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ABSTRACT

The long-time quasilinear development of the free electron laser instability is

investigated for a tenuous electron beam propagating in the z-direction through a

helical wiggler field O = -B cos k z - B sin k0z . The analysis neglects long-

itudinal perturbations (8$ ~0) and is based on the nonlinear Vlasov-Maxwell equations

for the class of beam distributions of the form f b(z,p,t) = n0 (Px(P y) x G(z,pz'

assuming D/x = 0 = 3/Dy. The long-time quasilinear evolution of the system is

investigated within the context of a simple "water-bag" model in which the average

distribution function G (pz, t) = (2L) L dz G(z,p ,t) is assumed to have the rec-

tangular form G0 (p t) = [2A(t)] for p - P < A(t), and G0 =z) 0 for

pz PO (01 > A(t). Making use of the quasilinear kinetic equations, a coupled

system of nonlinear equations is derived which describes the self-consistent evolu-

tion of the mean electron momentum p0 (t), the momentum spread A(t), the amplifying

wave spectrum H.(t)I2, and the complex oscillation frequency W (t) + iYk (t)

These coupled equations are solved numerically for a wide range of system para-

meters, assuming that the input power spectrum Pk(t=O) is flat and non-zero for a

finite range of wavenumber k that overlaps with the region of k-space where the initial

growth rate satisfies yk(tO) > 0. To summarize the qualitative features of the

quasilinear evolution, as the wave spectrum amplifies it is found that there is a
2 2 4 2"2

concommitant decrease in the mean electron energy y0 (t)mc = [m c + e B /k +
2 2 if0

p0 (t)c I, an increase in the momentum spread A(t), and a downshift of the growth

rate Yk(t) to lower k-values. After sufficient time has elapsed, the growth tate

Yk has downshifted sufficiently far in k-space that the region where yk > 0 no

longer overlaps the region where the initial power spectrum Pk(t=0) is non-zero.

Therefore, the wave spectrum saturates, and y0 (t) and A(t) approach their

asymptotic values.
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Cambrid*ge, Mass., 02139
ttPermanent address: Institute of Electron Physics, Academia Sinica, Beijing
People's Republic of China
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1. INTRODUCTION AND SUMMARY

There is a growing theoretical 1-27 and experimental 3 0 4 0

evidence that free electron lasers 2 8 ,2 9 are effective sources for

coherent radiation generation. Recent theoretical studies include

investigations of nonlinear effects1~9 and saturation mechanisms,

the influence of finite geometry on linear stability properties,
1 0-1 5

and the investigation of novel magnetic field geometries for radiation

generation. 16-20 In the present analysis we make use of the quasilinear

formalism developed by Dimos to investigate the long-time nonlinear

evolution of the free electron laser instability for a tenuous electron

beam propagating in the z-direction through the helical wiggler

magnetic field O = -B cos k z , - B sin k z P . The theoretical

model neglects longitudinal perturbations (65~O) and is based on

the nonlinear Vlasov-Maxwell equations for the class of beam dis-

tribution functions of the form [Eq.(2)]

f b(z~k,t) = n 0 S x 6(Py )G(z,p Z$0

where D/ x = 0 = D/3y is assumed, and (P ,P ) are the exact canonical

momenta in the combined wiggler and transverse radiation fields.

The analysis in Secs. 2-4 is based on the quasilinear kinetic equations

derived in Ref. 1 assuming that a sufficiently broad spectrum of waves is

excited.

For the special case of weak, resonant instability satisfying

YkIWk. Yk/kvZI << 1, one of the principal conclusions in Ref. 1

41is that the fast quasilinear process is plateau formation with

aG0 p z -* 0 in the resonant region of velocity space where vz = wk/k.

Here, yk is the growth rate, wk is the oscillation frequency, and
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L _ 1
G0 (pt) 2L) dzG(z,p t) is the average distribution function.

-L -
That analysis did not address the subsequent long-time quasilinear

degradation of beam energy and modification of G0 (zt) that occurs after

plateau formation has taken place. In the present analysis, we

investigate the long-time quasilinear evolution of the system in

the context of a simple "water-bag" model where the distribution

function G (pzt) is assumed to have the rectangular form

[Eq. (16) and Fig. 1]

2A(t) ' z 0 (t) t

G0 (p,t)=
G ( z t )0 , 1 p z - P 0 t > A ( t ) .

Here, p0(t) is the average electron momentum, and A(t) is the

momentum spread.

Following a summary of the quasilinear formalism and assumptions

(Sec. 2), we derive coupled nonlinear equations (Sec. 3) which

describe the self-consistent evolution of the average electron

momentum p0 (t) [Eq. (29)], the momentum spread A(t) [Eq.(25)], the

amplifying wave spectrum 16Hk(t)1 [Eq. (14)], and the complex

oscillation frequency wk(t) + iyk (t) [Eq. (26)]. These coupled

equations are solved numerically (Sec. 4) for a wide range of

system parameters, assuming that the input power spectrum Pk(t = 0)

[Eq. (40)] is flat and non-zero for a finite range of wavenumber k

that overlaps with the region of k-space where the initial growth

rate satisfies Y k(t = 0) > 0. To summarize the qualitative

features of the quasilinear evolution (Figs. 5-8), as the wave

spectrum amplifies it is found that there is a concommitant
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decrease in the mean electron energy y0 (t)mc
2 _ 2c + e2 2 /k +

2 2 _
P2tC ] , an increase in the momentum spread A(t), and a downshift

of the growth rate Y( ) to lower k-values. After sufficient time

has elapsed, the growth rate yk has downshifted sufficiently far

in k-space that the region where yk > 0 no longer overlaps the

region where the initial power spectrum Pk(t=0) is non-zero. There-

fore, the wave spectrum saturates, and y0 (t) and A(t) approach

their asymptotic values.

It is found that the efficiency of energy extraction from

the electron beam is enhanced by: (a) increasing the beam density

(W2/c2k ), (b) increasing the wiggler field strength (32 /c2 k 2
p c 0

(c) decreasing the initial momentum spread (A/p0 t=O, and (d)

increasing the width of the input power spectrum Pk(t=0). Here

2 2-
w = 47rn 0e /Ym is the plasma frequency-squared, 63 = eB/ymc is the

cyclotron frequency, and X0 = 2Tr/k0 is the wiggler wavelength.

For the cases studied in Sec. 4, the net efficiency of radiation

generation (fj) is relatively low (several percent). Nonetheless, by appropriate

choice of system parameters, the output power easily reaches

2
the five MW/cm range (Figs. 6-8), amplifying from an initial level of

2
P (t=O) = 100kW/cm
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2. THEORETICAL MODEL AND ASSUMPTIONS

A. Introduction

In the present analysis, we investigate free electron laser

radiation generation by a tenuous electron beam propagating in the

z-direction perpendicular to a helical wiggler magnetic field

B = -Bcosk ze - Bsink ze , (1)

where B = const. is the wiggler amplitude and 0 = 2ir/k 0 is the

wavelength. The quasilinear model is based on the nonlinear Vlasov-

Maxwell equations for the class of beam distribution functions of the

form

fb(zqt) = n06(P )6(P )G(z,pzt) . (2)

Here, /3x=O=3/3y is assumed, and

P =B ' - cosk z - - 6A (z,t)x c k 0  0 c x

(3)

P = p-eB sink z -- 6A (z,t)
y yck 0  0 c y

are the exact canonical momenta in the combined wiggler and transverse

radiation fields. Moreover, in Eq. (2), n0 = const. is the

ambient electron density, -e is the electron charge, c is the speed

2of light in vacuo,p y y is the mechanical momentum, Ymc _

2 4 2 2 1/2
(m c +c p ) is the energy, m is the electron rest mass, and the
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perturbed electromagnetic fields are expressed in terms of 6 4Xt) =

6A (z, t)^e + 6 A (z, t)e by 6 = Lez(/9z) ]x6, and 64 = (-c1 a /3 t)6A.

The electron beam is assumed to be sufficiently tenuous that equilibrium

self fields are negligibly small. In addition, it is assumed that the

Compton-regime approximation is valid with negligibly small perturbations

in the longitudinal electric field (6Sp).

The theoretical model used in Secs. 2-4 is based on the quasilinear

kinetic equations derived in Ref. 1 assuming that a broad spectrum of

waves is excited. The quasilinear kinetic equations describe

the self-consistent nonlinear evolution of the system for perturbations

about the (slowly varying) average distribution function

G0  zt) = dzG(z,pz't) (4)

where 2L is the periodicity length in the z-direction. Moreover,

the spatial dependence of the perturbed distribution function and

electromagnetic field perturbations is Fourier decomposed according to

CO

6*(z,t) = 0 k (t)exp(ikz) , (5)
kk-

where k=2rn/L, and n is an integer.

B. Quasilinear Dispersion Relation

In the quasilinear analysis, the time dependence of perturbed

quantities is assumed to be of the form

t
exp { o -i [k (t') + iy k (t')]dt'} ,(6)
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in circumstances where the time variation of G0 (p zt) is sufficiently

slow. In Eq. (6), the complex oscillation frequency wk (t) + iyk(t)

satisfies the conjugate symmetries

LL3-k _W

(7)

Y-k Yk'

and it is assumed that yk > 0, corresponding to temporal growth.

For slowly varying G z(pt), the complex oscillation frequency

wk(t) + iYk(t) is determined self-consistently from 
the

quasilinear dispersion relation

-2

Dk+k k-k0  22 2 k+k0 k-k00 c k 0 0

(8)

x [a3u2 + ymc2w2-2 f dpz kGvz z
x 3p +Y yY 2 wk-kv z+iyk

- 2 2 - 1/2
where ymc is a (yet unspecified) energy scale factor, w = (4 7rnoe /ym)

is the relativistic plasma frequency, oc = eE/ymc is the relativistic

cyclotron frequency, a3 is defined by a3 = Y dpzy Go, and ymc is

the electron energy in the equilibrium wiggler field, where y is

defined by

2 + 2 )/2
PZ e2 2

y = + 2 2 + 2 4 2 (9
m C m ck 0
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Moreover, the transverse dielectric functions Dkt 0 k +iyk) appearing

in Eq. (8) are defined by

D ~2 2 (kk2 -a2
k+k0 Yk) = (wk+Yk) -c (k+k0  1 p'

(10)

(w+y)_2 2k 2 -aP2
Dk-k k k k k) -c (kk -) = ,

where a, = y f dpzy 'GO. Note also that the effective susceptibility

defined by

-22-2 dp k3G0 /p( z
Xk kYk) = Ymc w Yf 2 w -kv +iy

y k z k

occurs in the quasilinear dispersion relation (8).

The dispersion relation (8) determines the complex oscillation

frequency wk(t) + yk( t) adiabatically in time as GO(pz,t) evolves

in response to the amplifying field perturbations (Sec. 2.C).

Keep in mind that the derivation of Eq. (8) has assumed that the electron

beam is sufficiently tenuous that the Compton-regime approximation is

valid (6= ~0).

C. Quasilinear Kinetic Equations

To complete the quasilinear description, Eq. (8) is supplemented

by coupled kinetic equations for the average distribution function

G (p ,t) and the spectral energy density of the amplifying field

perturbations. 1 In particular, GO(p ,t) evolves according to1

G t) = a [D(pz,t) a G,(pz,t) , (12)
at 0 z a z . apZII
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where the diffusion coefficient D(p zt) is defined by

2 2
2-2 ( ) 'c16Hk 1D(p ,t) = 27re y 2 2 2 (13)

k k0) k Y (W k-kv z+iy )

for Yk > 0. Here, the normalized spectral energy density 6H k(t)1 2

evolves according to the wave kinetic equation

a 16Hk 2 = 2yk(t)I6HkI2  (14)

and 16Hk 2 is defined in terms of the perturbed vector potential by

2  k2

6Hk(t)l 7 16A (k+k0 ,t)+i6A (k+kt

(15)

+ 6A (k-k0,t) - i6A (k-kO,t) 12

Equations (8) and (12) - (14) constitute a closed description

of the quasilinear evolution of the system including wave amplification

[Eq. (14)], concommitant redistribution of particles in momentum

space [Eqs. (12) and (13)], and self-consistent modification of linear

growth properties [Eq. (8)]. A detailed derivation of the quasilinear

model is presented in Ref. 1, together with a discussion of general

properties of the kinetic equations, conservation laws, etc. In this

regard, we note that the vector potential amplitudes in Eq. (15) carry

the correct physical dimensions, whereas the vector potential amplitudes

in Ref. 1 are defined in dimensionless form.
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3. QUASILINEAR EVOLUTION OF THE FREE ELECTRON LASER INSTABILITY

For the special case of weak, resonant instability satisfying

Iyk /k Iyk/kAvzI << 1, one of the principal conclusions in Ref. 1

is that the fast quasilinear- process is plateau formation, with DGO z

in the resonant region of velocity space where vz = Wk/k. That analysis1

did not address the subsequent long-time quasilinear degradation of

beam energy and modification of GO(p ,t) that occurs after plateau

formation has taken place. In the present analysis, we investigate

the long-time quasilinear evolution of the system in the -context

of a simple "water-bag" model where the distribution function GO(pz,t)

is assumed to have the rectangular form (Fig. 1)

2A(t)

0 ,

GO(pz,t) = (16)

Here, p0 (t) is the average momentum,

<pz dpz p z G O(zt) = PO

and the half-width A(t) is

spread by

K(pz-< z > 2> f

related to the root-mean-square momentum

S Z z>) (p z,t) = -A t) .dp (p -<p >) pt 1 2Wzz z 0 3

.(17)

(18)

p Z_ P )W < :S t ,

P z~E0(t)1 > t (t).
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Note in Eq. (16) that the normalization is f' dp z G Opt) = 1,

a property that is preserved by the diffusion equation (12). Also

note from Eq. (16) and Fig. 1 that G zlt) is flat (independent of

pz ) over the interval p0 (t) - A (t) < pz < pO(t) + A(t), and equal to

zero outside of this interval.

The self-consistent evolution of p0 (t) and A(t) is determined

by taking the appropriate momentum moments of the quasilinear kinetic

equation (12) corresponding to Eqs. (17) and (18). For example,

multiplying Eq. (12) by pz and integrating over pz gives

pO @G3d~t) -jC dp zD apZ(19)
-- z

where
3G 0 1t z r(t)-A(t)]} - 6{p - [p (t)+A(t)]} (20)
apz 2A(t) Lz - UO).~jzO

follows from Eq. (16). It is convenient to define the energy and

axial velocity corresponding to pz po(t) ± A(t) by

1/2
e 2%2 [pO (t) A (t) ]21/

y(t) = 1+m2k2+ 2 ] } (21)

m 2c 4 m 2
0

and

p0 (t)±A (t)
v(t) = Y t)m (22)

Then, substituting Eqs. (13) and (20) - (22) into Eq. (19), readily gives

dt2 2
t ) =O -2'e ck 0 2L (t) 

( 3
(23)

x - 1 _ - 1 +
ly 2 (W k-kv-+iyk + Y k-kv++iy k
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which describes the evolution of po(t) in response to the amplifying

field perturbations. Moreover, making use of Eqs. (12) and (18) gives

for the evolution of A(t)

A(t) d A(t) = -3po(t) 4 p0 (t) - 3 dpzpzD 0 (24)
-d9 z

Substituting Eqs. (13), (20), and (23) into Eq. (24), we obtain

2 2
d 2-2 c ISHk
dAt = 6 re y -dt ck0 k 2A(t)

(25)

X 2 1 + -
y2 (wk-kv_+iyk) y+ 1k-kv++y(k2

Equation (25) describes the quasilinear evolution of A(t) in response

to the amplifying field perturbations. In addition to the wave kinetic

equation (14) for j6Hk 2 , the remaining equation in the quasilinear

description is the dispersion relation (8). Substituting Eq. (20)

into Eq. (8) gives

2
1 6)c

k+k0 k-k0 2 2k2  k+k 0+Dk-k0
0 (26)

2 2 2-2 k 1
x a3 wp +Ymc W y 2A y 2 .(Wkkv_+iYk) - 2 .-kv+iYk)]

y_ (kkyk +(wk-++y

which determines the complex oscillation frequency wk(t)+iyk(t)

in terms of A(t), y (t), v (t) and other system parameters.

To summarize, for the choice of rectangular distribution function

in Eq. (16) (so-called "water-bag" model), the self-consistent

quasilinear evolution of the electron beam and radiation field is

described by the closed system of coupled nonlinear equations:
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Eq. (23) for the average momentum po(t); Eq. (25) for the. momentum

spread A(t); Eq. (14) for the spectral energy density 5H k12 ; and

Eq. (26) for the complex oscillation frequency wk(t) + iyk(t).

Equations (14), (23), (25) and (26), of course must be supplemented by

the definitions of y (t) [Eq. (21)], v (t) [Eq. (22)], Dk Eq. (10)],
02

and 16H k [Eq. (15)]. For specified initial conditions, Eqs. (14),

(23), (25), and (26) can be used to calculate numerically (Sec. 4)

the self-consistent evolution of p0 (t), A(t), and the amplifying wave

spectrum.

Finally, the dispersion relation (26) can be used to simplify

the expression for dp0 /dt in Eq. (23). Dividing Eq. (26) by (D k+k k-kkkk 0  0
and multiplying by I (i/k)ISHk!2 ... gives

k=-co

i16Hk 2 Dk+kD k-ko

k (D +D )
k k+k0  k-k0

-3mc ( )2 2 2 (27)

X 2 2
y_ (k-kv_+yk Y+ (Wk-kv++iyk

Combining Eqs. (27) and (23) readily gives

d iI6HkI k+k0 Dk-k 0
kc0 dt Y t) 2  (D +D ,28)

for dp 0 /dt. Making use of the conjugate symmetries Dk+k (-k -k
* *

D k (W k), Dk (6j =~k Dk k (wk iYk), w-~kw-k and Y-k = kDk-k 0k 'k k-k 0-k '-k) k+k k -"4kadyk kh 0 0
the k-summation in Eq. (28) can be further simplified to give
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n0 dt (t) = -2 | 6HkI 2 O
k kc

(29)

{ID k+k 0 12 + IDk-k 0 12
2 2

IDk+k + Dk-k 0

which is exactly equivalent to Eqs. (23) and (28). Replacing Eq. (23)

by Eq. (29), the numerical analysis in Sec. 4 is based on the coupled

quasilinear equations (14), (25), (26), and (29)..
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4. NUMERICAL RESOLTS

A. Introduction and Definitions

The coupled system of nonlinear equations (14), (25), (26), and (29)

have been solved numerically for a broad range of system parameters.

In this section, we summarize typical numerical results for both

moderately high-energy and low-energy electron beams. In this regard,

it is convenient to introduce the notation

[ 2 W1/2
YOt) + 2 2 (30)

m 2c 4k2 m 2C20

From Eqs. (9), (17), and (30), it is evident that y 0(t)mc2 corresponds

to the energy of an electron moving with the average axial momentum

PO(t) of the electron beam. In addition, we take the (heretofore

unspecified) energy scale factor ymc that occurs in the quasilinear

equations and related definitions to be equal to the initial value of

02i.e.,

Y YO(t0) (31)

The corresponding average axial velocity Vb of a beam electron at t=O

is given by

Vb~ PO(t=0) (32)

Ym

For future reference, as a useful estimate of where the free

electron laser radiation spectrum is excited, we consider the dispersion

relation (26) at t=0 in the limiting case of a "cold" electron beam

with 4+0. For right-circularly polarized electromagnetic waves with
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D k 0, strong interaction between the beam electrons and the radiationk-k 0

field occurs in Eq. (26) for frequency and wavenumber (w s,k s) satisfying

the simultaneous resonance conditions

W c2 (k-k0 ) - o = 0

(33)

s - kVb =0

2 2 2For a tenuous electron beam with a w << c ks, the upshifted (high-

frequency) branch in Eq. (33) satisfies ws = c(k -k 0) and w = ks Vb

Solving for k then gives ks k /(1-Vb/c), or equivalently,

-2
y (1+ b

ks -262- 2 2 k 0
+ c/c k0

(34)

where -Sb b/c, 6C = eB/ymc, and use has been made of 1-V /c2

-2 2 2 2 -22 2 2
- + /c k . For sufficiently small wiggler amplitude that y /c k << 1,

Eq. (34) gives the familiar result ks = y2 (1+b)k0. For- example,

-2 2 2 2
for y=10, 5b~1 and y /c k << 1, Eq. (34) gives ks ~ 200 k0. On

the other hand, for y=10, b 1 and y 2 /c 2k = 0.773 (the parameters
bc 0

chosen in Fig. 2), Eq. (34) gives k ~ 113 k0*

A further important definition relates to the total electromagnetic

field energy density

0 1% 2 +112

UF(t) =ekt) = 87
k k

(35)
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Defining

6 Aj = 6 A (k, t) e i6 AY(k,t) (36)

some straightforward algebra shows that Ck(t) can be expressed as1

ek(t) = 1 2
1 6 T c

6Ak+k0 [Ik+YkI 2
+ c2 (k+k0 2

+ 6A 02 kk 2 + c2 (k-k0 )2]}

Moreover, the vector potential amplitudes occurring in Eqs. (15) and

(36) are related by1

6A+k0

6A-k 0

Dk-k0

Dk+k0
(38)

where Dk 0 is defined in Eq. (10).

Also of interest is the average 6Ex6 power flow in the z-direction

defined by

P(t) = c4 Tr
d (6Ex6k)

f-L
= k(t) .
k

Here, Pk(t) can be expressed as1

Pk(t) = I (k+k0 ) Ak +k 2

0

(37)

(39)

(40)
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In the numerical analysis in Sec- 4.c, we specify the input

spectrum Pk (t=O), and make use of Eqs. (14), (25), (26), and (29)

to follow the nonlinear evolution of the system.

Finally, for small initial momentum spread with A(O) << p(O),

the initial beam kinetic energy density is approximately (y-1)n0mc
2

We therefore define the dynamic (time-dependent) efficiency of radiation

generation rn(t) by

SF(t) - eF(0)
a (t) = F F241

n0 (y-1)mc

where F (t) is defined in Eq. (35). Assuming that the field energy

density saturates at some level 6F(c() as t-*, the net efficiency of

radiation generation (denote by f) is given by

= n (c) . (42)

Finally, we remind the reader that the vector potential amplitudes

occuring in Eqs. (36) - (40) have the correct physical dimensions,

whereas the vector potential amplitudes in Ref. 1 are defined in

dimensionless form.
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B. Linear Growth Properties

Before analyzing the quasilinear development of the system predicted

by the coupled nonlinear equations (14), (25), (26) and (29), it is useful

to make use of the dispersion relation (26) to investigate (parametrically)

the linear stability properties for the choice of rectangular distribution

function in Eq. (16). Typical numerical results are illustrated in Figs.

2 - 4. In Figs. 2 and 3, the system parameters are chosen to be ! = 10,

2 2 2 -3 '2 2 2 3Wp/c k0 1.6 x 10 and Wc/c k0 = 7.73 x 10 , corresponding to a tenuous

electron beam with moderate energy. Figure 2 shows plots of the normal-

ized growth rate Yk/kOc versus k/k0 obtained from Eq. (26) for a wide

range of normalized momentum spread A/p0 . Evidently, for very narrow

-4momentum spread (A/pO = 3 x 10 , say), the instability growth rate is

broadband with maximum growth rate centered near k /k ~ 113, as esti-sO0

mated from Eq. (34). On the other hand, as A/p0 is increased, we note

from Fig. 2 that there is a downshift in wavenumber corresponding to maximum

growth. Moreover, the maximum growth rate and the instability band-

width decrease substantially as A/p0 is increased to the several percent

range. This is further illustrated in Fig. 3, where Eq. (26) has been

used to obtain plots of (Yk /kO c) (normalized maximum growth rate),

(k/k0 MAX (normalized wavenumber at maximum growth), and (Ak/k 0

(normalized width of yk at half maximum) versus A/po, for A/p0 ranging

-4
from 10 to 0.3.

Figures 2 and 3 already give some indication of the qualitative

features of the quasilinear evolution of the system that we can expect

from a detailed analysis of the nonlinear coupled equations (14),

(25),.(26) and (29). For example, as the wave spectrum amplifies
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[Eq. (14)], there will be a concommitant increase in A(t)/p 0(t)

[Eqs. (25) and (29)]. Dynamically, this will result in a downshift

in the growth rate curve Y (t) to lower k-values, narrower bandwidth,

and smaller growth rates.

Finally, in Fig. 4, we make use of the dispersion relation (26)

to calculate linear stability properties for the choice of parameters

-3 2 2 2 '-3 2 2 2 -3
Y = 1.3, wP/C k 0 =5.99 x 10 and W c/c k = 2.25 x 10 , and A/p0

ranging from A/pO = 0.2 x 10-2 to 10- 2. Here, the beam energy is rela-

tively low in comparison with Figs. 2 and 3. As expected from Eq. .(34)

the maximum growth rate occurs for k s/kO ~ 2.9. As in Figs. 2 and 3,

the instability bandwidth Ak/k0 decreases as A/p0 is increased. However,

for the choice of parameters in Fig. 4, A/p0 has not been increased to

large enough values to show a noticeable downshift in the k-value for

maximum growth rate.

C. Quasilinear Evolution

The coupled nonlinear equations (14), (25), (26) and (29) have been

solved numerically to determine the self-consistent quasilinear evolution

of the wave spectrum l6Hk (t) 2 [Eq. (14)], the momentum spread A(t)

[Eq. (25)], the mean momentum p0 (t) [Eq. (29)], and the complex oscil-

lation frequency Wk +k [Eq. (26) 1 for a wide range of system parameters.

Typical numerical results are illustrated in Figs. 5-8 both for moderate

beam energy (y = 10 in Figs. 5-7) and for low beam energy (y = 1.3 in

Fig. 8). In Figs. 5-8, the time t is measured in units of

0 =2Tr ,(42)
T c k c

0
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which is the time required for a light pulse to transverse one wiggler

wavelength X0 27T/k . In addition to specifying values for w /c k ,

y = Y0 (t = 0)$ O(t = 0) and A(t = 0), we specify the initial power

spectrum

Pk(t = 0)

as input data to the coupled nonlinear equations (14), (25),

(26) and (29). In all cases (Figs. 5-8), the initial power spectrum

P (t =0) is assumed to be flat and non-zero over a finite bandwidth

of wavenumber k, and equal to zero outside of this range. In particular,

in Figs. 5, 6 and 8, the initial power spectrum Pk (t =0) is taken to

be non-zero for the range of wavenumber k exactly overlapping with

the region where the initial growth rate satisfies yk(0) > 0 [compare

Figs. 5(e), 6(e) and 8(e) with Figs. 5(a), 6(a) and 8(a)]. On the other

hand, in Fig. 7, the bandwidth of the initial power spectrum Pk(t = 0)

is taken to be twice the width of the region where yk(0) > 0 [compare

Fig. 7(e) and Fig 7(a)]. In all cases (Figs. 5-8), the value of Pk(t =-0)

2
is equal to 100kW/cm in the region of k-space where the initial power

spectrum is non-zero. Moreover, in the numerical analysis, the amplifying

spectrum is divided into fifteen discrete k-values in Figs. 5, 6 and 8,

and into thirty discrete k-values in Fig. 7.

We now describe the quasilinear evolution of the system, beginning

2 2 2 -3 ^ 2 2 2 -3
with Fig. 5 where y = 10, W /c k = 1.6 x 1.0 , W c /c k = 7.73 x10

p 0 0

and (A/p0 t=o = 10 2. The initial power spectrum Pk(t = 0) is non-zero

over the interval 107.75 < k/k0 < 113.25 [Fig. 5(e)] where the initial

growth rate satisfies Yk(t = 0) > 0 [Fig. 5(a)]. Solving the coupled

nonlinear equations (14), (25), (26) and (29), it is found that the

field energy eF(t) amplifies [Fig. 5(d) and Eq. (14)], which leads to a

decrease in the mean electron energy y0 (t)mc2 [Fig. 5(b) and Eq. (29)], an



increase in the momentum spread A(t) [Fig. 5(c) and Eq. (25) ], and a con-

commitant shift in the unstable region of k-space where Yk > 0 to lower values

of wavenumber [Fig. 5(a) and Eq. (26)]. Indeed, by t/To = 25 in Fig..5(a),

the growth rate has decreased considerably and yk has downshifted

sufficiently far in k-space that the region where yk (t = 25T 0) > 0

no longer overlaps the region where the initial power spectrum P k(t = 0)

is non-zero [Fig. 5(e)]. Consequently, the wave spectrum saturates by

t/To = 25 [Fig 5(e)], and yo A and EF approach their asymptotic

values [Figs. 5(b)-5(d)]. Moreover, the dynamic efficiency r(t),

which is defined in Eq. (41) and plotted versus t/T in Fig. 5(f),

approaches the value Yj = 1.1%. For the parameters chosen in Fig. 5,

we note that the free electron laser instability is relatively weak, as

manifest by low growth rate [Fig. 5(a)], the small amplification of

the wave spectrum [Fig. 5(e)], and the low efficiency fi [Fig. 5(f)].

2
Moreover, during the stabilization process, Y0 (t)mc decreases by about

0.5% [Fig.5(b)], and A(t)/p 0 increases from 1% at t = 0 to 2.5% at

t = 25T [Fig. 5(c)].

As an example corresponding to stronger instability, still with

y = 10 and (=/p t== 102 in Fig. 6 the normalized beam density and

2 2 2 -3 ^2 2 2 -3
wiggler strength are increased to w /c k0 = 8 X 10 and WC/c k0 38.6 x 10.

Comparing Fig. 6 with Fig. 5, it is evident that the instability

growth rate is considerably larger [Fig. 6(a)] and the wave spectrum

amplifies to a much higher level [Figs. 6(d) and 6(e)]. Correspondingly,

there is a larger decrease in y0 (t)mc2 [Fig. 6(b)] and a larger increase

in A(t)/p 0 [Fig. 6(c)], with the efficiency approaching f = 3.3%

in Fig. 6(f). With the larger initial growth rate in Fig. 6(a), the

stabilization process in Fig. 6 occurs on a faster time scale than in

Fig. 5. Indeed, by t/T0 = 16.5 in Fig. 6(a), the growth rate Yk

has downshifted sufficiently far in k-space that the region where
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yk(t = 16.5T ) > 0 no longer overlaps the region where the initial

power spectrum P (t = 0) is non-zero [Fig. 6(e)].. Therefore, by t/To = 16.5,

the wave spectrum saturates [Fig. 6(e)], and y A A ande F approach their

asymptotic values [Figs. 6(b)-6(d)]. For the parameters in Fig. 6,

we note from Fig. 6(c) that the normalized momentum spread A(t)/p 0

00increases from 1% at t = 0 to 6.5% at t = 16.5T .'

Another way to augment the energy extracted from the electron beam

is to increase the width of the input power spectrum P (t = 0). This

is illustrated in Fig. 7 for the choice of system parameters y = 10,

W2/c2k2 = 8 x 10-3 2/C2 k2 = 7.73 x 10 and (A/p ) = 102 Notep 0 c 0 Not=e

from Fig. 7(a) that the initial growth rate satisfies yk(t=0) > 0 for

k-values in the range 105 < k/k0 < 120, whereas the initial power

spectrum Pk(t = 0) in Fig. 7(e) is assumed to be non-zero over the wider

interval 91 < k/k0 < 120. Therefore, the interaction time of the

electron beam with the amplifying wave spectrum is prolonged because

the waves continue to grow beyond the time when yk ceases to overlap with

the region where Y k(t = 0) > 0. Indeed, from Figs. 7(a)-7(f), the system

continues to evolve dynamically until t/T0 = 107, when the growth rate

Yk ceases to overlap with the region of 'k-space where the input power

spectrum Pk(t 0) is non-zero [Figs. 7(a) and 7(e)]. During this

2
process, the beam energy y(t)mc decreases [Fig. 7(b)], the momentum

spread A(t) increases [Fig. 7(c)], the field energy and wave spectrum

amplify and saturate [Figs. 7(d) and 7(e)], and the efficiency approaches

= 5.6%.

As a final numerical example, in Fig. 8 we consider a low-energy

electron beam with y = 1.3, W /c k = 5.99 x 10 3  2/C k2 = 2.25 x 10-3
p 0 c 0

and (A/po t=0 = 5 x 10-3. In this case, the upshif ted wavenumber is
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relatively small with maximum initial growth rate occurring for

k /k 2.75. From Figs. 8(a)-8(f), the general features of the
s 0

evolution of y0 (t), A(t), 8F(t), Pk (t) and TI(t) are qualitatively

similar to Figs. 5 and 6. For the parameters chosen in Fig. 8, the

stabilization process is completed by t/To = 31.5, when the growth

rate Yk [Fig. 8(a)] ceases to overlap with the region in k-space where

the initial power spectrum Pk(t=O) is non-zero [Fig. 8(e)]. From

Fig. 8(f), we find that the efficiency approaches f = 5.3% for the

choice of system parameters in Fig. 8.

2 2 2
Finally, we remind the reader that parameters such as w /c k0,

,2 2 2
W /c 2, etc., in the analysis in Sec. 4, are dimensionless. To pro-

c 0

vide a quantitative estimate of team density, wiggler strength, etc.,

we choose (as an example) a wiggler wavelength AO = 6.28 cm cor-

-l
responding to ko = 1 cm . Then, for example, the system parameters

for Fig. 5 correspond to

y = 10; X0 = 6.28 cm, A = 315 microns;

B = 1.5 kG; n0  4.5 x 109 cm-3 ; J b InOe b.I = 21.6 A/cm2

where As V b/c)AO [Eq. (34)]. On the other hand, for Fig.8,

the system parameters are

y = 1.3; A = 6.28 cm; A = 2.3 cm;0 s
9 -3 2

B = 105 G; no= 2.2 X 10 cm ; Jb 6.7 A/cm,

which still corresponds to a relatively tenuous beam.
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5. CONCLUSIONS

In the present analysis, we have investigated the long-time

quasilinear evolution of the free electron laser instability for a

tenuous relativistic electron beam propagating perpendicular to a

helical wiggler magnetic field. Following a summary of the quasilinear

model and assumptions (Sec. 2), we specialized to the case where the

average distribution function GO(pzt) is assumed to have a rectangular

form in momentum space [Eq. (16) and Fig.l]. Coupled nonlinear equations

are derived (Sec. 3) which describe the self-consistent evolution of

the mean electron momentum po(t) [Eq. (29)], the momentum spread

A(t) [Eq. (25)], the amplifying spectrum 16Hk(t)12 [Eq. (14)], and the

complex oscillation frequency wk(t)+iyk(t) [Eq. (26)]. These coupled

equations are solved numerically (Sec. 4) for a wide range of system

parameters, assuming that the input power spectrum Pk(t = 0) is flat

and non-zero for a finite range of wavenumber k that overlaps with the

region of k-space where the initial growth rate satisfies Yk(t = 0) > 0.

To summarize the qualitative features of the quasilinear evolution

(Figs. 5-8), as the wave spectrum amplifies it is found that there is a

2 -concommitant decrease in the mean electron energy y ( )mc , an increase

in the momentum spread A(t), and a downshift of the growth rate Yk(t)

to lower k-values. After sufficient time has elapsed, the growth rate

Yk has downshifted sufficiently far in k-space that the region where

Yk(t) > 0 no longer overlaps the region where the initial power

spectrum Pk(t.= 0) is non-zero. Therefore, the wave spectrum

saturates, and y0 (t) and A(t) approach their asymptotic values.

It is found that the efficiency of energy extraction from the electron

2 2 2beam is enhanced by: (a) increasing the beam density (w /c k20
p 0

(b) increasing the wiggler field strength ( /c2 k ), (c) decreasingc 0
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the initial momentum spread (A/p0)t=0 , and (d) increasing the width

of the input power spectrum Pk(t 0). For the cases studied in Sec. 4,

the net efficiency of radiation generation (fl) was relatively low (several percei

Nonetheless, by appropriate choice of system parameters, the output power

easily reaches the five MW/cm 2 range (Figs. 6-8), amplifying from an initial

2
level of Pk(t = 0) = 100 kW/cm

Finally, for the quasilinear model to be valid, it is necessary that

the amplifying wave spectrum be sufficiently broad in k-space that the

autocorrelation time for the waves (T ac) be short in comparison with the

characteristic time scale for quasilinear relaxation (Trel 1 We estimate

Tac A(wk - kvz)1 ~ (c - Vb)AkI , where Vb p 0(t=)Im is the average

beam velocity, and Ak is the characteristic width of the amplifying

k-spectrum. We also estimate Trel Trel 2 (y k)X, corresponding to

a few maximum growth times. Then, the inequality Tac < rel can be

expressed as

-- < < 2' -- (43)
c_ k MAX < k

where ks = k0 ( /-V bc) is the characteristic wavenumber at maximum growth..

That is, the wave spectrum must be sufficiently broad and the growth rate

sufficiently weak in order for the quasilinear model in Secs. 2 - 4 to be

valid, and for coherence effects (such as particle trapping in the ponder-

motive potential) to be unimportant in the nonlinear evolution of the

system. Inspection of the numerical results in Figs. 5 - 8 readily shows

that the inequality in Eq. (43) is satisfied (to within a factor of ten

or more) for the range of system parameters investigated in Sec. 4.
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In conclusion, it has been noted that the efficiency of radiation

generation is typically in the several percent range, at least within the

present quasilinear model which assumes an oscillator configuration

(temporal growth) with constant wiggler amplitude B = const. One way

to increase the efficiency is to "time-taper" the magnetic wiggler

amplitude B in such a way that the region of instability (Yk > 0)

continues to overlap with the region where the input power spectrum

Pk (t=0) is non-zero. To illustrate with a simple model, consider the

case where the momentum spread A is sufficiently small that ks ~ k0 (1-Vz/c)

is a good estimate of the wavenumber at maximum growth. Here V Zt

p0(t)/y 0 (t)m is the axial beam velocity. Evidently, a decrease in beam

velocity AV causes a downshift in k Sby an amount Ak = (1 - V /c)-2AV .

Moreover, the velocity change AV is related to the momentum changez

Ap0 and energy change Ayo by AVz = (y0mc)- 1 [Ap 0 - p 0Ayo/y0 ]. Therefore,

2= 2^2 2 4 2 2 2 2
making use of y0 1 + e B /m c k0 + p0 /m c , where Bat) is allowed to

vary, we obtain Y Ay = e 2BSB/m 2c4 k + p0A 0 /m
2c 2 , and find that AV

can be expressed as

P2 2-
= m 0 mc e B (44)AV 2 22 A h 20 4 k2 AB.
SY 0m c 0 Y m c k00 0

Because Aks - V Z/c) 2L A in order to prevent a downshift in ks

(i.e., maintain Aks = 0), we allow B to vary in such a manner that AVZ = 0

in Eq. (44). Defining a = ef/mc.k , and making use of the definition
w 0

2^-1 2 1i
of Y0, the condition AV = 0 can be expressed as a.wB AB = (1 + a ) Y0 Y,

or in terms of the time derivatives of B and y0'

1 + a2  dy
1 d _ w 1 0. (45)

t -2 Y0 dt
aw
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Equation (45) can be interpreted as follows. As the wave spectrum amplifies

there is a corresonding (quasilinear) decrease in y0 (t). If, in addition, the

temporal evolution of the wiggler amplitude B is taylored in such a way

that Eq. (45) is satisfied, then the beam velocity Vz remains unchanged

(AV = 0), and there is no downshift in k (Ak = 0). The sustainedz s S

overlap of yk(t) with the input power spectrum will then lead to

higher efficiencies. Equation (45) is the temporal analogue of spatial-

tapering of the magnetic wiggler for the case of an amplifier (spatial

growth).
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FIGURE CAPTIONS

Fig. 1 Plot of G (pzt) versus p for the choice of rectangular

distribution function in Eq. (16)

Fig. 2 Plot of normalized growth rate Yk/kOc versus k/k0 obtained

-2 2 23from Eq. (26) for Y = 10, w2/c k = 1.6 x 10 3

p 0
C /c k = 7.73 x 10 , and several values of A/p0'

Fig. 3 Plots of normalized maximum growth rate, (Yk/kOc) MA, normalized

wavenumber at maxiumum growth, (k/k )A0 and normalized

width of yk at half maxiumum, Ak/ko, versus A/p0 obtained

from Eq. (26) for 7 = 10, w 2/c2 k = 1.6 x 10 3 and
p 0

-2 2 2 -3
W /c k = 7.73 x 10

Fig. 4 Plot of normalized growth rate y k/k c versus k/k0 obtained

from Eq. (26) for Y= 1.3, w /c2k2 = 5.99 x 10-3

^2 2 2 =- 3
c/c k2 = 2.25 xl0 and several values of A/p0 '

Fig. 5 Quasilinear time development determined from Eqs. (14). (25),

(26) and (29) for Y = 10, W /c2ko = 1.6 x 10-3

^2 2 2 =-3 o2.S/c k0 = 7.73x 10 and (A/p 0 )o t= -. Shown are plots

of (a) normalized growth rate yk(t)/kOc versus k/k0'

(b) mean electron energy Y0 (t) versus t/TO, (c) normalized

momentum spread A(t)/p 0 versus t/To, (d) normalized field

energy e (t)/ e (0) versus t/To, (e) power spectrumF F0

P k(t) versus k/k0 , and (f) dynamic efficiency n(t) versus

t/T0 . The input power is Pk(t = 0) = 100kW/cm2 over the interval

107.75 < k/k0 < 113.25 [Fig. 5(e)].
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Fig. 6 Quasilinear time development determined from Eqs. (14),

(25), (26) and (29) for Y = 10, w2/ck2 = 8 x 10-3
p 0

,2 2 2 =- 3 -02W /c k0  38.6 x 10 and (A/p0 ) 0  l02 . Shown are

plots of (a) normalized growth rate yk(t)/kO c versus

k/k, (b) mean electron energy y0(t) versus t/T '

(c) normalized momentum spread A(t)/p 0 versus t/TO'

(d) normalized field energy iF(t)/ 6F(0) versus t/Tol

(e) power spectrum Pk (t) versus k/ko, and (f) dynamic

efficiency fl(t) versus t/T . The input power is P k(t=0) =

2
100kW/cm over the interval 36.75 < k/k0 < 53.25 [Fig. 6(e)].

Fig. 7 Quasilinear time development determined from Eqs. (14),

(25), (26) and (29) for y = 10 , 2 /c2k2 = 8 x 10-3
p 0

S/c 2k = 7.73 x 10-3 and (A/p = 10.-2 Shown are plotsc 0 0Ot-0

of (a) normalized growth rate yk(t)/kOc versus k/ko, (b)

mean electron energy y 0 (t) versus t/TO, (c) normalized

momentum spread A(t)/p0 versus t/TO, (d) normalized field
00

energy F(t)/ 6F (0) versus t/T , (e) power spectrum Pk(t)

versus k/k0, and (f) dynamic efficiency n (t) versus t/T '
2The input power is P (t = 0) = 100kW/cm over the interval

91 < k/k0 < 120 [Fig. 7(e)].
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Fig. 8 Quasilinear time development determined from Eqs. (14). (25),

(26) and (29) for Y = 1.3, w2 C2k2 = 5.99 x 10 3
p 0

,2 2 2 -3 -3W /c k 2.25 x 10 and (Ap0 t= = 5 x 10-. Shown

are plots of (a) normalized growth rate yk(t)/koc versus

k/kO, (b) mean electron energy y0 (t) versus t/TO,

(c) normalized momentum spread A(t)/p 0 versus t/TO'

(d) normalized field energy 6F W/ 6F(0) versus t/TO'

(e) power spectrum P k(t) versus k/k0, and (f) dynamic

efficiency q(t) versus t/T . The input power is

2
P k(t) = 100kW/cm over the interval 2.68 < k/k0 < 3.45

[Fig. 8(e)].
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