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ABSTRACT

The cold.-fluid extraordinary-mode eigenvalue equation is solved numerically

to determine the influence of equilibrium profile shape on the detailed stability

properties of relativistic nonneutral electron flow in a planar diode with

cathode located at x=O and anode at x=d. Stability properties are investigated

for the class of equilibrium energy profiles Yb(x) specified by

[1-a (b2_ 2 1/2

Yb(x) = Xcosha1x + (1-X) 2 2 1/2
[1-a 2b I

over the interval O<x<b. Here, ol and o2 are constants (with a2 b 2<1), x=b is

the outer edge of the electron layer, and X is a constant parameter in the range

of O<X<l. The corresponding equilibrium profiles for B z(x), n b(x) and E (x) are

determined self-consistently from the steady-state (3/3t=O) cold-fluid-Maxwell

equations. As the parameter A is varied from unity to zero there is a large

change in the equilibrium profile for nb(x)/Yb(x), ranging from nb(x)/Yb (x)=const.

over the interval O<x<b when X=l, to monotonic decreasing profiles for nb(x)/Yb(x)

when X<l. The numerical analysis of the extraordinary-mode eigenvalue equation

shows that the detailed stability properties are very sensitive to the shape of

the equilibrium profiles. As A is reduced from unity, and the profile for

nb (x)/yb(x) becomes monotonic decreasing, it is found that the instability growth

rate Imw is reduced. Moreover, the greater the monotonicity of nb(x)/Yb(x) (i.e.,

the smaller the value of A), the more the growth rate is reduced. Indeed, in

some parameter regimes, the instability growth rate can be reduced to zero over

the range of wavenumber k examined numerically.
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I. INTRODUCTION AND SUMMARY

There is a growing literature1-8 on theoretical studies

of the equilibrium and stability properties of sheared, non-

neutral electron flow in cylindrical and planar models of high-

voltage diodes with application to the generation of intense

charged particle beams for inertial confinement fusion.9'10

These analyses1-8 have represented major extensions of earlier

work 1 1 1 8 to include the important influence of relativistic,

1-4 5 6 7,8electromagnetic, cylindrical, nonlinear, and kinetic7 '

effects on equilibrium and stability properties at moderately

.1-high electron density. The majorityl-6 of these recent studies

have been based on macroscopic cold-fluid models, largely for

reasons of analytical and numerical convenience. In the present

article, we make use of the extraordinary-mode eigenvalue equa-

tion derived in.Ref. 1 to investigate the stability properties

of relativistic, sheared, nonneutral electron flow in a high-

voltage diode with applied magnetic field B0  (Fig. 1).

Particular emphasis is placed on determining the sensitivity

of detailed stability properties to the shape of the equilibrium

profiles for density nb(x), energy yb(x)mc 2, flow velocity V (x)=

-cE (x)/Bz (x), etc.

To briefly summarize, the equilibrium and stability

analysis (Secs. II and III) is based on the cold-fluid-Maxwell

equations for extraordinary-mode field perturbations (6E , 6E ,

6Bz) in the planar diode configuration illustrated in Fig. 1.

The cathode is located at x=0, the anode is located at x=d,

and the equilibrium density profile nb(x) extends from x=0

I
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(the cathode) to x =b (the edge of the electron layer). Space-

charge-limited flow with E (x=0)=0 is assumed, and the equilibrium

magnetic field B (x) in the vacuum region (b<x<d) is equal to

the externally applied magnetic field B0 =const. All of the

equilibrium quantities nb(x), Yb (x), E (x), Bz (x), and V (x)

-cE (x)/B (x) of course are related self-consistently through

the Maxwell equations (3) and (4) [see also Eqs. (1), (2) and

(5) - (9) ] .1-4

In the numerical analysis (Sec. III) of the extraordinary-

mode eigenvalue equation (12), it is assumed that the equilib-

rium profile for yb(x) =[1 - (x)/B (x)]-1/2 is of the form

(Eq. (16)]

[l -a 2 (b2 _ 2 1/2

Yb (x) = Xcosha x + (1 - X) -2 1/2
[1 -a2 b'

over the interval O<x<b. In Eq. (16), a1 and a2 are constants

(with a2 b 2<1), and X is a constant parameter in the range

0<A<l. Note from Eq. (16) that Yb(x) increases monotonically

from Yb(o) =1 at the cathode (x= 0) to Yb(b) =Xcosha 1b+ (1 -

X)[l- a 2 b ] -1/2 at the edge of the electron layer (x= b). The

corresponding self-consistent profiles for B (x), nb (x) and

E (x) are determined from Eqs. (7) - (9).

As the parameter A is varied from zero to unity, there is

a large change in the shape of the density profile nb(x) [Fig. 2].

For example, for X=l, it is found that n b(x)/Yb(x) =const. over

the interval O<x<b [Eq. (21)], corresponding to a density pro-

file nb(x) that increases with increasing x. On the other hand,
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for A<l, it is found that nb(x)/Yb (x) is monotonic decreasing

over the interval O<x<b. Indeed, for X=O, the equilibrium den-

sity profile satisfies nb(x)=const. over the interval O<x<b

[Eq. (25)], corresponding to a density profile nb(x) that is

constant out to the edge of the electron layer (x=b).

The analysis in Sec. III shows that detailed stability

properties are very sensitive to the shape of the equilibrium

profiles [Figs. 3-9]. To briefly summarize, for the cases

studied in Sec. III, it is found that A=1 corresponds to the

strongest instability for fixed values of yb(b), bw,/c, 9 and

dwc/c. Here, c= eB0/Yb(b)mc is the relativistic cyclotron

- 2 1 2
frequency, and § 4 nbe /Yb (b)mwc is a measure of the average

b
density nb= f(dx/b)nb(x). On the other hand, as X is reduced

from unity, and the profile for nb(x)/Yb (x) becomes monotonic

decreasing, it is found that the instability growth rate Imw is

reduced. Indeed, in some parameter regimes, the instability

growth rate can be reduced to zero over the range of wavenumber

k examined numerically in Sec. III.

We conclude that detailed stability properties exhibit

a very sensitive dependence on profile shape. Evidently, the

greater the monotonicity of nb (x)/Yb(x) (i.e., the smaller the

value of X), the more the growth rate is reduced. On the other

hand, for fixed values of yb(b), dwc/c, and 9bwc/c = const., it

is found that the real oscillation frequency Rew is relatively

1-3
insensitive to profile shape. As in previous studies, the

growth rate Imw tends to decrease as the average electron

density (9) is reduced.
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II. SUMMARY OF THEORETICAL MODEL

We consider relativistic electron flow in the planar diode

configuration illustrated in Fig. 1. The cathode is located at

x= 0 and the anode is located at x= d. The equilibrium and

stability analysis is based on the macroscopic cold-fluid-

1-4Maxwell equations assuming negligibly small electron pressure.

A. Equilibrium Properties

Denoting the steady-state (3/3t= 0) electric and magnetic

fields by x( ) = E (x)^ and (g) = B (x)z, the equilibrium

x 2flow velocity is in the y-direction with

E (x)
V (x) =- c (1)
y B Z(x)

where c is the speed of light in vacuo. Moreover, in equi-

librium, the relativistic mass factor yb(x) of an electron

fluid element can be expressed as

E (x) -1/2
Y 2 - (2)
b[ 

B (x)]
z

in the region where the equilibrium electron density nb(x) is

non-zero. In the present analysis, it is assumed that the

electron density nb(x) extends from x=0 (the cathode) to

x=b (the outer edge of the electron layer). The region between

x= b and x= d is a vacuum region, where B (z) =B =const. is
z 0

the externally applied magnetic field. Of course, the equi-

librium electric and magnetic fields, E (x) and Bz (x), must be

determined self-consistently from Maxwell's equations,
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E (x) = -4renb (x), (3)x xb

and

B (x) 4 4Tre WVW(4)
Bz c nb y

where -e is the electron charge, and V =-cE /B . For present

purposes, we assume space-charge-limited flow with E (x =0) = 0,

c0 (x =0) =0 and $0 (x =d) = V. Here, V is the voltage at the

anode, $0 (x) is the electrostatic potential, and E (x)=-3.'0

For space-charge-limited flow with E (x= 0) = 0, it is readily

xshown from Eq. (3) that

E (x) = -4Tre f dx'nb(x'), (5)

0
d x'1

and that the anode voltage is Vs =0 (x = d) = 47ef dx"f dx'nb(x').

2 0 0
Moreover, combining Eqs. (3) and (4) gives B (x) -E (x) =const.,

or equivalently

BzB = const. (6)
Yb(X)

in the region where nb (x) is non-zero.

One approach in describing the equilibrium properties of

the electron layer is to specify the functional form of the

electron density nb(x), and then calculate the corresponding

profiles for E (x), BZ(x), V (x) and Yb(x) self-consistently

from Eqs. (1)- (6). Another approach, which is the one used

here (see also Sec. III), is to specify the functional form of

Yb(x) over the interval 0<x<b where the electron density is non-

zero, and then make use of Eqs. (1) - (6) to calculate the
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remaining profiles. Let us assume that yb(x) is prescribed

over the interval 0<x<b, with yb(x) increasing from unity at

x =0 to Yb (b) at x =b. It is readily shown from the preceding

analysis that the corresponding self-consistent profiles for

Bz (x), nb (x) and E (x) are given by

B

Yb(x) Yb , 0<x<b

@x b 7eb(b)

Bz
B0 , b<x<d,

y ([x) '- 1 /2~ 4T B) 0<x<b,

nb(x)= (8)

0, b<x<d,

and

E (x)= 
1/2 

(9 )<x<b 
,

X~ E (b), b<x<d.

Here E (b) = -[y 2(b) -1l 1/ 2 B /Yb(b) and B (b) =B are thex b 0 bz 0
fields in the vacuum region b<x<d. Moreover, yb(b) = [1 -

2 2 -1/2E (b)/B1 1 is the relativistic mass factor at the edge

(x= b) of the electron layer.

In the numerical analysis in Sec. III, we investigate

extraordinary-mode stability properties for different choices

of energy profile yb (x). In this regard, it is important to

note from Eq. (8) that the average electron density nb 
bf (dx/b)nb(x) can be expressed as

0
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- [ 2 1/2 Bn Ib(b) -i 4rebyb (b)

E (b) (10)
x
47reb

Therefore, although the detailed shape of the density profile

changes as the functional form of Yb(x) is varied, it is clear

from Eq. (10) that the nb can be maintained constant provided the

value of yb(b) is held fixed (assuming fixed values of BO and

b).

B. Extraordinary-Mode Eigenvalue Equation

In the numerical analysis of stability properties in Sec.

III, we make use of the eigenvalue equation derived in Ref. 1

for extraordinary-mode perturbations about general equilibrium

density profile n (x). To briefly summarize, we assume elec-

tromagnetic perturbations with perturbed field components

E (g, t) = 6E (xy, t) + 6E (x,y, t) y and B (g, t) = 6Bz (x,y,t) z.

Here, 3/3z = 0 is assumed, and perturbed quantities are expressed

as 6$ (x,y,t) = 6^(x) exp(iky-iwt), where w is the complex oscilla-

tion frequency, k =2rn/L is the wavenumber, and L is the perio-

dicity length in the y-direction. It is convenient to intro-

duce the effective potential 4(x) defined by

0 (x) = 6E (x). (11)

Then, making use of the linearized cold-fluid-Maxwell equa-

tions, it is found 1 that the eigenvalue equation for D(x)

can be expressed as
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9- 14+X (x,k ,w) 3 - k2 [1+ X (x,k,w)]

k y 2 3 (12)
[w-kV (x)] Vyc a) [ x (xWk w

y b xko

where wc = eB (x)/b (x)mc = -eBO b (b)mc= const. is the rela-

tivistic cyclotron frequency, and 2 (x) =4wnW 2 bfrqunc, pb~x 4 nbxe /bxm

is the relativistic plasma frequency-squared. Moreover, the

effective susceptibilities are defined by 1

[ v2(x) 2 2

x (x,k,w) = - 1- b -b (13)
.1 ( wk 2/c k2 )vb(x,k,w)

2 W (x) 2 w,(x
XI1(x,k,w) =~ - 22 Wpb~x [1 - W17+ A(x)] (14)Xg(xk~) 2 2 2 2+ 2 2 'c k vb(xk,w) c k c k

where

2 2 2 1 (x)/c2k2 2 2

v b(x,k,w) = Yb(x)[u.-kV (x)] + -+ 2 2 [ pb (x). (15)
y - /c k

The eigenvalue equation (12) can be used to investigate extra-

ordinary-mode stability properties for a wide range of self-

consistent equilibrium profiles nb(x), Yb(x), V (x) =-cE (x)/B Z(x),

and B (x) . Previous stability analyses have been restricted

to the special class of equilibrium profiles where nb(x)/yb(x)

const. over the interval Q<x<b. In Sec. III, we make use of Eq.

(12) to determine stability properties for profiles ranging

from nb(x)/Yb (x) =const. to nb(x) =const. over the interval

0<x<b.
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III. STABILITY ANALYSIS

In this section, we make use of the eigenvalue equation

(12) to investigate extraordinary-mode stability properties for

a range of equilibrium profiles in order to determine the sensi-

tivity of stability behavior to profile shape.

A. Model Equilibrium Profiles

In the present analysis, we choose yb(x) to have the

functional form

yb (x) =Xcosha1 x + (1 - A)
[1 - a 2(b 2 _ x2 1/222

2 2 1/2
(1 -a 2b

over the interval O<x<b. In Eq. (16), a 1 and a2 are constants

(with a 2b 2<1), and A is a constant parameter in the range O<A<l.

We note from Eq. (16) that yb (x =0) = 1, as required, and that

Yb(x) increases monotonically as x is increased from x=0 
to

x=b. Moreover, it is evident that A and yb(b) are related by

Yh(b) = bcosha b + (1 - X) /(1 - a 22 1/2 (17)

The corresponding profiles for Bz (x), nb(x) and E (x), consis-

tent with Eq. (16), are readily obtained by substituting Eq.

(16) into Eqs. (7)-(9). To illustrate the range of profile

shapes modelled by Eq. (16), it is instructive to consider two

limiting cases: (a) X=1, and (b) X =0.

(a) X =l: Rectangular Profile for. nb(x)/Yb(x): For A =l,

it follows from Eqs. (16) and (17) thatl-4

(18)
Yb (x) =cosha1 x

(16)
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over the interval 0<x<b, and that yb(b) = cosha 1 b. Moreover,

Eqs. (7) and (9) give for the equilibrium fields, 1 -4

cosha x

cosha 1b B0, -x<b,

BO, b<x<d,

and

sinha1 x

cosha1 b B -x<b,
E () = (20)

sinhct b
-cshaib B , b<x<d.

cosha 1b0

Similarly, substituting Eq. (18) into Eq. (8), we find the

rectangular profile

a B0

x) 4 eY(b) =const., 0<x<b,

b) = (21)

0, b<x<d

for nb(x)/yb (x). As indicated earlier, extraordinary-mode

stability properties have been investigated in the literature 1 -4

for the special class of profiles in Eqs. (18)-(21), which

corresponds to X =1 and w 2 (x) =const. over the interval O<x<b.

(b) A=0: Rectangular Profile for nb(x): For X =0, Eq.

(16) reduces to (for 0<x<b)

[1 -a (b2 _ 2 1/2

Yb(x) 2 2 1/2 (22)
(l -a 2b )
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where yb (b) =1/(1 - 2 b 2) 1/2. From Eqs. (7) and (9), the equi-

librium field profiles corresponding to Eq. (22) are given by

B(x) =
z )

E x) W

(23)

[1 - a 2(b 2 _ x2 1/2 B' O<x<b,

Bo, b<x<d,

-a2xB, 0O<x<b,

-a 2bBO, b<x<d.

(24)

Moreover, from Eqs. (8)

nb(x) is given by

nb(x

and (22), the equilibrium density

1const., <x<b,

0, b<x<d,

which corresponds to a rectangular profile for nb (x) when

)L= 0. This should be contrasted with the A =1 case, where

nb(x)/Yb (x) has a rectangular profile [Eq. (21)] and there-

fore nb (x) increases over the interval 0<x<b.

Making use of Eqs. (7)-(9) and (16), shown in Fig. 2 are

illustrative plots of yb(x), nb(x) , nb(x)/Yb(x) , Bz(x), E (x)

and Vy (x) = -cE (x)/Bz (x). The equilibrium profiles are plotted

versus x/b for the choice of parameters: yb(b) 2, alb=l.317

[corresponding to cosh(a 1 b) = 2], a 2b =0.866 [corresponding to

(1- a 2b2 V 1/2 = 21, and values of A, including X= 0, X= 0.5 and2

and

(25)
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X =l. Although the changes in yb (x), Bz (x), E (x) and V (x) =

-cE (x)/B z(x) are relatively small [Figs. 2(a)-2(c)] as A is

varied from A=1 to A =0, it is clear from Figs. 2(d) and 2(e)

that there are large variations in nb (x) and nb(x)/Yb (x) as A

is changed. For example, from Fig. 2(e), nb(x)/yb(x) =const.

over the interval O<x<b when A =1. On the other hand, when

A= 0, nb(x)/Yb (x) decreases monotonically by a factor of two

from the cathode (x =0) to the outer edge of the electron

layer (x= b).

B. Numerical Results and Discussion

In this section, the extraordinary-mode eigenvalue equa-

tion (12) is solved numerically to determine the influence of

equilibrium profile shape on detailed stability properties.

The equilibrium profile for Yb(x) is specified by Eq. (16),

and the corresponding profiles for E (x), nb (x), Bz (x) and Vy (x)=

-cE (x)/B z(x) are calculated self-consistently from Eqs. (7) - (9).

In the present analysis, a 1b and a2b are specified in terms of

Yb(b) by

cosha 1b = Yb(b),

(26)

(1 - b 2 -1/2 (b).
2 Ybb)

From Eq. (26), note that Eq. (17) is automatically satisfied

for A in the range 0 <A< 1. The eigenvalue equation (12) is

solved numerically for the complex eigenfunction C(x) =

(i/k)6Ey (x) and eigenfrequency w subject to the boundary

conditions
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(D(x=O) =0=D(x=d). (27)

In the numerical analysis of Eq. (12), X is varied from

zero to unity, corresponding to a large change in the equi-

librium profiles for nb(x) and nb(x)/Yb (x) [see Figs. 2(d) and

2(e)]. Moreover, we introduce the dimensionless quantity s(x)

defined by

2 2 ) nW Y(b) -
s(x) pb(x) s b b , (28)

Wc nb

where s is defined by

4wb2
S = 2 . (29)

Yb(b)mw c

Here, c= eBO /Yb(b)mc is the relativistic cyclotron frequency,
_ 0

and nb = f (dx/b)n b(x) is the average electron density [Eq.
0

(10)]. In comparing stability properties for different profile

shapes (i.e., different values of X), we will specify values for

Yb(b) and bwc/c, which corresponds to fixing the value of S.

The shape function

f W)nb W Yb(b) (30)
Yb(x) nb

occurring in Eq. (29), however, varies substantially as the

parameter A is changed. For example, for the parameters in

Fig. 2(e), it follows for X= 1 that f(x) = const.= 1.52 over

the interval 0<x<b. On the other hand, for A= 0, f(x)
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decreases monotonically from f(0) =2 at the cathode (x= 0) to

f(b) =1 at the outer edge of the electron layer (x=b). As a

final point, before discussing the numerical results, the

relation between yb(b), s and bw c/c is readily -derived. Making
2 2-1/2use of yb (b) = [1 -E (b)/B ]/ and E (b) = -4xenbb, we find

2 2
b 1c (31)

Yb(b)

where s is defined in Eq. (29). Therefore, upon specifying

values for bw c/c and Yb (b), we obtain the corresponding self-

consistent value of s from Eq. (31).

Typical numerical results obtained from the eigenvalue

equation (12) are shown in Figs. 3 - 7 for the choice 'of

parameters

Yb(b) = 4, dw c/c = 3,

(32)
1 b = 2.0635, a 2 b = 0.9682.

Here, yb (x) is specified by Eq. (16), and the corresponding

equilibrium profiles for Bz (x), nb (x) and E (x) are calculatedz b. x
self-consistently from Eqs. (7) - (9). In Figs. 3 -5, the

normalized growth rate Imw/wc is plotted versus kc/w for

(bwc/c,§) = (0.5, 1.936) [Fig. 3], (bwc/c, 9) = (1, 0.968)

[Fig. 4], (bw c/c, §) =(2, 0.484) [Fig. 5], and several values

of the profile shape parameter X. For yb(b) = 4 and fixed

value of applied magnetic field B 0 , we note that the different

cases studied in Figs. 3 -5 correspond to §bw c/c =0.968= const.

and therefore nbb= const. That is, as the layer thickness is
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increased from Fig. 3 through Fig. 5, the average electron

density nb is decreased so that nbb remains constant. It is

evident from Fig. 3, which correponds to (bw /c ,/ ) = (0.5,

1.936), that the growth rate decreases by more than a factor of

two as X is decreased from X=1 to X=0. That is, as the profile

for nb(x)/yb(x) is varied from a rectangular profile (A=l) to

a monotonic decreasing profile (X=0.5 and X=0), there is a

concommitant decrease in instability growth rate.

The effect is even more dramatic in Figs. 4 and 5. In

Fig. 4, which corresponds to (bw C/c, A) = (1, 0.968), we first

note that the growth rates are reduced relative to Fig. 3 because

of the lower electron density (smaller 9). Moreover, the growth

rate in Fig. 4 also decreases as the profile for nb(x)/Yb(x)

becomes more monotonic (i.e., as A is decreased). The most

striking feature of the stability results in Fig. ,4 is that the

system stabilizes for A below some critical value. In particular,

for the choice of parameters in Fig. 4, instability ceases for

A ,<, 0.12 over the entire range of kc/wc investigated numerically

(kc/wc < 5). The results are qualitatively similar for the case

shown in Fig. 5, which corresponds to (bw c/c, 9) = (2, 0.484). As

in Figs. 3 and 4, the instability growth rate in Fig. .5 decreases

as the profiles for nb (x)/Yb(x) become more monotonic (i.e.,

as A is decreased). Moreover, for the choice of parameters in

Fig. 5, instability ceases for A , 0.38 over the entire range of

kc/wc investigated numerically (kc/wc < 5).

We conclude from Figs. 3 - 5 that detailed stability proper-

ties exhibit a very sensitive dependence on profile shape.

Evidently, the greater the monotonicity of nb(x)/Yb (x) (i.e., the
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smaller the value of A), the more the growth rate is reduced.

Indeed, in some parameter regimes, the instability growth rate

can be reduced to zero, even at moderate electron density (see

Figs. 4 and 5). It is also evident from Figs. 3 - 5 that the

growth rate Imw tends to achieve a maximum value at increasingly

large values of k as the parameter A is reduced. For example,

it is found numerically that the A= 0.25 growth curve in Fig. 4

achieves a maximum value of Imw =0.018w for kc/wcs 30.

Shown in Fig. 6 is a plot of normalized real frequency

Rew/w versus ck/w for the choice of parameters in Eq. (32)c c

and (bw c/c,!,A) = (1, 0.968, 1). Note that Rew increases

approximately linearly with k with (Rew)/k ~ 0.89 V (b) =0.86 c

over the range of unstable k-values. The parameters chosen in

Fig. 6 correspond to the most unstable case (X=l) analyzed in

Fig. 4. Moreover, for Yb (b) =4 and dw c/c= 3 [Eq. (32)], it

is found that the plots of Rew/w versus ck/wc are virtually

identical to Fig. 6 for all other values of (bw c/c,A,X) analyzed

in Figs. 3 -5. Therefore, although the growth rate Imw is very

sensitive to the profile shape (A) and the value of 9, we con-

clude that the real frequency Rew is relatively insensitive to

profile shape and 9, at least for 9bw /c= const.

ccShown in Fig. 7 are plots of Re1D and Im(D versus xw /C

obtained from Eq. (12) for yb (b) = 4, bw c/c= 1, dw c/c =3, SA=

0.968, kc/wc = 3, and several values of the profile shape para-

meter A. The corresponding plots of Imw/wc and Rew/wc versus

kc/wc are given in Figs. 4 and 6. Note from Figs. 7(a) - 7(c)

that the outer extremum of Ref(x) occurs near the boundary of
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the plasma (x= b) where Dwpb (x)/Dx is large, corresponding to a

large surface perturbation on the right-hand side of the eigen-

value equation (12). The strong peaking of Ref(x) at x= b is

expected1 since it is this large variation in wpb (x) at the

plasma boundary which supports the slow surface wave that is

driven unstable by equilibrium velocity shear. Close examina-

tion of the numerical results and the eigenvalue equation (12)

shows that the inner extrema of Ref(x) and Imx) occur near the

innermost point (x =x ) where 1+ ReX(xi,k,w) = 0. After some

straightforward algebra that makes use of Eqs. (13) and (15), it

can be shown that

2 W[-kVW12 -w2
Yb(x)[w kvy (x)I2_

1 + XI(x,k,w) = 2 )c (33)
v b(x,k,w)

For small growth rate with tImw<<|RewI, the solution (x ) to

1+ ReXI (xi,k,w) =0 is determined approximately from the cyclotron

resonance conditioni

[w-kV (x ]2 = w 2/y (x

We note from Figs. 7(a) -7(c) that there is a tendancy for x

to move inward (toward the cathode) as X is decreased. This

is a result of the changes in the profiles for V (x) and Yb(x)

as the parameter X is varied.

Finally, in Figs. 8 and 9 we illustrate typical stability

results obtained from Eq. (12) for the choice of parameters

Yb (b) = 2, dwc/c = 3

a 1b = 1.319, a 2 b = 0.866.
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In particular, the normalized growth rate Imw/wc [Fig. 8]

and real frequency Rew/w c [Fig. 9] are plotted versus ck/ c

for bw c/c= 1 and %= 0.866. Comparing Fig. 4 ['yb (b) =4 and

bw c/c =1] with Fig. 8 [yb (b) =2 and bw c/c= 1], it is evident

that the growth rate Imw still exhibits a very sensitive

dependence on profile shape (X) as the relativistic mass factor

Yb(b) is reduced from yb(b) = 4 to Yb(b) =2. That is, as the

profile for nb(x)/yb(x) is varied from a rectangular profile

(X =1) to a monotonic decreasing profile (X= 0.5, 0.25 and 0.1),

there is a significant reduction in the growth rate. Moreover,

the real frequency Rew increases approximately linearly with k

[Fig. 9], and is relatively insensitive to the value of X. For

the parameters in Figs. 8 and 9, it is found that instability

ceases for X,0.06 over the range of kc/wc investigated numerically

(kc/w < 5).
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IV. CONCLUSIONS

In this paper, we have made use of the extraordinary-mode

eigenvalue equation derived in Ref. 1 to determine the in-

fluence of equilibrium profile shape on the detailed stability

properties of relativistic, nonneutral electron flow in a

planar diode. The stability analysis is fully electromagnetic,

and the relativistic cold-fluid model for the electrons includes

the effects of equilibrium self fields in a self-consistent

manner. Following a summary of the theoretical model (Sec. II),

we investigated numerically the stability properties for a wide

range of equilibrium profile shapes (Sec. III). To briefly

summarize, the extraordinary-mode eigenvalue equation (12) was

solved numerically for the class of equilibrium energy profiles

Yb(x) specified by Eq. (16). The corresponding self-consistent

profiles for B z(x), nb(x) and E (x) were determined from Eqs.

(7) - (9). As the profile shape parameter X in Eq. (16) is

varied from zero to unity, there is a large change in the equi-

librium profile for nb (x) and in the equilibrium profile for

nb(x)/Yb(x) [Fig. 2]. For the cases studied in Sec. III, it is

evident from Figs. 3 - 5 and 8, that A = 1 corresponds to the

strongest instability for fixed values of yb (b), bwcIc, and

dw c/c. On the other hand, as A is reduced from unity, and the

profile for nb(x)/Yb(x) become monotonic decreasing, the insta-

bility growth rate is reduced. Indeed, in some parameter regimes,

the instability growth rate can be reduced to zero over the range

of k examined numerically. [See Figs. 4 and 5 and the related

discussion in Sec. III.]
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We conclude that detailed stability properties exhibit a

very sensitive dependence on the equilibrium profile shape.

Evidently, the greater the monotonicity of nb(x)/Yb(x) (i.e.,

the smaller the value of A), the more the growth rate Imw is

reduced. On the other hand, for fixed values of yb(b), dwc/c,

and bw c/c= const., it is found that the real oscillation

frequency Rew is relatively insensitive to profile shape (A).

1-3As in previous studies, the growth rate Imw tends to de-

crease as the average electron density (9) is reduced. [Compare

the stability behavior in Figs. 3 -5.]
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FIGURE CAPTIONS

Fig. 1. Planar diode configuration and coordinate system.

Fig. 2. Illustrative equilibrium profiles based on Eqs. (l)-

(9) with Yb(x) specified by Eq. (16). The parameters

chosen are: Yb (b) = 2; alb= 1.317 corresponding to

cosha b= 2; a b= 0.866 corresponding to (1 - 2 -1/2_

2; and k=0, 0.5 and 1. Plotted versus x/b are:

(a) Yb(x)lYb(b) and B (x)/B0 [Eqs. (16) and (7)],

(b) -E (x)/B0 [Eq. (9)], (c) V (x)/c=-E (x)/B (x)

[Eqs. (7) and (9)],. (d) nb(x)/lb [Eqs. (8) and (10)],

and (e) [nb(x)/Yb(xf.[yb (b) /Tb] [Eqs. (8) and (16)].

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Plots of ImW/wc versus kc/w c obtained from Eq. (12)

for bw c/c= 0.5, Yb (b) = 4, dw c /c= 3, 9= 1.936, and

(a) X = 1, (b) X= 0.5, and (c) X= 0.

Plots of Imw/w c versus kc/wc obtained from Eq. (12)

for bwc/c = 1, Yb (b)= 4 , dwc/c.=3, 9= 0.968, and

(a) A=1, (b) A=0.5, and (c) A= 0.25.

Plots of ImW/W c versus kc/wc obtained from Eq. (12)

for bw c/c =2, yb (b)= 4, dwc/c =3, 9= 0.484, and

(a) X=l, (b) X= 0.75, and (c) X=0.5.

Plot of Rew/wc versus kc/wc obtained from Eq. (12)

for bwc/c = 1, Yb (b)= 4 , dw c/c= 3, 9= 0.968, and

A= 1. (See also plot of Imw/wc versus kc/w for X

in Fig. 4.)
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Fig. 7. Plots of Re4 and ImD versus xwc /c obtained from Eq.

(12) for b c/c = 1, Yb(b) = 4, dwc/c= 3, §=0.968,

kc/wc =3, and (a) X= 1 (Rew/wc= 2.743 and Imw/wc

0.03781), (b) A= 0.5, (Rew/wc= 2.757 and Imw/wc=

0.0183), and (c) X= 0.25 (Rew/w c= 2.761 and Imw/w c

0.002431).

Fig. 8 Plots of Imw/w c versus kc/wc obtained from Eq. (12)

for bw C/c= 1, yb(b)= 2 , dw c/c= 3, 9= 0.866, and (a)

X=1, (b) X=0.5, (c) X=0.25, and (d) X=0.1.

Fig. 9 Plot of Rew/wc versus kc/wc obtained from Eq. (12)

for bw c/c=1, Yb(b)= 2, dwc/c= 3, 9= 0.866 and X= l.

(See also plot of Imw/wc versus kc/%c for A= 1 in

Fig. 8.)
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