ike'-iwT)

(30)

Lv'
I ^ i d=- E exp(ik6'-iT) + w [r'SE exp(ite'-iwT)]

It is convenient to introduce the effective perturbed potential

6P 0(r,,z) defined by

6$ e(r,z) = rE (r,z)

and the orbit integral I defined by
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I = fdt ' e (r',z')exp[i.(e'-e)-iwT] . (31)

Here, use has been made of v' = r'd6'/dt'. Substituting Eq. (30)

into Eq. (29), and integrating by parts with respect to T then

gives for the perturbed distribution function

0

6fb (r,z,q) = - [I + i6 (r,z)]
e

0 (32)

+ e I .

Within the context of Eq. (25), it is valid to approximate

W. c 6 P (33
6 (r',z') = 6 (Ro) + Tz 2,6 (33)

in Eqs. (31) and (32), where we have neglected the small-amplitude

oscillatory modulations in the r- and z-orbits. Substituting

Eqs. (26) and (33) into Eq. (31), we find that the orbit integral I

can be approximated by

I = i ocz 2 6 Pe

2 2
0+ Ni'((wz/Y /~w )

0 cz bmRo 6e

where the abbreviated notation

6h0 b 6i In)m 6Eq. Ro a (R

has been introduced. In Eq. (32), we approximate 6 (r,z) ~ e (RO,10) =6*0'
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and define

I= [ZI + i65 0 ] . (35)

Making use of Eqs. (34) and (35), it is straightforward to show that I

can be expressed as

2 2
i[s$ +W9(wc mO$6I = 2 Zb1~xw . (36

cz+0 SPe/ybmRw . (36)

Therefore, the perturbed distribution function in Eq. (32) is given by

0 af0
df(r,z,k) = e b I + e I1b (37)

where I and I are defined in Eqs. (34) and (36), respectively.

The perturbed charge and current densities are obtained from the

integration of Eq. (37) over momentum space. Whenever the momentum

integration is carried out, it is convenient to integrate by parts

with respect to p, making use of the identity

a f (H- b , ) [af (H-wbP. P. 1

(38)

- f (H-Wb P 0) -+ v, a[afb(H-wb P

where a is an arbitrary function of P, and v, = DH/3p is the-azimuthal

velocity.

Taking the 0-component of Eq. (23), and making use of the

large-aspect-ratio assumption in Eq. (24), we obtain the eigenvalue

equation for 6E 0(p,,),
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(1 -p 1 - q6 E = 4r (ik C 2 - 6IJ) (39)

22 2 2 2
where k=Z/RO' q =k +l-w /c , and the Laplacian operator V has been

approximated by V ~ p (3p ) -2 2 2)-k -1. Here,

(p,D) is the toroidal polar coordinate system introduced in Eq. (1)

and Fig. 1. To complete the description, we evaluate

2 3 2
47 (ik6p-iw6J 8 /c -4 eik bdp6 fb (Wpa /c kym) on the right-hand side

of Eq. (39). To the required accuracy, (1-wp /c kym) can be approximated

in the integrand by (1-ob/ck) - WSP /c 2ky 3mRO, where w tw = b cb 8 bcz b

is assumed. Making use of Eqs. (37) and (39) then gives the eigenvalue

equation for S

22 2 q2) (p

2pa 3P p6 a6

-4Te it d p -(b 2 3 (40)

c kybmRO-
00 0

'fb b( aPI +4k)H
6

Making use of the identity in Eq. (38), the eigenvalue equation (40)

can also be expressed as

(+ q2 q2) (p,'
P -P~ P T+2 2e

-47ie2 Z d 3 p (1-wab/ck) (I - v 6 f (41)

a0 a 1 b _ 6_ _

b 3P [ ck c2 ky 3 mR
6 c kb 0
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In obtaining Eq. (41), use has been made of Assumption (c) in Sec. 2.

The angular velocity of an electron at radius r is given by

V = v /r = OH/AP ). Assuming that the spread in canonical angular

momentum is small, the angular velocity can be approximated by

- ) ~ W (1 _- . (42)
r PO= 0 cz RO

To evaluate the momentum integrals in Eq. (41), use is made of Eqs.

(8), (9), and (10). After some straightforward algebra, we find

fdprpz6(H- b P-ymc) = 2 frybmU(a-P) , (43)

and

dp dpa 6(H-wbP-Ymc2 2 a (44)

where U(x) is the Heaviside step function defined by U(x>o) = +1, and U(x)=O

2 +
for x<0, and the quantity 0 = ( -b b is defined in Eq. (16).

Substituting Eq. (42) into Eq. (41), and making use of Eqs. (43) and

(44), the eigenvalue equation (41) reduces to

(I .p + 1 3 2  q2  ( '

-= s6S 6(p-a) + N O U(a-p) (45)-ScosID4% a +N0 '0 2 (5
a

- N 6 U(a-p)
1 0 2a

where use has been made of Eq. (1), and we have introduced the

abbreviated notation
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2
Sb ka(1-a b / ck)

N pb (46a)

w(- -oZw ~zi1kIbmRO ) 4b

ka (l-Sbw/kc)c zwpba/RO
N, 2 (46c)

W (0-zWcz +ibpk~i /ybfRO)

It should be noted that the term in Eq. (45) proportional to 6 (p-a)

corresponds to a surface-perturbation at the boundary (p=a) of the

electron ring. This term, which is absent in standard treatments

of the negative-mass instability, originates from the perturbed

0charge density contribution in Eq. (41) proportional to af b/H.

We further note that the final two terms on the right-hand side of

Eq. (45) are proportional to T(a-p) and correspond to a body-wave

perturbation that extends throughout the electron ring (0 < p < a).

Finally, the terms proportional to w/ck in Eqs. (46a) - (46c)

are clearly related to electromagnetic effects. In this regard,

it is customary in conventional treatments of longitudinal stability

properties to approximate terms such as 1-%bw/ck by

1 - Sab/ck 1 -abc b

where use is made of w Lw = cz b C. To be more precise, we should

express

1 b/ck = ( 2- (bcz('- b) b cz\
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which is the procedure followed in analyzing the dispersion relation

in Sec. 5. Indeed, retaining the contributions proportional to

bX = $b (W cz)/ck, it is found that the inclusion of the concommitant

"electromagnetic effects" can have a large influence on detailed

stability behavior (Sec. 5), at least in certain parameter regimes of

betatron operation.
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4. DISPERSION RELATION FOR LONGITUDINAL PERTURBATIONS

We now make use of Eq. (45) tQ derive the dispersion relation

for longitudinal perturbations about an intense relativistic electron

beam circulating in a modified betatron (or a conventional betatron

in the absence of the toroidal field). Making use of the assumption

of large aspect ratio aQ << R0 in Eq. (24), the eigenvalue equation (45)

is solved in the straight-beam approximation. Since the perturbed

density on the right-hand side of Eq. (45) is non-zero inside the

electron beam, the eigenfunction 6t (p.,A) can be determined in

terms of the appropriate Green's function for the left-hand side of

Eq. (45). Assuming that the Green's function G(p,p',0,V') satisfies

+ - q2) G(p,p', , ')

(47)

1

the eigenfunction 6 p (p,o) can be expressed as

6 , = fc dp'p' dD'G(p,p',D,.')C(p',V) , (48)

where the source term C(p',O') is defined by

C(p,O) = -Scos36p 0  a (p-a) + NO U(a-p)

a
(49)

, U(a-p)N 10 2 '

Making use of the identity
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6 (D-D') = X exp{im(-')}, (50)
M=--

the Green's function G(p,p',P,V') can be expressed as

00

Gg (p,p')exp{im(- ')} , (51)
Up -.0

where the radial Green's function g (p,p') is the solution to the differential

equation

P - + q gm(p,p') =-6(p-p') . (52)

After some straightforward algebraic manipulation, it is found

that the appropriate radial Green's function that solves Eq. (52)

is given by

+ , M(qac Iqm r(qa1
gm=q a I [I(qp) K (qa) K m(qp

m c l m CI

for p' < p < ac

gm~p.,

(53)

K M(qac m(qaC Km
m I (qacm I (qp') m

for 0 < p < p'

where use has been made of g (a ,p') 0, g+(pI,p') g(p',p') and

(g+/ap) - (3g /ap) , = 1/p'. In Eq. (53), 1 and K are the modified
s p in p in s i

Bessel functions of the first and second kinds, respectively, of order mn.
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Making use of Eq. (52), we obtain

(54)

In the subsequent discussion, the stability analysis is restricted

to relatively low azimuthal mode numbers satisfying

ka

kac

which is consistent with Eqs. (24) and (25). Within the context of

Eq. (53), making use of the small-argument expansions of I and K
m m

we approximate the radial Green's function to lowest order by

kn (p /a ) m--- ,

g (pP

a
c

(56)

m > 1 ,

(55)

g (p,p') =

Zn(p'/a C) 0m= ,

) P i-I M m
I2m_ a2 >1.

c

Substituting Eqs. (51) and (53) into Eq. (48), the eigenfunction

is given by

5ip8(,c0 = &'e (p)exp{imD}

and

(57)

where

(58)

gm(P 'P , =m(P , ) -
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(pM) =

+ fcdp'
P

d$'exp{-imo') dp 'p 'g+(p,p ')C( ",0')

' g (P ') C(p', .D

(59)

The source term in Eq. (49) can also be expressed as

C(p,t) = C(p)exp(im-)

where the coefficients Cm (p) are defined by

C0 (p ) = (N06i - )U(a-p)

a

I,'(P _S 6 (P-a)
~ -~5i 0 2a

C (p) = 0 for m = ±2, ±3,... .

We now substitute Eq. (60) into Eq. (59) and integrate over D',

using the identity

f o dc 'exp(-in') =
0 0 ,

n=0

n#0

Then, Eq. (59) can be simplified to give

6 (P) = mdp p'g(p,p')Cm(p') + fc dp'p'g (p,p')Cm (p') . (62)
e dPPgpP'c('

(60)

and

(61a )

(61b)

(61c)
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(1) -(-1)It is evident from Eqs. (54) and (61B) that 6 e (P ) = 6p

in Eq. (62). Therefore, the eigenfunction in Eq. (58) can be expressed as

(0) ^(1)6 6,pD = 0g (p) + 26;e (p)cosD . (63)

It is evident from Eqs. (59) - (62) that the eigenfunction

(p,,D) in Eq. (63) is determined in terms of 6* and 6* . To derive

the dispersion relation from Eq. (63), we evaluate 6$ e(r,z) and r(a/Dr)6 P6 (r,z)

at (r,z) = (RO,0). Thus, after some straightforward algebraic manipulation,

we obtain

e (I() ;01 a2 r-R0
, = a0 2 _ X a O

c) (64)

- (N0 6 - N 16;') [2n ( + 1

for 0 < p a. Upon evaluating 6;, (r,z) and r(D/Dr)6S(r,z) at (r,z) =

(RO,0), we obtain two homogeneous equations relating the two amplitudes

6 0 and 6$ The condition for a nontrivial solution is that the

determinant of the coefficients of 6% and 6 P be equal to zero.

Setting the determinant equal to zero, we obtain the dispersion

relation

a

1 + a N ____- = (65)

where the quantities S, No, and N1 are defined in Eq. (46). The term

proportional to S in Eq. (65) originates from the surface perturbation

in Eq. (45). It is evident from Eq. (65) that the contribution

from the surface term vanishes as the conducting wall radius (p=a C)
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approaches the outer radius of the electron beam (p=a). Without

presenting the details here, we find that the surface-driven instabilities

obtained from Eq. (65) are easily stablized when the conducting wall

radius is in sufficiently close proximity to the surface of the electron

beam.

Equation (65) is one of the principal results of this paper and

can be used to investigate detailed stability properties for a broad

range of system parameters.
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5. LONGITUDINAL STABILITY PROPERTIES

We now make use of the dispersion relation in Eq. (65) to determine

stability properties in various parameter regimes of physical interest.

Substituting the definitions in Eq. (46) into Eq. (65) gives the dispersion

relation

2 2 2
a2 c /R2

1 + 2 2n (- + 01
Yb (W9a cz +ip yb MRO 2

x p(1- Tk) + 2 2 2
Yb k c

W 2 2 21

.. pb cz _l ab 1 0 ,(66)

S c

where use has been made of the definition of Budker's parameter v,

which is related to the plasma-frequency-squared by

4 -v- c 2 =W2 a 2 (67)
-Yb pb

Analyzing the full dispersion relation in Eq. (66), we can investigate

stability properties for a broad range of system parameters, and determine

the important influence of electromagnetic effects and surface-wave

perturbations on stability behavior. We also emphasize that the

spread in canonical angular momentum (A) has a strong influence 14

on stability properties.
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A. Stabilizing Influence of Transverse Electromagnetic Effects

In order to illustrate the strong stabilizing influence of trans-

verse electromagnetic effects, we first make use of the dispersion

relation in Eq. (66) to investigate stability properties for the case

where the conducting wall is very close to the surface of the electron

beam (a - a ), or for the case of relatively high transverse
"V c

beam temperature satisfying 2 b/yQ I << 1. Neglecting the final

term on the left-hand side of Eq. (66), the dispersion relation can

be approximated by

2Zn(a /a) + 1

Yb (w-.w cz+i I /Y bmRQ) 2(68)

x [,k 2c2 (1 !b + w- (w*Zwcz)'

where k=Z/R . For present purposes, we further assume zero spread in

canonical angular momentum (A=0). Defining the normalized Doppler-shifted

frequency X by

-tcz
X kc , (69)

it is straightforward to show that Eq. (68) can be expressed (for A=0)

in the approximate form

X 2+ 2 2n ( ) +'. [I'-(Oy 2 1)sbX1 0 ,(70)+ 3 a (70)

b

where the term proportional to a bX represents the stabilizing influence

of transverse electromagnetic effects. In obtaining Eq. (70), use has

been made of Eq. (4).



29

If the term proportional to bX is neglected in Eq. (70), we

recover the familiar result,14

X + 3 2n a (71)

Yb

which is the standard dispersion relation for the well known negative-

mass instability. For future reference, the necessary and sufficient

condition for instability (Imw>0) obtained from Eq. (71) is

2
cz 1 (22 - >0. (72)

W Yb

Equation (72) is the conventional instability criterion obtained in

previous studies. 1 3 1 4  According to Eq. (72), the system is negative-

mass unstable provided y>O.

On the other hand, the necessary and sufficient condition for in-

stability (Imnw>) obtained from the more accurate dispersion relation

(70) is given by

a
[29,n(73)

Yb a 2 21
1] b b-

which provides an upper bound on the parameter P for instability

to exist. Several points are noteworthy from Eq. (73). First, it is

important to note that a sufficient condition for stability is

2
cz < (74)
2 - 2

where w2 = W2 /2+ /2) [ 2-(-f) For f=0, the condition 11<0
cz pb b

and the condition for existence of radially confined equilibria
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[Eq. (15)] can be combined to give

2 22 1+ 2 2
<pbybwcz < 1 cz

Evidently, for f=0, this inequality can be satisfied provided W2 2
pb cz

is sufficiently large. That is, the negative-mass instability can be

completely stabilized provided equilibrium self-field effects are sufficiently

strong. Second, for a given positive value of p (p>0), we note from

Eq. (73) that a sufficient condition for stability is

2
4-p / (y -_1)

. >.2 b (75)
b1 (y-1/y b)22n(ac/a)+l]

For an ultrarelativistic electron beam with yb > 1, the inequality

in Eq. (75) can easily be satisfied provided the beam current is

sufficiently large. The stabilization of the negative-mass instability

for an intense relativistic electron beam originates from the inclusion

of electromagnetic effects [the term proportional to bX in Eq. (70)].

We emphasize that sufficient condition for stability in Eq. (75) is

also applicable to an electron beam in a conventional betatron.

B. Influence of Surface-Wave Perturbations on Stability Behavior

In this section, we investigate the influence of surface-wave

perturbations on stability behavior. In order to demonstrate the impor-

tance of surface-wave perturbations, we assume a fully nonneutral

electron ring (f=0) with moderate energy. In this context, the approximations
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1 - Sbw/ck ~ 1/y ,

(76)

2 2 2 2
S= (1/ 2 )(w z pb b

are made in simplifying the dispersion relation in Eq. (66). After

some straightforward algebra, it is found that the dispersion relation

in Eq. (66) can be approximated by

Jj2 2 0
+ L 2Zn ( + 1 1 _ 12 0,

Yb -S 2b c b (7
(77)

where use has been made of the definition of p in Eq. (27), and zero

spread in canonical angular momentum has been assumed (A=0). The term

proportional to (1-a 2/a ) in Eq. (77) corresponds to the surface-wavec

contribution. The necessary and sufficient condition for instability

(Imw>0) obtained from Eq. (77) is given by

2 2
Cz pa2
2 1 - 2 (78)

2yb0a ac b

for a moderate-energy electron beam with f=0 and A=0. In obtaining

Eqs. (77) and (78), we emphasize that the stabilizing influence of

transverse electromagnetic effects has been neglected arbitrarily.

In analyzing Eq. (78), we distinguish the two cases: (a) w> 0

(betatron focussing force exceeds the defocussing self field force),

and (b) 2 < 0.

2 2 2
a wcz > Wpb/yb: In this case, the inequality in Eq. (78) can be

expressed in the equivalent form
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r 2 W2 W2 /W2
rL >a2 cz pb cz (9a 2 2 2_ 2 2 2 ' (79
a a c Wce 2y b-1+Wpb/ b Wcz

for instability to exist. In Eq. (79), the effective Larmor radius rL

is defined in Eq. (18). For a high-current electron beam with

Wb b/Y 2 2 1, it follows that perturbations with high azimuthal

mode number are easily stabilized provided r /a2 is sufficiently small.L

In other words, for the case where the betatron focussing force is

larger than the defocussing self-field force, perturbations with high

azimuthal mode number can be stabilized by reducing the effective

transverse temperature of the beam electrons.

In a conventional betatron characterized typically by 2 2

[see Eq. (11) for wce = 0 and wb = 0], the necessary and sufficient

condition for instability obtained from Eq. (78) is given by

W2 2 2 1/2
2 < I [+y2 ( 1 - - 1 + 2Y2-
2 2 b b a, J by(0
~b cz (L Ybwcz c(80)

- 2 1+ a 2 - ] + 1

In the limiting case where the conductor is far removed from the

electron ring (a 2/a2 << 1), Eq. (80) can be further simplified to give

W2
22) [Y1]+)- 2 + 2Y - 1 1/2 - Y (,%+) + 1 , (81)
b cz

for instability to exist. Therefore, in the nonrelativistic limit

(Yb ~ 1), the sufficient condition for stability can be expressed as

2

(Z2+1) - < < 1. (82)

cz
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On the other hand, for an ultrarelativistic electron beam (y 1),

the sufficient condition for stability can be expressed as

2
1 2 < 

(83)

Ybwcz

Equations (82) and (83) have been obtained from Eq. (81) combined

with the condition for existence of radially confined beam equilibria,

2 2 2
i.e., pb bcz. Evidently, the inequality in Eq. (82), or in Eq. (83),

can easily be satisfied for all Z>l provided w2  2 is sufficiently
pb cz

large that the inequality is satisfied for Z=l. That is, the negative-

mass instability in a conventional betatron can be completely stabilized

for A=O provided the beam density is sufficiently large.

()2 ~ 2 2(b) w Pb b: In this case, the necessary and sufficient

condition for instability in Eq. (78) can be expressed as

2 2 2 2 2
L< I cz pb cz (84)
a 2a 2 J 2 2 b

c c6 2b +pb b cz

It is evident from Eq. (74) (obtained for aa )c that the negative-

mass instability can be stabilized by a sufficiently strong self-

electric field. However, when a<ac and surface-wave contributions are

included in the stability analysis, it is found that the inequality

in Eq. (84) can be satisfied provided r /a is sufficiently small.L

Thus, for sufficiently low effective transverse temperature, we

2 2 2conclude (for the case wcz < Wb/Y) that the electron ring in a

modified betatron exhibits instability. The toroidal variation of the

azimuthal electron velocity [Eqs. (41) and (42)] produces a perturbed

surface charge and current in the eigenvalue equation (Eqs. (45) and

(46)], thereby resulting in a kink-type perturbation. Since the
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instability mechanism originates with the surface-wave perturbation

in the radial direction, we refer to this instability as a radial kink

instability. Evidently, the instability can be stabilized by increasing

2 2the effective transverse temperature TI = (1/2)y bmrLc. We

therefore conclude that the transverse temperature of the beam

electrons plays a major role in stabilizing the radial kink instability.

To summarize, it has been shown in various parameter regimes

that the longitudinal instability can be completely stabilized for A=O

provided either (a) that the beam current is sufficiently large, or

(b) that the transverse temperature is suitably adjusted. Otherwise,

the instability can' also be stabilized by a spread in the canonical

angular momentum (AOO). For a detailed discussion of the stabilizing

influence of a spread in canonical angular momentum, the reader is

referred to Ref. 14.

Finally, the detailed stability properties of an intense electron ring

in a modified betatron can be calculated numerically from the dispersion

relation in Eq. (66) for a broad range of system parameters. Moreover,

the numerical results are in good agreement with the analytical

estimates in Secs. 5.A and 5.B.
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6. CONCLUSIONS

In this paper, we have investigated the stability properties of an

intense relativistic electron ring within the framework of the linearized

Vlasov-Maxwell equations. The analysis was carried out for perturbations

about a ring equilibrium located at the midplane of an applied betatron

magnetic field combined with an applied toroidal magnetic field. The

stability analysis was performed including the important influence of

transverse electromagnetic effects and surface-wave perturbations.

Stability properties were calculated for eigenfrequency w near harmonics

of w cz The equilibrium properties and basic assumptions were summarized

in Sec. 2, and the eigenvalue equation was derived in Sec. 3. Making

use of the large-aspect-ratio assumption (R >> a ), the eigenvalue

equation (45) was solved in Sec. 4, resulting in the dispersion relation

(66) for the complex oscillation frequency. Detailed stability properties

were investigated in Sec. 5, including a delineation of the important

influence of transverse electromagnetic effects and surface-wave

perturbations. In a regime where the surface contributions are negligibly

small, it was shown (Sec. 5.A) that transverse electromagnetic

effects can have a strong stabilizing influence on the negative-mass

instability. One of the most important features of the analysis in

tfhis regime is that stabilization occurs (even for u>O) by increasing

the beam current to a-sufficiently high value; 'In the limit where

electromagnetic effects are neglected, the influence of surface-wave

perturbations on stability behavior was investigated (Sec. 5.B) for a

wide range of system parameters. For the case where the betatron

2 2 2focussing force exceeds the defocussing self-field force (2 < w /y )
cz pb b

it was found that stabilization occurs when the transverse temperature

of the beam electrons is reduced to a sufficiently low value. On the
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2 2 2
other hand, for the case where wic < W b/Y , and the transverse

cz pb

temperature is sufficiently low, it was shown that the radial kink

instability resulted as a consequence of the surface-wave perturbations.

Finally, for the conventional betatron accelerator, it was shown that

both electromagnetic effects and surface-wave perturbations have a strong

stabilizing influence on the negative-mass instability.
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.
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