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ABSTRACT

The long-time quasilinear development af the free electron laser instability is
investigated for a tenuous electron beam propagating in the z-direction through a
helical wiggler field EO B cos k z %x B sin k zZ %y The analysis neglects long-
itudinal perturbations (8¢ =0) and is based on the nonllnear Vlasov-Maxwell equations
for the class of beam distributions of the form f (z,g, t) = n 6(Px)6(P ) x G(z,p »t),
assuming 9/9x = 0 = 9/9y. The long-time quasilinear evolution of the system is
investigated within the context of a simple "waﬁer-bag" model in which the average
distribution function G (p ,t) = (2L) Ldez G(z,pz,t) is assumed to have the rec-
tangular form Go(pz,t) [2A(t)] for !pz - po(t)l < A(t), and Go(pz,t) = 0 for
Ipz - po(t)] > A(t). Making use of the quasilinear kinetic equations, a coupled
system of honlinear equations is derived which describes the self-consistent evolu-
tion of the mean electron momentum po(t), the momentum spread A(t), the amplifying
wave spectrum lHk(t)l » and the complex oscillation frequency W, (&) + 1Yk(t)

These coupled equations are solved numerlcally for a wide range of system para-
meters, assuming that the input power spectrum Pk(t=0) is fla; and non-zero for a
finite range of wavenumber k that overlaps with the region of k-space where the initial
growth rate satisfies Yk(t=0) > 0. To summarize the qualitative features of the
quasilinear evolution, as the wave spectrum amplifies it is found that there is a
concommltant decrease in the mean electron energy Yo(t)mc2 [mzc4 + eZBz/k +

(t)c ] , an increase in the momentum spread A(t), and a downshift of the growth
rate Yk(t) to lower k-values. After sufficient time has elapsed, the growth Tate
Yy has downshifted sufficiently far in k-space that the region where Yk > 0 no
longer overlaps the region where the initial power spectrum Pk(t=0) is non-zero.

Therefore, the wave spectrum saturates, and Yo(t) and A(t) approach their

asymptotic values.
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People's Republic of China



1. INTRODUCTION AND SUMMARY

There is a growing theor:eticall‘_27 and experimental?’o'_40

28,29

evidence that free electron lasers are effective sources for

coherent radiation generation. Recent theoretical studies include

. . . . 1-9 . .
investigations of nonlinear effects and saturation mechanisms,

\ . , L q 10-15
the influence of finite geometry on linear stability properties,
and the investigation of novel magnetic field geometries for radiation

. 16-20 .
generation. In the present analysis we make use of the quasilinear

formalism developed by Dimosl to investigate the long-time nonlinear
evolution of the free electron laser instability for a tenuous electron
beam propagating in the z-direction through the helical wiggler
magnetic field EO = -ﬁ cos koz %x - ﬁ sin koz éy' The theoretical
model neglects longitudinal perturbations (8¢=0) and is based on

the nonlinear Vlasov-Maxwell equations for the class of beam dis-

tribution functions of the form [Eq.(2)]
fb(z,;g,t) = nOG(Px)a(Py)G(z,pz,t),

where 9/9x = 0 = 3/3y is assumed, and (PX,Py) are the exact canonical
momenta in the combined wiggler and transverse radiation fields.
The analysis in Secs. 2-4 is based on the quasilinear kinetic equatioms
derived in Ref. 1 assuming that a sufficiently broad spectrum of waves is
excited.

For the special case of weak, resonant instability satisfying
IYk/wkl, ]Yk/kAvél << 1, one of the principal conclusions in Réf. 1
is that the fast quasilinear process is plateau formation41 with
BGO/Bpz > 0 in the resonant region of velocity space where v, = wk/k.

Here, Yk is the growth rate, wk is the oscillation frequency, and



L

Go(Pé’t) ='(2L)—lde(z,pz,t) is the average distribution function.

That an;I;sisl did not address the subsequent long-time quasilinear
degradation of beam energy and modification of Go(pz,t) that occurs after
plateau formation has taken place. In the present analysis, we
investigate the long-time quasilinear evolution of the system in

the context of a simple "water-bag' model where the distribution

function Go(pz,t) is assumed to have the rectangular form

[Eq. (16) and Fig. 1]

7 o e, - oy <A,

GO(pZ’t) =
0, lp, - py(0)] > ace).

Here, pb(t) is the average electron momentum,'and A(t) is the
momentum spread. |

Following a summary of the quasilinear formalism1 and assumptions
(Sec. 2), we derive coupled nonlinear equatioﬁs (Sec. 3) which
describe the self-consistent evolution of the average electron
moméﬁt;ﬁ po(t) [Eq. (29)], the momentum spread A(t) [Eq.(25)], the
amplifying wave spectrum lcSHk(t)|2 [Eq. (14)], and the complex
oscillation frequency wk(t) +»iYk(t) [Eq. (26)].' Tﬁese coupled
equations are solved numerically (Sec. 4) for a wide range of
syéﬁéﬁ péréﬁéZ;;;;iassuming that the input power spectrum Pk(t = 0)
[Eq. (40)] is flat and non-zero for a finite range of wavenumber k
that overlaps with the region of k-space where the initial growth
rate satisfies Yk(t = 0) > 0. To summarize the qualitative

features of the quasilinear evolution (Figs. 5-8), as the wave

spectrum amplifies it is found that there is a concommitant



decrease in the mean electron energy Yo(t)mc2 = [mzc4 + ezﬁz/kg +

pg(t)cz]%, an increase in the momentum spread A(t), and a downshift
of the growth rate Yk(t) to lower k-values. After sufficient time
has elapsed, the growth rate Yy has downshifted sufficiently far
in k-space that the region where Yk > 0 no longer overlaps the
region where the initial power spectrum Pk(t=0) is nomn-zero. There-
fore, the wave spectrum saturates, and YO(t) and A(t) approach
their asymptotic values.

It is found that thelefficiency of energy extraction from
the electron beam is enhanced by: (a) increasing the beam density
(wé/czkg), (b) increasing the wiggler field strength (@i/czkg),

(¢) decreasing the initial momentum spread (A/po) , and (d)

t=0
increasing the width of the input power spectrum Pk(t=0). Here

wg = 4Wnoe2/§ﬁ is the plasma frequency-squared, @c = eB/Ymc is the

cyclotron frequency, and Xo = Zﬂ/ko is the wiggler wavelength.

For the cases studied in Sec. 4, the net eff1c1ency of radlatlon

generatlon (A) is relatlvely low (several percent) Nonetheless, by appropriate
ch01ce of system parameters, the output power eas1ly reaches
the five MW/cm2 range (Figs. 6-8), amplifying from an initial level of

Pk(t=0) = lOOkW/cm .



2. THEORETICAL MODEL AND ASSUMPTIONS

A. Introduction

In the present analysis, we investigate free electron laser
radiation generation by a tenuous electron beam propagating in the

z-direction perpendicular to a helical wiggler magnetic field
gO = —Bcoskogex - lenkoqey . D)

where B = const. is the wiggler amplitude and AO = 21r/k0 is the
wavelength. The quasilinear modell is based on the nonlinear Vlasov-
Maxwell equations for the class of beam distribution functions of the

form
fb(zsg,t) = nO‘S (PX)(S (Py)G(Z,PZ,t) . (2)

Here 3/3x=0=3/3y is assumed, and

A~

eB e
" oK cosk.z - < SAX(z,t) s

P_=0p
X
0

0
(3)

~

- _ e . - e
Py = py cko 81nkoz o 6Ay(z,t) s

are the exact canonical momenta in the combined wiggler and transverse
radiation fields. Moreover, in Eq. (2), nO = const. is the

ambient electron density, -e is the electron charge, c is the speed

. . 2
of light in vacuo,’e =ymy is the mechanical momentum, Ymc =

4,2 2.1/2

mzc +c ) is the energy, m is the electron rest mass, and the
P g



perturbed electromagnetic fields are expressed in terms of Séfé,t) =

58, (2, 08, + 64 (2,603 by 88 = [3,(2/22)1x64 and S = (-c L /3e)sp.

The electron beam is assumed to be sufficiently tenuous that equilibrium
self fields are negligibly small. 1In addition, it is assumed that the
Compton-regime approximation is valid with negligibly small perturbations
in the longitudinal electric field (§4=0).

The theoretical model used in Secs. 2-4 is based on the quasilinear
kinetic equations derived in Ref. 1 assuming that a broad spectrum of
waves is excited. The quasilinear kinetic equations describe
the self-consistent nonlinear evolution of the system for perturbations

about the (slowly varying) average distribution function
1 L
Go(pz9t) = —21 j_L dZG(Z’Pz,t) ’ (4)

where 2L is the periodicity length in the z-direction. Moreover,
the spatial dependence of the perturbed distribution function and

electromagnetic field perturbations is Fourier decomposed according to

©o

S¥(z,8) = [ 6h (Dexplike) , | )

k=-w

where k=2rn/L, and n is an integer.

B. Quasilinear Dispersion Relation

In the quasilinear analysis, the time dependence of perturbed

guantities is assumed to be of the form

t
exp{-ifo [wk(t') + iyk(t')]dt'} R %)



in circumstances where the time variation of Go(pz,t) is sufficientiy

slow. In Eq. (6), the complex oscillation frequency wk(t) + iyk(t)

satisfies the conjugate symmetries

W = "W
(7)
Yor T Vi 2
and it is assumed that'yk > 0, corresponding to temporal growth.
For slowly varying Go(pz,t), the complex oscillation frequency
wk(t) + iyk(t) is determined self-consistently from the
quasilinear dispersion relationl
~2
1 Ye ( )
D,,, D = -%-—= (D, +D .}
k+k0 k—k0 2 czkg k+k0 k—ko
' (8)

2 - 22-2 J dp, KG,/3p,
x a3w + ymC w_y ’
p P K

Y2 W -kvz+1-yk

where «?mc2 is a (yet unspecified) energy scale factor, mp = (4ﬂnoe2/§m)l/2

eB/Ymc is the relativistic

is the relativistic plasma frequency, &C
. -3 -3 2 .

cyclotron frequency, a3»is defined by ag =y fdpzy vGO’ and ymc"~ is

the electron energy in the equilibrium wiggler field, where y is

defined by

y=\1+—55+ 3 . (9)



Moreover, the transverse dielectric functions Dkikocuk+iyk) appearing
in Eq. (8) are defined by

oL 2.2 2 2
Dk+kOQuk+1Yk) = (wk+1yk) c (k+k0) —alwp s

(10)

. _ N2 2 2 2
Dk_ko(mk+xyk) = (wk+1yk) c (k—ko) -alwp s

- -1
where a; Ty j dpzy “Gg. Note also that the effective susceptibility
defined by

dpz kaGO/sz
Y2 mk_kvz+lYk

loggting) = Factuly? J : (11)
occurs in the quasilinear dispersion relation (8).

The dispersion relation (8) determines the complex oscillation
frequency wk(t) + iyk(t) adiabatically in time as Go(ﬁz,t) evolves
in response to the amplifying field perturbations (Sec. 2.C).
Keep in mind that the derivation of Eq. (8) has assumed that the electron

beam is sufficiently tenuous that the Compton-regime approximation is

valid (5§¢ =0).

C. Quasilinear Kinetic Equations

To completéfthe quasilinear description%,Eq. (8) ég:sgpplemented

by coupled kinetic equations for the average distribution function

Go(pz,t) and the spectral energy density of the amplifying field

perturbations.l In particular, Go(pz,t) evolves according to

2 N 2
2= Gyto,t) = 2= [p6e,,0) o S0 ] (12)

K4



where the diffusion coefficient D(pz,t) is defined by

~ 3 2
N 116 l
D(p_,t) = 2redy’ [ =S i
2 A |k v, kv +iy,)
0 YO TRY, T

’ (13)

for Y > 0. Here, the normalized.spectral energy density ISHk(t)|2

evolves according to the wave kinetic equationl
) 2 _ 2
5T ISE [T = ©fsE |7, (14)

and |6Hkl2 is defined in terms of the perturbed vector potential by

) _
2 _k .
|8, (£) ] = lan(k+kO,t)+16Ay(k+ko,t)

(15)

. 2
+ 8A_(k-kg,t) - 16Ay(k—k0,t)| .

Equations (8) and (12) - (14) constitute a.closed description
of the quasilinear evolution of the system including wave amplification
[Eq. (14)], concommitant redistribution of particles in moméntum
space [Egs. (12) and (13)], and self-consistent modification of linear
growth properties [Eq. (8)]. A detailed derivation of the quasilinear
model is presented in Ref. 1, together with a discussion of general
properties of the kinetic equationms, conservation laws, etc. In this
tfegard, we note that the vector potential amplitudes in Eq. (15) carry

the correct physical dimensions, whereas the vector potential amplitudes

in Ref. 1 are defined in dimensionless form.
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3. QUASILINEAR EVOLUTION OF THE FREE ELECTRON LASER INSTABILITY

For the special case of weak, resonant instability satisfying
[Yk/wkl, lyk/kszl << 1, one of the principal conclusions in Ref. 1
is that the fast quasilinear process is plateau formation, with 8G0/8p2+0
in the resonant region of velocity space where v, = wk/k. That analysis
did not address the subsequent long-time quasilinear degradation of
beam energy and modification of Go(pz,t) that occurs after plateau
formation has taken place. 1In the present analysis, we investigate
the long-time quasilinear evolution of the system in fhe‘context
of a simple "water-bag' model where the distribution function Go(pz,t)

is assumed to have the rectangular form (Fig. 1)

ORI R ICN
Go(®,ot) = | (16)

0, [p,po(®)] > a(e)
Here, po(t) is the average momentum,
<p,> = [ dpzszO(pz,t) = po(t)-, (17)

and the half-width A(t) is related to the root-mean-square momentum

spread by

<(pz—<pz>)2>= f dpz(p2~<pz>)2G0(pZ’t) = % AZ(t) ' (18)

00
-0
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Note in Eq. (16) that the normalization is ffm dszO(pz,t) =1,
a property that is preserved by the diffusion equation (12). Also
note from Eq. (16) and Fig. 1 that Go(pz,t) is flat (independent of
pz) over the interval po(t) - A(t) < p, < po(t) + A(t), and equal to
zero outside of this interval.

The self-consistent evolution of po(t) and A(t) is determined
by taking the éppropriate momentum moments of the quasilinearvkinetic
equation (12) corresponding to Eqs. (17) and (18). For example,
multiplying Eq. (12) by P, and integrating over P, gives

P G

- [ °20
3t Po(t) = f_m dp, D °p, (19)

where

3G, 1 f |
55;'= EZTET'{S{PZ = [pg(0)-a(e) 1} - é{p, - [Po(t)+A(t)]}} (20)

follows from Eq. (16). It is convenient to define the energy and

axial velocity corresponding to P, = po(t) + A(t) by

9 1/2
o232 [py(t)ta (v)] _
Yp(8) = 41+ —Ho5* 22 ‘ (21
mec k m-c
0
and
po(t)a ()
v (£) = ——5— (22)

Yi (t)m

Then, substituting Eqs. (13) and (20) - (22) into Eq. (19), readily gives

.

. : 2
d (t) = QQﬁez_z e llde,
de Pot™) T THEY A kg % 2 (t)
(23)
1 1

x - -

2 , 2 ,
Y_«uk-kv_+1yk) : y+(wk—kv++xyk)
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which describes the evolution of po(t) in response to the amplifying
field perturbations; Moreover, makingfuse of Egqs. (12) and (18) gives

for the evolution of A (t)

d d ® 3Gy
b ® $ra = -3 Sage =3[ wpp=l.

Substituting Egs. (13), (20), and (23) into Eq. (24), we obtain

dt

C N2 e (2
C)Z | 68, |
0

d 222
A(e) = bre’y (ck TNCS

(25)
x 3 L +2 1
Y~(wk—kv—+iYk) y+(mk-kv++iyk)

Equation (25) describes the quasilinear evolution of A(t) in response
to the amplifying field perturbations. In addition to the wave kinetic
equation (14) for IGHklz, the remaining equation in the quasilinear
description is the dispersion relation (8). Substituting Eq. (20)

into Eq. (8) gives.

v 2
1 c
-3 [D

+D ]
0 0 c kg k+k k-k

0 0
7 (26)

2, 2 22 1 1 ] }
*{o3w 28] 2 oy 2 : ’
3p P A yZ (wy —kv_+iy, ) vy (W kv, +Hy, )

which determines the complex oscillation frequency wk(t)+iyk(t)

in terms of A(t), Yi(t)’ Vi(t) and other system parameters.

To summarize, for the choice of rectangular distribution function
in Eq. (16) (so-called "water-bag'" model), the self-consistent
quasilinear evolution of the electron beam and radiation field is

described by the closed system of coupled nonlinear equations:
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Eq. (23) for the average momentum po(t); Eq. (25) for the. momentum
spread A(t); Eq. (14) for the spectral energy density lGHklz; and

Eq. (26) for the complex oscillation frequency wk(t) + iyk(t).

Equations (14), (23), (25) and (26), of course must be supplemented by

the definitions of Yi(t) [Eq. (21)], Vi(t) [Eq. (22)], Dkiko [Eq.

and lsHklz [Eq. (15)]. For specified initial conditions, Eqs. (14),

(23), (25), and (26) can be used to calculate numerically (Sec. 4)

the self-consistent evolution of po(t), A(t), and the amplifying wave

spectrum.

Finally, the dispersion relation (26) can be used to simplify

the expression for dpo/dt in Eq. (23). Dividing Eq. (26) by (Dk+k +D
0

[~ ]
and multiplying by Z (i/k)[GHklz... gives

k==

1]5Hk| k+k Pi-kq

k (D .
k et Pk
2 2
__1l:3,.22 1] oH, |
2 p ko r 2A
1 1

2 . 2 .
y_(wk-kv_+1yk) Y+(wk—kv++1yk)
Combining Egs. (27) and (23) readily gives

. 2D . D
if6H, |© Ttk k-k,

d
n, 5= pa(t) = z
0 dt "0 kcz (Dk+kO+D

]

k-kg’

(10)1,

k-k

(27)

(28)

for dpo/dt. Making use of the conjugate symmetries Dk (w_k+iy_k) =

0
* . . _ ¥ ; =
Pite, WY1 Premiey ool = P NI > 070

the k-summation in Eq. (28) can be further simplified to give

and Yo =

Yk.’

0

)
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d . _ 2 “k'k
By gt Po(®) = 'zé |68, | 7
(29)
2, 2
{|D |+ |p,_, |}
] Ktk k-k,
2 ’

|D +D,_, |
k+ko k ko

which is exactly equivalent to Egqs. (23) and (28). Replacing Eq. (23)
by Eq. (29), the numerical analysis in Sec. 4 is based on the coupled

quasilinear equations (14); (25), (26), and (29)..
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4., NUMERICAL RESULTS

A. Introduction and Definitions

The coupled system of nonlinear equations (14), (25), (26), and (29)
have been solved numerically for a broad range of system parameters.
In this section, we summarize typical numerical results for both
moderately high-energy and low-energy electron beams. In this regard,
it is convenient to introduce the notation

ng- pg(t) 1/2
1+ - 25" 53 . (30)

mc

NID

Yo(t)

From Eqs. (9), (17), and (30), it is evident that Yo(t)mc2 corresponds
to the energy of an electron moving with the average axial momentum
po(t) of the electron beam. In addition, we take the (heretofore
unspecified) energy scale factor \-(mc2 that occurs in the quasilinear

equations and related definitions to be equal to the initial value of

Yo? i.e.,
; = yo(t=0) . (31)

The corresponding average axial velocity Vb of a beam electron at t=0

is given by
vV, & —— . (32)

For future reference, as a useful estimate of where the free
electron laser radiation spectrum is excited, we consider the dispersion

relation (26) at t=0 in the limiting case of a "cold" electron beam

with 4+0. For right-circularly polarized electromagnetic waves with
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Dk—k = 0, strong interaction between the beam electrons and the radiation
0

field occurs in Eq. (26) for frequency and wavenumber (ws,ks) satisfying

the simultaneous resonance conditions

(33)

For a tenuous electron beam with a1m§ << czki, the uﬁéhifted (high-

frequency) branch in Eq. (33) satisfies wy = c(kS—kO) and wy = kSVb-

'sglving f??uks tPén.géygs kS_?;KOZSITVb{C)’ or equivalently,

-2
v (148,)

K = ————L ok, (34)
s l+y2&i/c2kg 0

2

where'Bb = Vb/c, o = eﬁ/?mc; and use has been made of l—Vi/c =

;_2 + &i/czkg. For sufficiently small wiggler amplitude that ;z&i/czkg << 1,

c

Eq. (34) gives the familiar result ké = ;2(1+Bb)k0" For example,

for y=10, §,=1 and ;z&i/czkg << 1, Eq. (34) gives k_ = 200 k. On
the other hand, for v=10, Bb=l and ;z&i/czkg = 0.773 (the parameters
chosen in Fig. 2), Eq. (34) gives ks = 113 ko.

A further important definition relates to the total electromagnetic

field energy density

2 2
|58, |7 + |6B,]
8m :

€.(t) = 1z(é’km =1 (35)

k
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Defining
+ o
GA-k. = (SAX(k-’t) * l(SAy(k,t) ’ ’ (36)

some straightforward algebra shows that,gkﬁt) can be expressed as

1
2

€ (t) =
< 16wc

{|6A1+k0|2[lwk+iykf2 + c2(k+k0)2]
(37)

_ 2
tloh | [oriy, |2 + cz(k—ko)z]} :

Moreover, the vector potential amplitudes occurring in Eqs. (15) and

(36) are related byl

+
Pty Pkl

- D >
SAkrkO k+ko

(38)

kiko is defined in Eq. (10).

Also of interest is the average GQxSQ power flow in the z-direction

where D
defined by
c Ldz T
P(t) = e _L.EE (QEXSE)Z = ﬁ Pk(t) . : (39)

Here, Pk(t) can be expressed asl

) 2
P (8) = g7 {(k+k0)wkl6Alt+kol
(40)

-2
+ (k—-kO)wk|6Ak-kO| } :
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In the numerical analysis in Sec: 4.c, we specify the input

spectrum Pk(t=0), and make use of Eqs. (14), (25), (26), and (29)

to foll;w the nonlinear evolution of the system. |
Finally, for small initial momentum spread with A (0Q) << pO(O),

the initial beam kinetic energy density is approximately (?—l)nomc .

We therefore define the dynamic (time-dependent) efficiency of radiation

generation n(t) by

€. (t) - €_(0)
n(e) = ———— (41)
no(y—l)mc

where é%(t) is defined in Eq. (35). Assuming that the field energy
density saturates at some level,gF(w) as t>o, the net efficiency of

radiation generation (denote by fj) is given by

A=) . (42)

Finally, we remind the reader that the vector potential amplitudes
occuring in Eqs. (36) - (40) have the correct physical dimensions,
whereas the vector potential émplitudes in Ref. 1 are defined in

dimensionless form.
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B. Linear Growth Properties

Before analyzing the quasilinear development of the system predicted
by the coupled nonlinear equations (1l4), (25), (26) and (29), it is usefui
to make use of the dispersion relation (26) to inveétigate (parametrically)
the linear stability properties for the choice of rectangular distribution
function in Eq. (16). Typical numerical results are illustrated in Figs.

2 -~ 4, 1In Figs. 2 and 3, the systém parameters are chosen to be Y = 10,
wi/czkg = 1.6 % 10-'3 and ai/czkg = 7.73 x 10_3, corresponding to a tenuous
electron beam with moderate energy. Figure 2 shows plots of the normal-
ized growth réte Yk/koc versus k/kO obfained from Eq. (26) for a wide
range of normalized momentum spread A/po. Evidently, for very narrow
momentum spread (A/p0 =.3 X 10-4, say), the instability growth rate is

broadband with maximum growth rate centered near ks/k = 113, as esti-

0
mated from Eq. (34). On the other hand, as A/pO is increased, we note
from Fig. 2 that there is a downshift in wavenumber corresponding to maximum
growth. Moreover, the maximum growth rate and the instability band-
width decrease substantially as A/pO is increased to the several percent
range. This is further illustrated in Fig. 3, where Eq. (26) has been
used to obtain plots of (Yk/koc)MAX (normalized maximum growth rate),
(k/kb)MAX (normalized wavenumber at ﬁaximum growth), and (Ak/ko)
(normalized width of Yy 3t half maximum) versus A/po, for A/pO ranging
from 10_4 to 0.3.

Figures 2 and 3 already give some indication of the qualitative
features of the quasilinear evolution of the system that we can expect

froﬁ a detailed analysis of the nonlinear coupled equations (14),

(25), (26) and (29). For example, as the wave spectrum amplifies
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[Eq. (14)], there will be a concommitant increase in A(t)/po(t)
[Eqs. (25) and (29)]. Dynamically, this will result in a downshift
in the growth rate curve Yk(t) to lowerwk—values, ngrrower bandwidth,
and smaller growth rates.

Finally, in Fig. 4, we make use of the dispersion relation (26)
to calculate linear stability properties for the choice of parameters
Y = 1.3, wg/czkg 3 and &z/czkz = 2,25 x 10'3, and A/po

= 5.99 X 10~ 0
ranging from A/po = 0.2 x 10"

2 to 10-2. Here, the beam energy is rela-
tively low in comparison with Figs. 2 and 3. As expected from Eq. (34)
the maximum growth rate occurs for ks/k0 = 2.9, As in Figs. 2 and 3,

the instability bandwidth Ak/k0 decreases as A/p0 is increased. However,
for the choice of parameters in Fig. 4, A/pO has not been increased to

large enough values to show a noticeable downshift in the k-value for

maximum growth rate.

C. Quasilinear Evolution

The coupled nonlinear equatioms (14), (25), {26) and (29)have been
solved numerically to determine the self-consistent quasilinear evolution
of the wave spectrumllde(t)lz[Eq. (14) ], the momentum spread A(t)

[Eq. (25)], the mean momentum po(t) [Eq. (29) ], and the complex oscil—
lation frequency wk+iYk [Eq. (26) ] for a wide range of system parameters.
Typical numerical results are illustrated in Figs. 5-8 both for moderate
beam energy (Y = 10 in Figs. 5-7) and for low beam energy ¥y = 1.3 in
Fig. 8). In Figs. 5-8, the time t is measured in units of

o -0
0 ¢ ke
0

(42)

b
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which is the time required for a light pulse to transverse one wiggler
~wavelength AO = 2w/k0. In addition to specifying values for wﬁ/czké,
Y = Yo(t = 0), Po(t = 0) and A(t = 0), we specify the initial power

spectrum

Pk(t = 0)

as input data to the coupled nonlinear equations (14), (25),

(26) and (29). 1In all cases (Figs. 5—8), the initial power speétrum

Pk(t =0) is assume@ to be flat and non-zero over a finite bandwidth

of wavenumber k, and .equal to zero outside of this range. In particular,
in Figs. 5, 6 and 8, the initial power spectrum Pk(t =0) is taken to

be non-zero for the range of wavenumber k exactly overlapping with

the region where the initial growth rate satisfies Yk(O) > 0 [compare
Figs. 5(e), 6(e) and 8(e) with Figs. 5(a), 6(a)_and»8(a)]. On the other
hand, in Fig. 7, the bandwidth of the initial power spectrum P (t =0)

is taken to be twice the width of the region where Yk(O) > 0 [compare

Fig. 7(e) and Fig 7(a)]. 1In all cases (Figs. 5-8), the value of Pk(t ="0)
is equal to IOOkW/cm2 in the region of k-space where the initial power
gpectrum is non-zero. Moreover, in the numerical énalysis, thé amplifying
spectrum is divided into fifteen discrete k-values in Figs. 5, 6 and 8,
and into thirty discrete k—valﬁes in Fig. 7.

We now describe the quasilinear evolution of the system, beginning

with Fig. 5 where Y = 10, wﬁ/czkg = 1.6 x 1.072, &Cz/czkg = 7.73 x107
and (A/po)t=O = 10_2. The initial power spectrum Pk(t = 0) is non-zero

over the interval 107.75 < k/k0 < 113.25 [Fig. 5(e)] where the initial
growth rate satisfies Yk(t = 0) > 0 [Fig. 5(a)]. Solving the coupled
nonlinear equations (14), (25), (26) and (29),‘it is found that the
field energy €j¢t) amplifies [Fig. 5(d) and Eq. (14)], which leads to a

decrease in the mean electron energy Yo(t)mc2 [Fig. 5(b) and Eq. (29)], an
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increase in the momentum spread A(t) [Fig. 5(c) and Eq. {25)}, and a con-
commitant shift in the unstable region of k—spaée where kk > 0 to lower values
of wavenumber [Fig. 5(a) and Eq. k26)].‘ Indeed, by t/T0 = 25 in Fig. . 5(a),
the growth rate has decreased considerébly and Yk has downshifted
sufficiently far in k-space that the region where Yk(t = 25TO) >0

no longer overlaps the region where the initial power spectrum Pk(t = 0)

is non-zero [Fig. 5(e)]. Consequently, the wave spectrum saturates by
t/TO = 25 [Fig 5(e)], and YO’ A and €f approach their asymptotic .

values [Figs. 5(b)-5(d)]. Moreover, the dynamic efficiency n(t),

which is defined in Eq. (41) and plotted versus t/TO in Fig. 5(f),
approaches the value f) = 1.1%. For the parameters chosen in Fig. 5,

we note that the free electron laser instability is relatively weak, as
manifest by low growth rate [Fig. 5(a)], the small amplificatioh of

the wave spectrum [Fig. 5(e)], and the low efficiency ﬁ [Fig. 5(£)].
Moreover, during the stabilization process, Yo(t)mc2 decreases by about

0.5% [Fig.5(b)], and A(t)/p0 increases from 1% at t = 0 to 2.5% at

t = 25TO [Fig. 5(e)].
As an example corresponding to stronger instability, still with
Y = 10 and (A./po)t=o = 10—2, in Fig. 6 the normalized beam density and

wiggler strength are increased to w;/czkg = 8 X 10_3 and Qi/czké = 38.6 X 10_3.

Comparing Fig. 6 with Fig. 5, it is evident that the instability
growthﬁrate is considerably larger [Fig. 6(a)] and the wave spectrum
amplifies to a much higher level [Figs. 6(d) and 6(e)]. Correspondingly,
there is a larger decrease in Yo(t)mc2 [Fig. 6(b)] and a larger increase
in A(t)/p0 [Fig. 6(c)], with the efficiency approaching fi = 3.3%

in Fig. 6(f). With the larger initial growth rate in Fig. 6(a), the
stabilization process in Fig. 6 occurs on a faster time scale than in
Fig. 5. Indeed, by t/T0 = 16.5 in Fig. 6(a), the growth rate Vi

has downshifted sufficiently far in k-space that the region where
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yk(t = 16.5T0) > 0 no longer overlaps the region where the initial

power spectrum Pk(t = 0) is non-zero [Fig. 6(e)], Therefore, by t/T0 = 16.5,
the wave spectrum saturates [Fig. 6(e)], and YO’ A and.€F approach their
asymptotic values [Figs. 6(b)-6(d)]. For the parameters in Fig. 6,
we note from Fig. 6(c) that the normalized momentum spread A(t)/pO
increases from 1% at t = 0 to 6.5% at t = 16.5TO.
Another way to augment the energy extracted from the electron beam
is to increase the width of the input power spectrum Pk(t = 0).‘ This
is illustrated in Fig. 7 for the choice of éystem parameters Y = 10,
2 3 2.2

~2 _ Y 13 _
0 » O /e ky =7.73 X 10 ~ and (A/po)t=0 =

from Fig. 7(a) that the initial growth rate satisfies Yk(t=0) > 0 for

wi/czk =8 x 10 1072, Note
k-values in the range 105 <”k/k0 < 120, whereas the initial power
spectrum Pk(t = 0) in Fig. 7(e) is assumed to be non-zero over the wider
interval 91 < k/kO < 120. Therefore, the interaction time of the
electron beam with the amplifying wave spectrum is prolonged because
the waves continue to grow beyond the time when Yk ceases to overlap with
the rggion where Yk(t = 0) > 0. Indeed, from Figs. 7(a)-7(f), the system
continues to evolve dynamically until t/TO = 107, when the growth rate
Yk ceases to overlap with the region of’k—space.where the iﬁput power
spectrum Pk(t = Q) is non-zero [Figs. 7(a) and 7(e)]. During this
process, the beam energy Yo(t)mc2 decreases [Fig. 7(b)], the ﬁomentum
spread A(t) increases [Fig. 7(c)], the field energy and wave spectrum
amplify and saturate [Figs. 7(d)vand 7(e)], and the efficiency approaches
f = 5.6%.

As a final numerical example, in Fig. 8 we consider a low—egergy
electron beam with vy = 1.3, w;/czké 3, Qi/czkg = 2.25 X 10'3,
and (A/po)t=0 =5 X 10—3. In this case, the upshifted wavenumber is

= 5,99 X 10
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relatively small with maximum initial growth rate occurring for

ks/ko ~ 2,75. From Figs. 8(a)—8(f), the general features of the
evolution of Yo(t), A(t), E}(t), Pk(t) and n(t) are qualitatively
similar to Figs. 5 and 6. For the parameters chosen in Fig. 8, the
stabilization process is completed by t/TO = 31.5, when the growth
rate Y, [Fig. 8(a)] ceases to overlap with the region in k-space where
the initial power spectrum Pk(t=0) is non-zero [Fig. 8(e)]. From

Fig. 8(f), we find that the efficiency approaches fi = 5.3% for the

choice of system parameters in Fig. 8.

Finally, we remind the reader that parameters such as ws/czkg,
Qi/czkg, etc., in the analysis in Sec. 4, are dimensionless. To pro-

vide a quantitative estimate of beam density, wiggler strength, etc.,
we choose (as an example) a wiggler wavelength AO = 6,28 cm cor-
responding to ko =1 cmfl. Then, for example, the system parameters

for Fig. 5 correspond to

Y =10; A, = 6.28 cm; As = 315 microns;

_ 0
A ' 9 -3 . 2
B =1.5K6; ny = 4.5% 107cm 5 J, = InOeVbI = 21.6 A/cm”,

where AS = (1 - Vb/c)}\O [Eq. (34)]. On the other hand, for Fig.8,

the system parameters are’

Y = 1.3; AO = 6.28 "cm; XS = 2.3 cm;

= 2.2 % 109cm—3; J =6.7 A/cmz,

B=105G; n .

0

which still corresponds to a relatively tenuous beam.
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5. CONCLUSIONS

In the present analysis, we héve investigated the long-time
quasilinear evolution of the free electron laser instability for a
tenﬁous relativistic electron beam propagating perpendicular to a
helical wiggler magnetic field. Following a summary of the quasilinear
modell and assumptions (Sec. 2), we specialized to the case where the
average distribution function Go(pz,t) is assumed to have a rectangular
form in momentum space [Eq. (;62 and Fig.l]. Coupled nonlinear equations
are derived (Sec. 3) which describe the selfjconsistent evolution of
the mean electron momentum po(t) [Eq. (29)], the‘momenfum spread
ACt) [Eq.‘(?S)]; the amplifying spectrum ICSHk(t)I2 [Eq. (14)], and the
complex oscillation frequency wk(t)+iYk(t) {Eq. (262]. These coupled
equations are solved numerically (Sec. 4) for a wide range of system
parameters, assuming that the input power spectrum Pk(t = 0) is flat
and non-zero fﬁr a finite range of wavenumber k that overlaps with the"
region of k-space where the initial growth rate satisfies Yk(t = 0) > 0.
To summarize the qualitative features of the quasilinear evolution
(Figs. 5-8), as the wave spectrum amplifies it is found that there is a
concommitant decreaée in the mean electron energy Yo(t)mcz, an increase
in the momentum spread A(t), and a downshift of the growth rate Yk(t)
to lower k-values. After éufficient time has elapsed, the growth rate
Yk has downshifted sufficiently far in k-space that the region where
Yk(t) > 0 no longer overlaps the region where.the initial power
spectrum Pk(t.= 0) is non-zero. Therefore, the-wave spectrum
saturates; and Yo(t) and A(t) approach their asymptotic values.

It is found that the efficiency of energy extraction from the electron
beam is enhanced by: (a) increasing fhe beam density (wz/czké),

2
(b) increasing the wiggler field strength (@c/czké), (c) decreasing
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the initial momentum spread (A/po)t=0, and (d) increasing the width

of the input power spectrum Pk(t = 0). TFor the cases studie& in Sec. 4,

the net efficiency of radiation generation (fi) was relatively low (several percer
Nonetheless, by appropriate choice of system parameters, the output power

easily reaches the five MW/cm2 range (Figs. 6-8), amplifying from an initial
level of Pk(t = 0) = 100 kW/sz.

Finally, for the quasilinear model to be valid, it is necessary that

the amplifying wave spectrum be sufficiently broad in k-space that the
autocofrelation time for the waves (Tac) be short iﬁ comparison with the
characteristic timescaiefor quasilinear relaxation (Trel).l We estimate

-1 -1
T o~ IA(wk - kvz)l ~ I(c - Vb)Akl , where V

a =.P0(t=0)/7ﬁ is the average

b
beam velocity, and Ak is the characteristic width of the amplifying

. S | N
k—spectrum.. We also estimate el by Tral ™ 2(Yk)MAX’ corresponding to

a few maximum growth times. Then, the inequality Tac < <.Trel can be

Y
K { Ak
'<ck >MAX << 2'<k )’ (43)
0 : s )

where ks = kﬂ/(l—Vb/c) is the characteristic wavenumber at maximum growth. .

expressed as

That is, the wave spectrum must be sufficiently broad and the growth rate
sufficiently weak in order for the quasilinear model in Secs. 2 - 4 to Be
valid, and for coherence effects (such as particle trapping in the pénder—
motive potential) to be unimportant in the nonlinear evolution of the
system. Inspection of the numerical results in Figs. 5 - 8 readily shows
that the inequaliﬁ?mih Eq. (43) is satisfied (to within a factor of ten

or more) for the range of system parameters investigated in Sec. 4.
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In conclusion, it has been noted that the efficiency of radiation
generation is typically in the several percent range, at least within the
present quasilinear model yhich assumes an oscillator configuration
(temporal growth) with constant wiggler amplitude E = const. One way
to increase the éfficiency is to '"time-taper'" the magnetic wiggler
amplitude B in such a way that the region of instability (Yk > 0)
continues to overlap with the region where the input power spectrum
Pk(t=0) is non-zero. Tq illustrate with a simple model, consider the
case where the momentum spread A is sufficiently small that kS o ko(l—Vz/c)—v
~ is a good estimate of the wavenumber at maximum growth. Here Vz(t) = |
po(t)/YO(t)m is the axial beam velocity. Evidently, a decrease in beam
velocity AVz causes a downshi?t in ks-by an amount Aks = (1 - Vz/c)-zAVz.
Moreover, the velocity changg AVZ is related to the momentum change

Apo and energy change Ayo by’AVZ = (Yomc)—l[Apo - pOAYO/YO]. Therefore,

making use of yg =1+ ezﬁz/m2c4kg + pg/mzcz, where B(t) is allowed to
vary, we obtain YOAYO = ezﬁﬁh/mzcaké + pOApolmzcz, and find that AVz
can be expressed as
2
D 22 N
AV = Ic l-t—g——z—-z— AYO--EI—E e—-]i'z——[-:—z-AB. (44)
z P Yom'e Po vy ek,

Because Aks = (1 - Vz/c)_zAVz}‘in order to prevent a downshift in ks

(i.e., maintain Aks ~ 0), we allow B to vary in such a manner that AVZ =0

in Eq. (44). Defining a, = eﬁ/mczko, and making use of the definition

a=] A 2 -
of YO’ the condition AVZ = 0 can be expressed as aiB 1AB = (1 + aw) YolAy,

or in terms of the time derivatives of ﬁ and YO’
ﬁ 1+ aw 1 dYO

1 4d .
B de 2 v. dt (45)
W

I
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Equation (45) can be interpreted as follows. As the wave spectrum amplifies
there is a corresonding (quasilinear) decrease in Yo(t). If, in addition, the
temporal evolution of the wiggler amplitude B is taylored in such a way

that Eq. (45) is satisfied, then the beam velocity Vz remains unchanged

(AVz = 0), and there is no downshift in kS(AkS = 0). The sustained

overlap of Yk(t) with the input power spectrum will then lead to

higher efficiencies. Equation (45) is the temporal analogue of spatial-
tapering of the magnetic wiggler for the case of an amplifier (spatial

growth).
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5
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FIGURE CAPTIONS

Plot of Go(pz,t) versus P, for the choice of rectangular

distribution function in Eq. (16) .

Plot of normalized growth rate Yk/koc versus k/kO obtained

from Eq. (26) for ¥ = 10, ws/czkg = 1.6x1073,
Qp/czkg = 7.73 % 10_3, and several values of A/po.

Plots of normalized maximum growth rate, (Yk/koc)MAX, normalized

wavenumber at makiumum growth, (k/kO)MAX, and normalized

width of Y, at half maxiumum,~Ak/k0, versus A/p0 obtained

from Eq. (26). for Y = 10, ws/czk2 = 1.6 X 10_3 and

0
L’Gi/czkg = 7.73 x 1073,

Plot of normalized growth rate Yk/k c versus k/k_. obtained

0 0
from Eq. (26) for y = 1.3, wslczkg = 5.99 x 1073,
~2, 2 2 ~3
wc/c kO = 2.25 X10 ~ and several values of A/po.

Quasilinear time development determined from Eqs. (14). (25),

— ’ 2 -
(26) and (29) for ¥ = 10, w;/czk = 1.6 x 1073

0 >
2 2

wc/c ko = 7.73%x10 ~ and (A/po)t=0 10 . Shown are plots

of (a) normalized growth rate Yk(t)/koc versus k/ko,
(b) mean electron energy Yo(t) versus t/TO, (¢) normalized

momentum spread A(t)/p0 versus t/T (d) normalized field

0’
energy €F(t)/ €F(O) versus t/TO, (e) power spectrum

Pk(t) versus k/ko, and (f) dynamic efficiency n(t) versus

2 ,
t/T.. The input power is Pk(t = 0) = 100kW/cm™ over the interval

0
107.75 < k/k0 < 113.25 [Fig. 5(e)].



Fig. 6

Fig. 7
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Quasilinear time development determined from Eqs. (14),

§= 8 x 1073,

2,22 -3 -2
wc/c ko = 38.6 X 10 ~ and (A/po)t=O = 10 7. Shown are

(25), (26) and (29) for T = 10, ws/czk

plots of (a) normalized growth rate Yk(t)/koc versus
k/ko, (b) mean electron energy Yo(t) versus t/T,,
(¢) normalized momentum spread A(t)/pO versus t/TO,

(d) normalized field energy €F(t)/€F(O) versus t/TO,

(e) power spectrum Pk(t) versus k/ko, and (f) dynamic

efficiency n(t) versus t/TO. The input power is Pk(t=0) =

' -2
100kW/cm” over the interval 36.75 < k/kO < 53.25 [Fig. 6(e)].

Quasilinear time development determined from Eqs. (14),

(25), (26) and (29) for y = 10, ws/czké -8 x 1073,

Qz/czk2 =7.73 x 10_'3 and (A/p.) = 10_2 Shown are plots
c 0 ' 07 t=0 '

of (a) normalized growth rate Yk(t)/koc versus k/ko, ()

mean electron energy Yo(t) versus t/TO, (c) normalized

momentum spread A(t)/pO versus t/To, (d) normalized field

energy €F(t)/ €F(O) versus t/TO, (e) power spectrum Pk(t)

versus k/ko, and (f) dynamic efficiency n(t) versus t/TO.

The input power is Pk(t = 0) =,1ookW/cm2 over the interval

91 < k/k, < 120 [Fig. 7(e)].
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Quasilinear time development determined from Eqs. (14). (25),

(26) and (29) for Y = 1.3, ws/czkcz) = 5.99 x 1073,
A2 2 2 - _3 - "'3
wc/c ko = 2.25 x 10 ~ and (Apo)t=0 = 5 x 10 ~. Shown

are plots of (a) normalized growth rate Yk(t)/koc versus
k/ko, (b) mean electron energy Yo(t) versus t/TO,
(c) normalized momentum spread A(t)/pO versus t/TO,
(d) normalized field energy €F(t)/ €F(0) versus t/TO,
(e) power spectrum Pk(t) versus k/ko; and (f) dynamic
efficiency n(t) versus t/TO. The inpuﬁ power is

Pk(t) = lOOkw/cm2 over the interval 2.68 < k/k0 < 3.45

[Fig. 8(e)].
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