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The kinetic stabilify propertieé of an intense relativistic electron
ring located at the midplane of an externally applied betatron field are
investigated within the framework of the 1ineérized Vlésov—Maxwell equations,
including the important influence of eleétromaghetic effects and surface-
wave bertﬁrbations; 'Stability:properties are calculated for eigenfrequency w
v near harmonics of the relativistic cyclotron freQuency w;z in the applied
betatron field. Making use of the large—aspect—rétio_assumption (R.0 >> ab),
a closed algebraic diépersion relation is obtained for thé longitudinal
iﬁstability,-assuming that the electron ring is’lpcatgd inside a perfectly
conducting toroidal shell. Several points are poteworthy in this analysis.A
First, transverse electromagnetic effects caﬁ provide complete stabilization
provided the ring current is sufficiently. large. .Second, for the case where
the betatron focussing force exceeds the self-field defocussing force
(uzwiz/mé—l/y§>0), it is found that stabilization occurs at sufficiently
low transverse temperature of the beam electrons. Third, for the case where u<0

and the transverse temperature of the beam electrons is sufficiently low,

it is found that surface perturbations on the electron beam drive a radial kink

instability.
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1. INTRODUCTION

There is a growing literature on the equilibrium and stability
properties of intense relativistic electron rings with applications to
high-current betatron accelerators, including the conventional high-current
betatron as well as the modified betatron (Fig. 1). An intense relativistic
electron ring is likely subject to various macro~ and mic:ro—n'.nstabilvities.lo—16

The most deleterious instabilities appear to be associated with the class

of longitudinal instabilities, including the negativé-mass and resistive-

13-16

wall instabilities. The majority of previous analyses of the longitudinal

stability properties of an intense electron ring have been carried out
within the framewérk of a rigid-beam model?‘S’l6 In a recent calculation,1
we developed a kinetic formalism describing longitudinal instabilities in
a relativistic electron ring, including the important influence of finite
beam temperature, wall resistivity, and self-field effects on stability
behavior. Strictly speaking, a more accurate theoretical analysis is
required to incorporate the full influence of electromagnetic effects

and surface perturbations on longitudinal stabiiity properties. 1In this
regard, the present article extends the previous kinetic treatmehtl

to a broader range of system parameters, eliminating Variods'restrictive
assumptions, and incorporating the important influence of electromagnetic
effects and surféce—wave perturbations. In particular, the present analysis
allows for kink-like perturbations with 3/9% # 0 in Fig. 1.

The equilibrium properties and basic assumptions are briefly summarized
in Sec. 2. The eigenvalue equation is derived in Sec. 3, making use of the
linearized Vlasov-Maxwell equations. The analysis is fully electromagnetic.
Moreover, in obtaining the perturbed distribution function, and subsequently
the perturbed charge and current densities, we take toroidal effects into

account. In particular, the radial variation of the azimuthal electron

velocity produces surface-charge and surface-current perturbations corresponding



to a kink-type perturbation with 3/3% # 0. In order to simplify

the expression for the perturbed distribution function;;we aséhme fhat the-
eigenfrequency w is approximately equal to a harmonic of the electron cyclotron
frequency Wep in thebapblied betatron field. 1In the limit of large aspect
ratio, the eigenvalue equation [Eq. (45)] is solved analytically in Sec. 4,
leading to a closed algebraic dispersion relationb[Eq. (66)] for the complex
eigenfrequency ®.

Detailed stability éro@erties are investigated in Sec. 5, with particular
emphasis on the influence of elecfromagnetic effects and surface—wéve
perturbations on stability behavior. In order to illustréte the strong
stabilizing influence of electromagnetic effécfs, we cbnsidér the case where,thél_
conducting wall is located very close to the surface of the electron beam
(acéa),'and the surface-wave contribgtions in the dispersion relation (66)
can be neglected (Sec. 5.A). In a parameter regime corrgsponding to the
conventional negative-mass instability (u=wiz/w§ - l/Yg > 0), it is found
that electromagnetic effects can lead to complete stabilization of the instability
provided the beam current is above some critical value [EQ. (75)]. The
important stabilizing influénce of electromagnetic effects is found for both
conventional and modified betatron accelerators.

To clarify the terminology used in the preceding paragraph, it is clear
that the terms proportional to w/ck.in Eq. (66) are related to electromagnetic
effects. In thié regard, it is customary in conventional treatments of longi-
tudinal stability properties to approximate terms such as 1 - Bbw/ck by
1 - Bi, Whgrg use is made of w = ﬁmcz = kac. Here, Bg:= Rowcz is the mean

azimuthal velocity, and k = R/RO. To be more precise, we should express

w=2w
w 2 cz
1—eba=(1-sb>-sb< - )

which is the procedure followed in analyzing the dispersion relation in Sec. 5.



Indeed, retaining the contributions proportional to Bbx = Bb(w-lmcz)/ck, it is
found that the inclusion of the concommitant "electromagnetic effects" can have
a large influence on detailed stability properties as summarized in the previous
paragraph.
The effects of surface-wave perturbations on stability behavior
are also investigated (Sec. 5.B), including the surface-wave contribution in
the dispersion relation (66), but (arbitrarily) turning off the (stabilizing)
electromagnetic contribution. TIwo points are noteworthy from the stability
analysis. First, in the éase where the focussing force of the betatron
field exceeds the self-field defocussing force, it is found that the negative-
mass instabiiity for the modified betatron is stabilized by reducing the
effective transverse temperature of the beam electrons’to sufficiently
low values. For the conventional betatron, it is shown that there
is a range of parameters for which the system is stable. The stability
criterion is easily satisfied provided the electron density is sufficiently
large [Eqs. (82) énd (83)]. This stabilization results from the inclusion
of surfacé—wave perturbations. Second, in the case where the betatron
focussing force is less than the defocussing self-=field force, conventional
theory predicts that the system is stable. However, by reducing the effective
transverse temperature to sufficiently low values, the present analysis
(including surface~wave perturbations) predicts that the system is unstable.
The instability, which originates from the surface-wave contribution
in the eigenvalue equation, corresponds to a radial kink instability.
Although the radial kink instability can be derived from fluid or rigid-
beam descriptions, only a kinetic model based on the Vlasov-Maxwell

equations can accurately predict detailed stability behavior because of the

sensitive dependence on transverse thermal effects.



2. EQUILIBRIUM PROPERTIES AND BASIC ASSUMPTIONS

As illustrated in Fig. 1, the equilibrium configuration consists of

a relativistic electron ring locaced at the midplane of an externally

ext
0z

ring is located inside a toroidal conductor with minor radius a.. An

applied betatron field B (r z)é + B (r,z)%z. In addition, the electron

extA

externally applied toroidal magnetlc field BOe

Lo together with the betatron
field, act to confine the ring both axially and radially. Here, %r’ %e,
and %z are unit vectors in the r-, 6-, and z-directions, réspectively.

ext

For BOe = 0, we recover the conventional betatron configuration.

The equilibrium radius of the electron ring is denoted by RO and the minor
dimensions of the ring are denoted by 2a (radial dimension) and 2b (axial
dimension), respectively. 1In addition to the cylindrical polar.cbordinates

(r,8,z), we also introduce the toroidal polar coordinate system (p,%,6)

defined by

where p is measured from the equilibrium radius RO. The characteristic
mean azimuthal veloeity'of the ring electrons (VgB=Bbc)“is in the positive
g—direction, which produces a self-magnetic field %§(§). The rrng is
also assumed to be partially charge neutralized by a»positire ion background
with fractional charge neutralization f. That is, nQ(r,z) = fno(r,z),
where nb(r z) and n; (r z) are the equilibrium electron and ion densities,
respectlvelyjr;rd f = const. = fractional charge neutralization.

To make the theoretical analysis tractable, we make the following

simplifying assumptions in describing the electron ring equilibrium

by the steady-state (3/9t=0) Vlasov-Maxwell equationms.



(a) The minor dimensions of the electron ring are much smaller than its

major radius, i.e.,
a,b << R0 . (2)

To further simplify the analysis, it is also assumed that the minor cross
section of the electron ring is circular with a=b, which is consistent

provided the external field index n satisfies
n=1/2, E))

ext

0z (r’z)/ar](Ro,O).

(b) Consistent with Eq. (2), it is also assumed that the transverse (r,z)

where n=-[rdoinB

kinetic energy of an electron is small in comparison with the characteristic
azimuthal energy mecz.

(c) The maximum spread in canonical angular momentum 5Pe is assumed
toAbe small with laPel << yym8y CRy.

(d) Finally, it is assumed that

N 2

L=*§-%—E—-2-L<<l, (4)
Yb 20 me“ b

where v=(Ne/2wR0)(e27mc2) is Budker's parameter, Ne is the‘total number of
electrons in the ring and ez/mc2 is the classical electron radius. For
further discussion of the basic assumptions used in the present analysis,
the reader is referred to Ref. 14.

For azimuthally symmetric equilibria (5/36=0) with both r- and z-
dependence, there are two exact single-particle constants of motion in the

equilibrium field configuration. These are the total energy H,



4,2 2.1/2

2
H= (m"c+c"P) - ey (r,2) ) (5)
and the canonical angular momentum Pe,
P, = tlp, - (e/c)Al(r,2)] (6)
0 8 g "? i

where p=ymy is the mechanical momentum, ¢0(r,z) is the equilibrium electrostatic
potential, -e and m are the electron charge and rest mass, respectively,

c is the speed of light in wvacuo, and Ag(r,z) is the O~component of the
equilibriuﬁ'Véctdr botential, 'Wifhin the context of Eqs. (2) and (3),

. 14 R . '
it can be shown that the canonical angular momentum

P, = op, - (e/c)Byo” , . m

exté

Oe ~g 1s an

in the plane perpendicular to the toroidal magnetic field B
approximate single-particle invariant for a thin, circular electron ring with

a=b and a<<R0. In Eq. (7), ﬁe is defined by Be=B xt(RO,O).

e
Os
For present purposes, we consider the electron distribution function

specified by14

- ~ 2
anOA 5(H—wbP®-ymc ) v )

0
£°(H,P ,P ) =
b g 21,2me (Pe‘Po)z"‘Az

where ﬁb=ng(R0,0) is the electron density at the equilibrium orbit (r,z) =

(RO,O), wb=const. is the angular velocity of mean rotation in the ¢-direction,
A is the characteristic spread in the canonical angular momentum Pe, and ;

is a constant. After some straightforward algebra, it can be shown that

the combination H_mbPQ occurring in Eq. (8) can be expressed in the

approximate form14



2 2
H - mbPQ =y me” + pl/Zybm + y(r,z) . (9)
2 2 2
Here, p,; = Py + (p® - ybnmbp) is the transverse momentum—squared in a
frame of reference rotating with angular velocity wy about the toroidal
4

axis. The envelope function y(r,z) in Eq. (9) is defined byl
v(r,z) = ;-y mi.p | ‘ (10)
b 2 b 3 ]

for a thin ring with circular cross section (a=b). Moreover, the effective

focussing frequency Qé is definéd'by14

92 =006 wz + w2 s (11)

where

2

wlplBp - (1-D)] . (12)

€

[}
(NI
. E

+
Nofp

Here, wﬁb = 4wﬁbe2/ybm is the relativistic plasma frequency-squared of the

Lext

beam electrons at (r,z) = (RO,O), and W, = eBoz (RO,O)/mec and w.g =

z

eﬁe/ybmc are the relativistic cyclotron frequenéies in the betatron and
toroidal magnetic fields at the equilibrium orbit (r,z) = (RO,O).

Substituting Eq. (9) into Eq. (8) and evaluating the electron density

profile ng(r,z) = fd3p fg, we find

n(r,2) = B UGp) , | (13)

where a=[2(;-yb)c2/ybﬂg]l/2, and U(x) is the Heavisides step function

defined by U(x) = +1 for x>0, and U(x)=0 for x<0. For the equilibrium



to exist, it is necessary that §>Yb and Q§>O. The condition Q§>O can be
expressed in the equivalent form
w, < @ < w+ (14)

+
where the laminar rotation frequencies wg are defined by

/2 .
i_.L.u_c_g. l+ 1+ﬁn;é. 1/ .
“p T 72 7,2 e (15)

Making use of the definitions of wg in Eq. (15), the effective focussing

frequency QB defined in Eq. (11) can be expressed in the equivalent form

2 .

%9

+ -
(wb—wb)(wb—wb‘ . (16)
It can be shown that the equilibrium pressure tensor in the (p,®)
plane perpendicular to the g-direction is isotropic with the perpendicular

50, v = 0 0
pressure P,(p) = nb(p)TL(p) given by

2, .. 2
w w0 P +(Py -y, mow, )
nb(p)T_L(D) = 27 [0 dp.'.p.lj—m dpe Zme J-b ’ (17)

“where Tg(p) is the effective transverse temperature profile. Defining
1 1 2 2
To =3 vplga = 5 YpMegTy, » (18)

and substituting Eq. (8) into Eq. (17) gives

%) = T, a-0%/a%) , (19)
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for 0 < p < a. In Eq. (18),.rL is the characteristic thermal Larmor
radius of the ring electrons in the azimuthal magnetic field %e. Making
use of Eq. (18) to eliminate QB in Eq. (11) in favor of r, we solve
Eq. (11) for the rotation frequency wy and obtain

1/2

4w2 2r 27
-1 Y P I ki (20)
b~ % =7 )P 2 a ’

cb

which relates wy to the thermal Larmor radius . The two signs ()

in Eq. (20) represent fast (+) and slow (-) rotational equilibria.
Whenever the Larmor radius rp approaches zero (rL/a*O), the -xotation

frequencies defined in Eq. (20) approach the laminar (cold-fluid) rotation

frequencies defined in Eq. (15).
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3. LINEARIZED VLASOV-MAXWELL EQUATIONS

In this section, we make use of the linearized Vlasov-Maxwell
equation to investigate electromagnetic stability properties of the
equilibrium ring configuration discussed in Sec. II. In the stability
analysis, a normal-mode approach is adopted in which all perturbed

quantities are assumed to vary according to
6¢Q§,t) = 6$(r,z)exp{i(le—mt)} s

where imm > 0. "Here, w is the complex oscillation frequency and % is
the toroidal harmonic number. Integrating the linearized Vlasov
equation from t'=-e to t'=t and neglecting initial perturbations, we

find that the perturbed distribution function can be expressed as
§£, (x,p,t) = 8f (x,plexp(-iut),

where
éfb(g,g) = e J_m dt exp(-iwt)
(21)
< foRGe) + Way' * G o v G ph

E'{E N '@RS aR_' bRE ’E
In Eq. (21), 1 = t'~-t, 6%(&) and 6%(5) are the perturbed electromagnetic
field amplitudes, and the particle trajectories 5’(t') and x'(t')
satisfy 45'/dt' = X' and dB'/dt' = —e(§o+x'x§0/c) with initial conditions

5'(t'=t) = x and x'(t'=t) = V. The Maxwell equations for Gg(é) and Gﬁ(é)

are gilven by
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yxaé = (iw/c)sB ,
(22)
78R = (tm/c)a;r - (im/e)@% ,

where 6% = _ejd3p¥6fb is the perturbed current denéity. From Eq. (22),

it is readily shown that

2
2 : S - 1w/

which is the form of Maxwell's equations used in the present Stability
analysis. In Eq. (23), 8p = —efd3p6fb is the pertﬁrbéd charge density.

For present purposes, we consider the case where the toroidal

conductor (radius p=ac) has large aspect ratio with

a, << RO . (24)
It is further assumed that Rew = lmcz, and that the waves are far
removed from resonance with the transverse (r,z) motion of the
‘ , s s 14
electrons. That is, it is assumed that
* 2 +
W w :
—b '}y -3 , bl o, & , ‘ (25)
w—2w w R
cz 0

+ -
where w; are the characteristic (r,z) orbital oscillation frequencies

defined in Eq. (15). To lowest order, consistent with Eq. (25),

4
the azimuthal and radial orbits can be approximated byl

2
' =9 + (wCZ - p(SPe/meRO)T s
(26)
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2
' =
r R0 + (mcz/ybmmBRo)dPe ,

+
where 8P, = P,-P,, and the oscillatory contributions (at frequencies w;)

have been neglected in Eq. (26). Here, the negative-mass parameter u is

defined by
2 2 2
o= wcz/wB - 1/Yb s . (27)

where wé = wiz/z + (mzb/Z)fsi—(l—f)]. Within the context of Eq. (25),

and the assumption of a thin‘electron ring, we approximate GE(E') =
~ . at ~ ' _ e _ ' »~ ~
GEe(r',z')exp(lle')ge and $B(x') = (-ic/w){-(3/32 )GEe(r',z')gé +
(r')_l(a/ar')[r'sﬁe(r',z')]éz} x exp(i%6') on the right-hand side of
Eq. (21).14 In this regard, the perturbed electromagnetic force in

Eq. (21) is approximated by

= - i '
< e exp(ife')

- vfx&%( ")
_eﬁg(&{.) . 1_.&_5’5__]

IH

iv! , 5
0 ] " i [, o
x ; — T (' 6E )e + [SEe + ;-(vz —— SE (28)

' 1V'
r 8 A 9 a I “~
+ r' dr (r GE )>:|'% w oz’ aEe%zs ?

_where“GEe = GEe(r',z'). Substitutiﬁgrﬁq. (28) into Eq. (21) and making
, 0 4,0 O e

use of the identity 3fb/&€ =y (afb/aH) + T se(afblaPe), it is

straightforward to show that the perturbed distribution function for

the 2'th harmonic component can be expressed as

ago i
= O — v’
(r z,e) = e ] f,” @t r gGEe
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i 9 - 1 3 2
o [v; 'ru cSEe + v{_ T 3T (r'ﬁEe)]§ exp [iEL (6'-—6)—1(»1] (29)

Hh

0
) b 0 - .
+ e gﬁj-f dTvéGEeexp[iz(6'~8)fiwr] s

-0

where 6' and r' are defined in Eq. (26), and use has been made of the
fact that Bfg/aH and Bﬁg/BPe are independent of t' (i.e., constant
along a particle trajectory in the equilibrium field configuration).

Making use of the identity

~§; [r'Gﬁe(r',z')exp(ile'—iwr)]

~ i'Q'V' A a ~ v' a ~
= exp(il8'-iwt)r’' -imtSEe + o 5Ee + V; 3z’ 6E6 + }—,rggr (r'SEe) s

the term in the integrand proportional to 8fg/BPe in Eq. (29) can be

simplified to give

]

<

' 2 i ] A r 3 2 . .
r' ;GEG +'$ [V; SET'SEG + ;T'E;T (r'GEG)]é exp(lle'*lgT)
(30)

v!
_ 2 . L _i_d ? > . Y_
= —;—-GEeexp(lﬁe iwt) + T [r 6Eeexp(126 iwt)] .

It is convenient to introduce the effective perturbed potential

Gwe(ryz) defined by
gy (r,2) = 8B (r,2) ,

and the orbit integral I defined by
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0 .
I= f{ dr §' 6hy (x',z")expl1(6'-8)~1ur] . (31)

Here, use has been made of vé = r'de'/dt'. Substituting Eq. (30)

‘into Eq. (29), and integrating by parts with respect to T then

gives for the perturbed distribution function

0 .
~ e afb S
8£,, (r,2,p) = = 57, o1 + 89, (z,2)] |
0 (32)
afb
+ e SH I
Within the context of Eq. (25), it is valid to approximate
- w_SP R
Sy (x'52") = 8uy (R),0) + 20 (245 ) (33)
] 80 , 2 \3r 78
YpERGw, (Ry,0)

in Eqs. (31) and (32), where we have neglected the small-amplitude
oscillatory modulations in the r- and z-orbits. Substituting
Eqs. (26) and (33) into Eq. (31), we find that the orbit integral I

can be approximated by

o - U
I=1i (wcz 5 GPe)
YRy

(34)
A ~ 22
[cwo + pro(mcz/ymeowB )GPe]

x ’

) 2
w -2, t RuﬁPe/ymeO
where the abbreviated notation

S r (s
5¢0 = Gwe(RO,O) ’ 5W6 = Ro(axrswe)(R 0)
0’

has been introduced. In Eq. (32), we approximate Gwa(r,z) = 6@8(RO,O) = 6w0,v
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and define

1
Il B—[QI + 16¢O] . (35)

Making use of Eqs. (34) and (35), it is straightforward to show that I1
can be expressed as
1069+ (0 /y.mR2w2)6P, ]
0 0 cz' ' 'b 0B 8

Il = > . (36)
w—lwcz+lu6Pe/meRo

Therefore, the perturbed distribution function in Eq. (3Z) is given by

A afg OE
Gfb(r,z,R) = g Si’—e_ Il + e 3H I, _ (37)

where 1 and Il are defined in Eqs. (34) and (36), respectively.
The perturbed charge and current densities are obtained from the
integration of Eq. (37) over momentum space. Whenever the momentum

integration is carried out, it is convenient to integrate by parts

with respect to Py> making use of the identity

Q

1

9 =19
o aPe f (H~ mbP P ) - 399 [af (H- wb 5’ Pe)]
(38)
, do. . '8 a
i - f (H-wPys Pg) oP, T g [af) (HuPy, Pe)]} ’

where o is an arbitrary function of Pe, and Vg = 8H/3pe is the azimuthal

velocity.
Taking the 6-component of Eq. (23), and making use of the

large-aspect-ratio assumption in Eq. (24), we obtain the eigenvalue

equation for SEG(D,Q),
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(pl@...p 3—_-}-!'-2-8——2—- qz)GEe = 41r(ik58 -5 636> R (39)
p

where k=z/RO, q2=k2+l—w2/c2, and the Laplacian opevator V2 has been
approximated by V2 = p L (3 /30) (03 /30 )40 "2 (32 /30 %) —i2-1. Here,

(p,9) is the toroidal polar coordinate system introduced in Eq. (1)

and Fig. 1. To complete the description, we evaluate

by (iké;-iwéae/cz) = -lmeikdepG%b(l-wpe/czkym) on the right-hand side

of Eq. (39). To the required acéuracy, (l—mpe/czkym) can be approximatéd
in the iptegrand by (l—me/ck) - wSPe/czkyngo, where w = '?'mcz = kac.

is assumed. Making use of Egs. (37) and (39) then gives the eigenvalue

equation for GAWe(p,Cb)

2
123 ] 1l 2 o0 '
=s—px-t+t 55 -4 ) Sy, (p,d)
(p 3 = 3p p2 34)2 ) 0
wSP
= -4-rrezil f d3p [(1-w8b/ck) - —7—36———] (40)
c kymeO
3£2 agd
X b I, + _b I
BPe 1 oH

Making use of the identity in Eq. (38), the eigenvalue equation (40)

can also be expressed as

2
13 3,1 3> 2y
(Soea® 242 ° ) %6050

0
v of
2 3 9 b
= ~4rie 2 J d’p {(l—wﬁb/Ck) (I"- ;—Il> S A(41)
) fo 3 L wBb ) wGPe .
b BPe ck Czkyngo 1
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In obtaining Eq. (41), use has been made of Assumption (c) in Sec. 2.

The angular velocity of an electron at radius r is given by

0

ve/r = (BH/aPe). Assuming that the spread in canonical angular

momentum is small, the angular velocity can be approximated by

v r-R
(), 0,5

P6=P0 0

To evaluate the momentum integrals in Eq. (41), wuse is made of Egs.

(8), (9), and (10). After some straightforward algebra, we find

A 2
JdprdeG(H—mbPQ—ymc ) = 2my, mU(a-p) , (43)
and
D s (How P -tmel) = - 27 8(p-a)
Jdprdpz SH §(H mbPQ yme”) = Q2 a s (44)
8

where U(x) is the Heaviside step function defined by U(x>0) = +1, and U(x)=0

for x<0, and the quantity QZ

Substituting Eq. (42) into Eq. (41), and making use of Egqs. (43) and

= (w;—wb)(wb-w;) is defined in Eq. (16).

(44), the eigenvalue equation (41) reduces to

2
13 1 3 AN

- - ~ 3(p-a) ~ yla-p) '
Scosesyy —_— + Nydu, > (45)
- *; U (a-p)
N.8¥g 2

where use has been made of Eq. (1), and we have introduced the

abbreviated notation
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2
) wpanka(l'ﬁbw/Ck)

2 ] (46a)
Qq w=2w Cz+l|ukAl A mRy)

222 222
_ k“a wpb[p(l—ﬁbw/ck) + wﬁu—lwcz)/k c yb]

: : , (46b)
(w—zwcz+1lukA[/meRO)

2
_ ka(l—Bbw/kcﬂ%zwpba/Ro
N, o= 2 N . (46C)
wB(w—lmczfilukAI/meRo)

It should be noted that the term in Eq. (45) prop;rnional to S (p-a)
cgtresfﬁﬁdé.t6 é sﬁrfécé-éeréurbation.aﬁ the boundgry (p=a) of the
electron ring. This term, ﬁhich is absentvin standard treatments
of the negativé—mass instability, originates from the perturbed
charge density contribution in Eq. (41) proportional to afg/BH.
We further note that the final two terms on the right-hand side of
Eq. (45) are proportional to U(a-p) and correspond to a body-wave
perturbation that extends throughout the electron ring (0 < p < a).
Finally, the terms proportional to w/ck in Eqs. (46a) - (46c¢)
are clearly related to electromagnetic effects. In this regard,
it is customary in conventional treatments of longitudinal stability

properties to approximate terms such as 1—Bbw/ck by
1-B8w/ck=1-g2
b b’

where use is made of w = chz = kac. To be more precise, we should

express -

2 ' m-%u)cz
1-Bw/ck = (18.) -8, (__c—k__> )
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which is the procedure followed in analyzing the dispersion relation

in Sec. 5. Indeed, retaining the contribﬁtions proportional to

Byx = Bb(m~2mcz)/ck, it is found that the inclusion of the concommitant
"electromagnetic effects' can have a large influence on detailed
stability behavior (Sec. 5), at least in certain parameter regimes of

betatron aeperation.
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4. DISPERSION RELATION FOR LONGITUDINAL PERTURBATIONS

We now make use of Eq. (45) ta derive the dispersion relation
for longitudinal perturbations about an intense relativistic electron
beam circulating in a modified betatron (or a conventional betatron
in the absence of the toroidal field). Making use of the assumption
of large aspect ratio ac'<< RO in Eq. (24), the eigenvalue equation (45)
is solved in the straight-beam approximation. Siﬁce the perturbed
density on the right-hand side of Eq. (45) is non-zero inside the
* electron beam, the eigenfunction 6@6(0,@) can be determined in
terms of the appropriate Green's function for the left-hand side of

Eq. (45). Assuming that the Green's function G(p,p’ ,9,d') satisfies

2
1 2
('l 2 p 2 + 2 3 2 - q ) G(D,p',Q,Q')
¢

P 3p " 3dp 0”3
(47)
1 L} ?
= E'&(p-p )§(o=0') ,
the eigenfunction G@G(Q,Q) can be expressed as
N ac Zn
\Swe(p,Q) = f dp'p' [ dQ'G(p:D',¢q¢')C(D',®') ) (48)
0 0
where the source term C(p',%') is defined by
~ 8(p-a). ~ Ufa-p)
Clp,8) = -Scosesy, —-%———-+ NoSt, ——;fl—
(49)

- N.spr Ula=p)
Nla¢6 az .

Making use of the identity
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<«

§(e-¢') = %;- ) exp{im(¢-9')} , (50)

m==-

the Green's function G(p,p',9,%') can be expressed as
1 ¢ .
G(psp',0,9") ‘_‘71;,' z 8m(psp')EXP{lm(@'q")} > (51)
m=—Cb

where the radial Green's function gm(p,p') is the solution to the differential

equation
lg._ . _ _nli.,. 2 ( ')=..:.L.6(..’) (52)
oo % ap - | 2 N L B p TP

After some straightforward algebraic manipulation, it is found
that the appropriate‘radial Green's function that solves Eq. (52)

is given by

K (qa )I (qp") I (qa )
+ ' . _m c’' m - m C

for p' < p <a_,

[
g, (Psp') =
(53)

K (aa )T (ap") [ I,(a) Km<qp')]I )
m

A N TR I L N CTSb AT

for 0 < p <p',

‘ + _
where use has been made of g;(ac,p') =0, gm(p',p') = gm(p',p') and

+ - _ ' ‘e
(Bgm/ap)p' (Bgm/ap)p, = 1/p'. In Eq. (53), I and K are the modified

Bessel functions of the first and second kinds, respectively, of order m.



23

Making use of Eq. (52), we obtain

g osp') = g_a®s') . (54)

In the subsequent discussion, the stability analysis is restricted

to relatively low azimuthal mode numbers satisfying

s (55)

which is consistent with Eqs. (24) and (25). Within the context of
Eq. (53), making use of the smail-argument expansions of Iﬁ and Km

b

we approximate the radial Green's function to lowest order by

ln(p/ac) ’ n=0 ,

g (00" = Croaa .m (56)
= ~(e—
mn[(ﬂ%-) (p ) ]’ m21,
and
ln(p'/ac). s m=0 ", :
g (ps0') = (57)

B[ (2] ean

Substituting Eqs. (51) and (53) into Eq. (48), the eigenfunction
is given by -

o

5$e(p,¢) ) 6@ém)(p)exP{im¢} )

m==-c

”(58)

where



5™ () = %;—f

p
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27 o
d@'exp{-imQ'}[f,
0 0

a
+J'C®'o%;®,pﬁcw'&'ﬂ .

+, '
: do'p 'gm(p ,p')C(p',‘I")

The source term in Eq. (49) can also be expressed as

oo

C(p,@) = Z Cm(p)exP(im‘I’) ’

m==-

where the coefficients Cm(p) are defined by

Co(p) = (Noswo - N]_GIP(')) az

U(a-p)

2a ’

Ctl(p) = _35$0 $(p-a)

and

Cm(p) =0 for m = +2, %3,...

We now substitute Eq. (60) into Eq. (59) and integrate over &',

using the identity

0

211' 21T >
f d¢'exp(~ind') =

n=0

0, n#0 .

Then, Eq. (59) can be simplified to give

3 6 = |

o

0

\ 1 + 1 ]
dp'p gm(p,o )Cm(p ) + J

a

0

c - -
dp'p'gm(p,p')Cm(p')

(59)

(60)

(61a)

(61b)

(61c)

(62)
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It is evident from Eqs. (54) and (61B) that 6@;1)(p) = G@é_l)(p)

in Eq. (62). Therefore, the eigenfuhction in Eq. (58) can be expressed as

© oy + 25&9(1)(p)cosq> : | (63)

505 (p59) = 60

It is evident from Eqs. (59) - (62) that the eigenfunction
Gie(b,Q) in Eq. (63) is de;ermined in terms of.Gio;and 6&6. To derive
the dispersion relation from Eq. (63), we evaluate G&B(r,z) and r(B/ar)ﬁie(r,z)
at (r,z) = (RO,O). Thus, after some straightforward algebraic manipulation,

we obtain

) g - a2 r--R0
51!»'9(0 ) = Z 6"»’0 1- ——2" a

c

(64)
: a 2
- L s - NSO L)1 -2
2 (NgShy = NJ6VY) [ZILn (-2)+ 1 az]
for 0 < p < a. Upon evaluating Swe(r,z) and r(a/Br)Gie(r,z) at (r,z) =
(RO,O), we obtain two homogeneous equations relating the two amplitudes
6@0 and 6&6. The condition for a nontrivial solution is that the
determinant of the coefficients of 6@0 and wa be equal to zero.

Setting the determinant equal to zero, we obtain the dispersion

relation
aC
l+22n(;—)+ 1._N -SNlRO 1-32— . o)
4 0 2a a2 _ ?
C

where the quantities S, Ng» and Nl are defined in Eq. (46). The term
proportional to S in Eq. (65) originates from the surface perturbation
in Eq. (45). It is evident from Eq. (65) that the contribution

from the surface term vanishes as the conducting wall radius (p=ac)
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approaches the outer radius of the electron beam (p=a). Without
presenting the details here, we find that the surface-driven ihstabilities
obtained from Eq. (65) are easily stablized when the conducting wall
radius is in sufficiently close proximity to the surface of the electron
beam.

Equation (65) is one of the principal results of this paper and
can be used to investigate detailed stability properties for a broad

range of system parameters.
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5. LONGITUDINAL STABILITY PROPERTIES

We now make use of the dispersion relation in Eq. (65) to determine

stability properties in various parameter regimes of physical interest.

Substituting the definitions in Eq. (46) into Eq. (65) gives the dispersion

relation
a ' 22c2/R§
1+ [Z.Q,n (£)+ 1] s
b (w—lmcz+}lukA|/yme0)
" w(w—lwcz)
~ {Ml'ﬁc‘k") M
. Y,k c
b
-9 Sébgzi 1 ;is.ﬁ_ ’ 1 ; Ei =0 66
2 2 bck 2 =Y, (66)
207w a ,
BB c _

where use has been made of the definition of Budker's parameter v,

which is related to the plasma-frequency-squared by
(67)

Analyzing the fuli dispersion relation in Eq. (66), we can investigate
stability properties for a broad range of system parameters, and determine
the important influence of electromagnetic effects and surface-wave
perturbations on stability behavior. We also emphasize that the
spread in canonical angular momentum (A) has a strong influence14

on stability properties.
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A. Stabilizing Influence of Transverse Electromagnetic Effects

In order to illustrate the strong stabilizing influence of trans-
verse electromagnetic effects, we first make use of the dispersion
relation in Eq. (66) to investigate stability properties for the case
where the conducting wall is very close to the surface of the electron
beam (a ~ ac), or for the case of relatively high transverse
beam temperature satisfying lzwﬁb/fgngl << 1. Neglecting the final
term on the left-hand side of Eq. (66), the dispersion relation can

be approximated by

22n(ac/a) +1

1+ 34— 5
b (w-lwcz+ilukA|/ymeo)

2 2 o\ w :
x [uk c (l - Bb Ck) + > (w-lwcz)] = 0,
b

(68)

where k=2/RO. For present purposes, we further assume zero spread in
canonical angular momentum (A=0). Defining the normalized Doppler-shifted

frequency X by

w-chz
X2 T (69)

| it is Et;a;ghtforward to show that Eq. (68) can be expressed (for A4=0)

'in the approximate form . ...

a
2 v c 2 _
@+ 2 [ (32) w1 b-evl-ega = 0 (70)
b
where the term proportional tofabx represents the stabilizing influence

of transverse electromagnetic effects. In obtaining Eq. (70), use has

been made of Eq. (4).
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If the term proportional to BbX is neglected in Eq. (70), we

a1 14
recover the familiar result,

a
x2+u"—3— 2m(;9)+1]=0, (71)

b

which is the standard dispersion relation for the well known negative-
mass instability. For future reference, the necessary and sufficient

condition for instability (Imw>0) obtained from Eq. (71) is

N

w

0

Z

=
]

0. (72)

™ N

i,
2
b

€

Equation (72) is the conventional instability criterion obtained in

previous studies.13’14

According to Eq. (72), the system is negative-
mass unstable provided y;>0.
On the other hand, the necessary and sufficient condition for in-

stability (Imw>0) obtained from the more accurate dispersion relation

(70) is given by

) ac 1 2 4
— [2211 (=) + 1] uo-=] < uo, (73)
Y. a 2 2

b Yb Yb—l

which provides .an upper bound on the parameter M for instability
to exist. - Several points are noteworthy from Eq. (73). First, it is

important to note that a sufficient condition for stability is

N

Yoz 1
H = —7<0’ (74)
w 'Y_b

0

N

2 2 2 2 . - Y <0
where wB = mcz/2 + (wpb/Z)[Bb (1-f)]}. For f=0, the condition U

and the condition for existence of radially confined equilibria
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[Eq. (15)] can be combined to give
2,22 2 ,.2
1< wpb/waCZ < 1+ u)ce/chz .

Evidently, for f=0, this inequality can be satisfied provided wib/wiz

is sufficiéntly large. That is, the negative-mass instability can be
completely stabilized provided equilibrium self-field effects ére sufficiently
strong. Second, for a given positive valug of u- (u>0), we note from

Eq. (73) that a sufficient condition for stability is

2
. Gu/ (v ~1) . | . (759

Y u-1/vD)?[20n(a /a) 1]

For an ultrarelativistic electron beam with Yy >> i, the inequality

in Eq. (75) can easily be satisfied provided the beam current is
sufficiently large. The stabilization of the‘negative-mass instability
for an intense relativistic elecfron beam originates from the inclusion
of electromagnetic effects [the term proportional to Bbx in Eq. (70)].
We emphasize that sufficient condition for stability in Eq. (75) is

also applicable to an electron beam in a conventional betatron.

B. Influence of Surface-Wave Perturbations on Stability Behavior

In this section, we investigate the influence of surface~wave
perturbations on stability behavior. In order to demonstrate the impor-
tance of surface-wave perturbations, we assume a fully nonneutral

electron ring (f=0) with moderate energy. In this context, the approximations
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1- Bbw/Ck = l/Yg ’

(76)

2 2
pb/yb) ’

2 _ 2
wg = (l/2)(mCz w

are made in simplifying the dispersion relation in Eq. (66). After
some straightforward algebra, it is found that the dispersion relation

in Eq. (66) can be approximated by

2 2
)(2 v 2 Yez mpb a2 1 v
+—§[22n(-;—)+l] 5 1—2292 1——; -=51=0,
“8 Yp'g c b

"> 7
where use has been made of the definition of u in Eq. (27), and zero
“spread in canénical angular momentum has been assumed (A=0). The term
proportional to (l—az/ai) in Eq. (77) corresponds to the surface-wave

contribution. The necessary and sufficient condition for instability

(Imw>0) obtained from Eq. (77) is given by

2
w z 2w b a2 1
= 1-—S= -5 =, (78)
2 2 202 2 2
Wg Ypg a. b

for a moderate-energy electron beam with f=0 and A=0. In obtaining
Egqs. (77) and (78), we emphasize that the stabilizing influence of
transverse electromagnetic effects has been neglected arbitrarily.
In analyzing Eq. (78), we distinguish the two cases: (a) wg >0
(betatron focussing force exceeds the defocussing self field force),

and (b) w? < O.
8 .

2 2,2 . . . .
(a) W, > wEb/Yb: In this case, the inequality in Eq. (78) can be

expressed in the equivalent form
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r2 w2 w2 /m2
L > o l1 a cz pb’ cz
) -5 , (79)
a2 a2 wz 2 2—l+w2 / 2w2
c 8 “'p pb Tp%ez

for instability to exist. 1In Eq. (79), the effective Larmor radius rL

is defined in Eq. (18). For a high-current electron beam with
mib/yiwiz A~ 1, it follows that perturbations with high azimuthal

mode number are easily stabilized provided ri/a2 is sufficiently small.
In other words, for the case where the betatfon focussing force is
larger than the defocussing self-field force, perturbations with high
azimuthal mode number can be stabilized by reducing the effective
transverse temperature of the beam electrons.

In a COﬁVeﬂtibnal betatron characferized typically by Qé = wg

[see Eq. (11) for W, = 0 and wy = 0], the necessary and sufficient

condition for instability obtained from Eq. (78) is given by

2

W : 2 2 1/2
pb 2. 2 _a“\ 2 _ ,
75 < yb+yb2 1 5 + ZYb 1
Ybwcz ac
v (80)
-y 1+ 1—53-E +1
b 2 .
aC

In the limiting case where the conductor is far removed from the

electron ring (az/ag << 1), Eq. (80) can be further simplified to give

w2

pb 2 g 1yq12 2 _ (172 _ 2
55 < ‘[Yb(ﬂ) 1] +2Yb 1 Yb(!L+1)+1,(81)

w
Yb cz
for instability to exist. Therefore, in the nonrelativistic limit

(yb = 1), the sufficient condition for stability can be expressed as

2
W

(112+1)1/2 -2 < _J.;i < 1. (82)

w
cz
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On the other hand, for an ultrarelativistic electron beam (Yi >> 1),

the sufficient condition for stability can be expressed as

2
1 “pb
e+ < 22 <L (83)
Ybwcz

Equations (82) and (83) have been obtained from Eq. (81) combined

with the condition for existence of radially confined beam equilibria,
sz
Tp¥z"

can easily be satisfied for all 2>1 provided wéb/wiz is sufficiently

. 2 ; X
i.e., wpb < Evidently, the inequality in Eq. (82), or in Eq. (83),
large that the inequality is satisfied for 2=1. That is, the negative-
mass'ihstability‘in a conventional betatron can be completely stabilized
for A=0 provided the beam density is sufficiently large.

(b) wiz < w§b/y§: In this case, the necessary and sufficient

condition for instability in Eq. (78) can be expressed as

2 2 2 2
T 2\ w w ., fw
L _ a cz pb’ ez
a2 <At a ) 2 2 2-—l+uu2 / 2w2 ' &4
el Yo Vb pb Yoz

It is evident from Eq. (74) (obtained for a=ac)_that the negative-

mass instability can be stabilized by a sufficiently strong self-
electric field. However, when a<ac and surface~wave contributions are
included in éﬁe stability analysis, itbis found that the inequality

in Eq. (84) can be satisfied provided ri/a2 is sufficiently small.
Thus, for sufficiently low effective transverse temperature, we
conclude (for the case wiz < mib/yi) that the electron ring in a
modified Betatron exhibits instability. The toroidal variation of the
azimuthal electron velocity [Egs. (41) and (42)] produces a perturbed
surface charge an&fcurrent in the eigenvalue equation [Eqs. (45) and

(46)], thereby resulting in a kink-type perturbation. Since the
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instability mechanism originates with the surface—wave perturbation

in the radial direction, we refer to this instability as a radial kink
instability. Evidently, the instability can bé stabilized by increasing
the effective transverse temperature %l = (1/2)meriwie . We

therefore conclude‘that the transverse temperature of the beam

electrons plays a major role in stabilizing the radial kink instability.

To summarize, it has been shown in various parameter regimes
that the longitudinal instability can be completely stabilized for A=0
provided either (a) that the beam current is sufficiently large, or
(b) that the transverse temperature is suitably adjusted. Otherwise,
the ‘instability can also be stabilized by a spread in the canonical
angular momentum (A#0). For a detéiled discussion of the stabilizing
influence of a spread in canonical angular momentum, the reader is
referred to Ref. 14.

Finally, the detailéd stability properties of an intense electron ring
in a modified betatron can be calculated numerically from the dispersion
relation in Eq. (66) for a broad range of-system parameters. Moreover,
the numerical results are in good agreement with the analytical

estimates in Secs. 5.A and 5.B.
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6. CONCLUSIONS

In this paper, we have investigated the stability properties of an
intense relativistic electron ring within the framework of the linearized
Vlasov-Maxwell equations. The analysis was carried out for perturbations
about a ring equilibrium located at the midplane of an applied betatron
ﬁagnetic field combined with an applied toroidal magnetic field. The
stability analysis was performed including the important influence of
transverse electromagnetic effects and surface-wave perturbations.
Stability properties were calculated for eigenfrequency w near harmonics
.Of @cz'_ The equilibrium properties and basic assumptions were summarized
iﬂ Sec.Aé, aﬁd the eigenvalﬁe eqﬁation was derlved in Sec. 3. Making
use of the large-aspect~-ratio assumption (RO'>> acl"the eigenvalue
equation (45) was solved in Sec. 4, resulting in the dispersion relation
(66) for the complex oscillation frequency. Detailed stability properties
were iﬁﬁééiigéted in>Sec. 5, including a delineation of fhe impo;t;ﬁt
influence of transverse electromagnetic effects and surface-wave
perturbations. In a regime where the surface contributions are negligibly
small, it was shown (Sec. 5.A) that transverse electromagnetic
effects can have a strong stabilizing influence on the negative-mass
instability. One of the most important features of the analysis in
Eﬁigigggime is that stabilization occurs (even for p>0) by increasing
the beam current toﬂaisufficiently'ﬁigh valuéfTTiﬁ the limit where
electromagnetic effects are neglected, the influence of surface-~wave
perturbations on stability behavior was investigated (Sec. 5.B) for a
wide range of system parameters. For the case where the betatron
focussing force exceeds the defocussing self-field force Qgiz < wib/yi),

it was found that stabilization occurs when the transverse temperature

of the beam electrons is reduced to a sufficiently low value. On the
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other hand, for the case where wiz < wib/Yi’ and the transverse
temperature is sufficiently low, it was shown that the radial kink
instability resulted as a conseduence:bf the surface~wave perturbations.
Finally, for the conventional betatron accelerator, it was shown that
both electromagnetic effects and surface-wave perturbations have a strong

stabilizing influence on the negative-mass instability.
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FIGURE CAPTIONS

Fig. 1  Equilibrium configuration and coordinate system.
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