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ABSTRACT

A quasilinear model is developed that describes the nonlinear

evolution and stabilization of the free electron laser instability in

circumstances where a broad spectrum of waves is excited. The rela-

tivistic electron beam propagates perpendicular to a helical wiggler

magnetic field B= -B cosk z - sink0 ze , and the analysis is based

on the Vlasov-Maxwell equations assuming 3/3x= O= D/3y and a suffi-

ciently tenuous beam that the Compton-regime approximation is valid

(6$ =0). Coupled kinetic equations are derived that describe the

evolution of the average distribution function GO(pzt) and spectral

energy density 6k(t) in the amplifying electromagnetic field pertur-

bations. A thorough exposition of the theoretical model and general

quasilinear formalism is presented, and the stabilization process is

examined in detail for weak resonant instability with small temporal

growth rate yk satisfying IYk /Wk<<l and IYk/kAvzl<<l. Assuming that

the beam electrons have small fractional momentum spread (Ap /p «1),

the process of quasilinear stabilization by plateau formation in the

resonant region of velocity space (wk -kvz= 0) is investigated, includ-

ing estimates of the saturated field energy, efficiency of radiation

generation, etc.
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I. INTRODUCTION AND SUMMARY

There have been several theoretical1-15 and experimental16-24 studies

of coherent radiation generation by free electron lasers that use an in-

tense relativistic electron beam as an energy source. Both transverse1-11

and longitudinal12-15 wiggler magnetic field geometries have been considered.

For beam propagation through a transverse wiggler field, there have been

many theoretical estimates (e.g., Refs. 1-11) of the gain (growth rate)

during the linear phase of instability. Few calculations,25-32 however,

have addressed the nonlinear development and saturation of the instability.

Particularly important for free electron laser applications is the develop-

ment of a self-consistent theoretical model that estimates the saturated

amplitude of the radiation field (and hence the overall efficiency of

radiation generation) in terms of properties of the electron beam and the

wiggler field.

In the present article, we develop a quasilinear model describing the

nonlinear evolution and stabilization of the free electron laser insta-

bility. It is assumed that beam propagation is perpendicular to a trans-

verse helical wiggler field and that a broad spectrum of waves is excited.

Following a thorough exposition of the theoretical model and general

quasilinear formalism (Secs. II-IV), we examine the stabilization process

for weak resonant instability with small temporal growth rate Yk satisfying

yk /Wk<<l and IYk/kovzi<<l (Secs. V and VI). Assuming that the beam

electrons have small fractional momentum spread (Apz 0 <<1), we investigate

the process of quasilinear stabilization by plateau formation in the

resonant region of velocity space (wk - kvz= 0), including estimates of the

saturated field energy, efficiency of radiation generation, etc.
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In the present analysis, we investigate free electron laser radia-

tion generation by a low-density relativistic electron beam propagating

in the z-direction perpendicular to a helical wiggler magnetic field

[Eq. (2)]

B cosk0 z - Bsink0z Y

where B= const. is the wiggler amplitude and X0= 2T/k0 is the wavelength.

As summarized in Sec. II, the theoretical model is based on the non-

linear Vlasov-Maxwell equations for the class of beam distribution func-

tions fb(z,k,t) of the form [Eq. (5)]7,8

fb (z, ,t)= no(P y6(Py)G(z,pzt)

Here, 3/3x=O= 3/Dy is assumed, and P and P are the exact canonical
x y

momenta [Eq. (6)] in the combined wiggler and transverse radiation

fields. Moreover, the electron beam is assumed to be sufficiently

tenuous that the Compton-regime approximation is valid with negligibly

small perturbations in the longitudinal fields (6&~O).

In Sec. III, we give a detailed derivation of the quasilinear

equations describing the nonlinear evolution of the system for pertur-

bations about the (slowly varying) average distribution function [Eq.

(10)]

G (p ,t) = dzG(z,pz '

-L

where 2L is the periodicity length in the z-direction. The conservation

relations satisfied by the exact Vlasov-Maxwell equations and the approxi-

mate quasilinear equations are discussed in Sec. IV and Appendix B. To

briefly summarize the general quasilinear results, in response to the

amplifying field perturbations it is found that G 0(P,t) evolves according

to the diffusion equation [Eqs. (30) and (83)]
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0I =

and the spectral energy density ek(t) in the electromagnetic field

perturbations satisfies [Eq. (44)]

=ek k

where Yk(t) is the slowly varying growth rate. Here, the diffusion

coefficient D(pzt) is defined by [Eq. (30) and the equation prior to

Eq. (84)]

/t
D(pzt)=2 1 +k '-k 2exp 2Jdt'Yk(t')

0 k=0
0

k 2 2
(W - kv 2 +yk

for Yk > 0. Moreover, ymc = const. is the characteristic electron

2 2 2
energy, y is the relativistic mass factor defined by y= (1+p /m c +z

2-2 2 4 2 1/2
e B2/r c k 0 ) [Eq. (9)], vz z/Ym is the axial velocity, wk + ik

is the complex eigenfrequency, and 6A± are the dimensionless

amplitudes of the vector potential. To complete the quasilinear descrip-

tion, the complex eigenfrequency Wk (t) + iyk(t) is determined adiabatically

in time from the linear dispersion relation [Eq. (40)]

"2
1 c

D D D- L~ ++D
k+k 0k-k0 2 2 2 k+k0 k-k

00 0 c 0

x[ + Ymc 2 2 k k
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A -

where GO(pzt) evolves according to Eq. (83). Here, wc= eB/Ymc is the

relativistic cyclotron frequency, w 4Trn e 2/ym is the relativistic plasmap 0
2 2 2 2

frequency-squared, Dk k + (wk+iYk) -c (k±k0 ) -_O2 [Eqs. (34) and (35)]

are the transverse dielectric functions, and ct (J=1,3) is defined by

a j (dpz0/y Go.

As an application of the general theory developed in Sec. III, in

Secs. V and VI we examine the quasilinear stabilization process for the

upshifted branch of the dispersion relation [Dkk 0 in Eq. (40)] in
kk0

circumstances corresponding to weak resonant instability satisfying

k A

Here, Avz is the characteristic spread in axial electron velocity of G '

For a tenuous electron beam, the real frequency is wk c(k-k0), and the

instantaneous growth rate Yk(t) is given by [Eq. (77)]

A2
w -3 2 2

kt4 c2 2 / 2 _ k GOz,t)

0 [1 (ekm~
A k0 vz=

For waves excited with positive phase velocity wk/k> 0, it follows from

Eq. (77) that Yk ><0 accordingly as [Y3GO/p z v=Wk/kZ 0. That is, waves

with phase velocity in the region of positive momentum slope in GO(pzt)

are amplified, corresponding to instability with yk > 0. Moreover, for

ok= kvz and wk= (k-k0)c, the amplified wavenumber k 
and resonant particle

velocity vz are related by the familiar relation [Eq. (90)]

k
0

k (1-vz/c)
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Detailed growth properties are studied in Sec. V.B for the case where G0 is

instantaneously a gaussian [Eq. (78)] centered at pz P0 with small

fractional momentum spread Apz /p<< 1. An estimate of the characteristic

maximum growth rate from Eq. (77) shows that the condition IYk/kAvzi << 1

requires that the beam density and wiggler amplitude be sufficiently

small that [Eq. (114)]

02 2 vo 2 (vo 4 3
TT c p + p

0

where v0  P 0 /ym is the characteristic velocity of the beam electrons.

In Sec. VI.A, for general GO(pzt), we investigate the quasilinear

stabilization process in the resonant region (w k- kvz = 0) of velocity

space where the diffusion coefficient D(pzt) can be approximated by

[Eq. (91)]

D (pz ,t) = 27T2 e2 ( 
2

)2 
2  dk k k kv

r zko ]Lk k

0

in the continuum limit with + fdk. It is shown that the coupled
k J

kinetic equations for GO(pzt) and ek(t) can be integrated with respect

to t to give the exact conservation relation [Eq. (96)] relating

G z(pt) and k(t) to their initial values. The time asymptotic state

corresponds to plateau formation

aG (p ,t-*-) =0
G0 z

z k

in the resonant region, with Yk (t-x) = 0.
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Finally, in Sec. VI.B, we make use of Eq. (96) to obtain an estimate

of the saturated field energy density 6F(-) fdkFk(t-x>) for specified
0

initial distribution function GO(pz,0). Expanding G (p 0) about the

point of maximum initial momentum slope (pz= 1Z' ), and retaining leading-

order terms, we obtain [Eq. (101)]

1 A 3 1 (Z
TF- n0v0  z 3 - G 01 ,Q z

where Apz is the characteristic range of pz over which plateau forma-

tion occurs, and v0 PO/ym is the beam velocity. If we estimate

2
[3GO(p z0)/ap ] p z ) , this gives

z0

$F 11n 0v0Ap

Moreover, for highly relativistic electrons with vo~ c and (T-1)mc2~CP0'

we find for the efficiency q of radiation generation [Eq. (105)]

F A) z
2 %-12 p

(Y-1)n 0mc 0

Since Apz /p 0<<1 is assumed throughout Secs. V and VI, it is clear

from Eq. (105) that the efficiency rj of radiation generation associated

with plateau formation is relatively small. The time scale Trel for

plateau formation is estimated in Eq. (109), and Trel is typically a few

times the inverse maximum growth rate ([yk 1MAX -l associated with the

initial distribution GO(pz,0). Therefore, at least within a quasilinear

model, if there is to be efficiency enhancement above the level associated

with plateau formation in Eq. (105), it is necessarily associated with a long-
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time quasilinear degradation of the beam distribution that occurs on

a time scale t> Trel, which is beyond the scope of the analysis pre-

sented in Sec. VI.
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II. BASIC ASSUMPTIONS AND PHYSICAL MODEL

We consider a collisionless, relativistic electron beam with

uniform cross section propagating in the z-direction. It is assumed that

the beam is sufficiently tenuous that equilibrium space-charge effects

can be neglected with

-0 . (1)

The electron beam propagates perpendicular to a helical wiggler magnetic

field specified by

B = -Bcoskz - Bsinkoze , (2)O 'x Axy'

where B = const. is the wiggler amplitude, X0 = 2Tr/k 0 is the axial

wavelength, and ^ and are unit Cartesian vectors in the x- and

y-directions, respectively. The approximate form of the wiggler field

in Eq. (2) with $ - const. is valid near the magnetic axis where

k0 (x 2 2) <

We assume that this inequality is satisfied. Moreover, the beam density

and current density are assumed to be sufficiently low that the

equilibrium self-magnetic field can be neglected in comparison with the

applied field %0

Perturbations are considered in which the spatial variations are

one-dimensional with 3/3x = 0 = a/ay, and 3/3z generally nonzero.

The electron beam is assumed to be sufficiently tenuous that the
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Compton-regime approximation is valid with negligibly small perturbations

in electrostatic potential and longitudinal fields, i.e.,

6$(z,t) = 0 , 6E z(z,t) = 0 .

The perturbed vector potential is expressed as

6k(x,t) = 6A (z,t)^e + 6A (z,t),a

where the transverse electromagnetic fields, 6 ,t) and (,t),

are given by

T = - 64 ,

The

function

6k = V x 6k .

relativistic, nonlinear Vlasov equation for the beam distribution

fb (z,,t) is given by

+ vz a - e ( + -T)) . ] fb(z,k,t) = 0 (4)

where -e is the electron charge, c is the speed of light in vacuo, and

the particle velocity v and momentum are related by

( + 2 2c2)1/2

In the present analysis, we investigate the class of exact solutions

to Eq. (4) of the form 7,8

(3)
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fb(z,p,t) = n06 (P x P y)G(z,p ,t) , (5)

where n0 - const., and P and P are the canonical momenta transverse

to the beam propagation direction. The canonical momenta P and P

are exact single-particle invariants in the combined wiggler and radiation

fields, i.e.,

P = p - -A (z) -- 6A (z,t) = const.,

(6)

P = p - - A (z) - - SA (z,t) = const.
y y c y c y

In Eq. (6),

0
A (z) = (B/k )cosk0z A (z) =(i/k 0 )sink0z

are the components of vector potential associated with the wiggler field

in Eq. (2), and p and p are the transverse mechanical momenta. From

Eq. (5), the effective transverse motion of the beam electrons is "cold".

Substituting Eq. (5) into Eq. (4) and integrating the resulting equation

over p and p y, gives 8

+ va - - fI(z,p ,t) - G(z,p t) = 0 (7)

for the evolution of G(z,p ,t). In Eq. (7), H is defined by

t(zpz, ) j = 2 _ 2c4 + c2p + e2 A +A ) + e 0(A +A ) 21/2
Z9t +p x x y y

(8)
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which is the particle energy for P = 0 = P . In the absence of

radiation field (6A -0-6A y), the energy is given by

2= (24 2 2 2-2'k2 1 /2  (9
ymc ( c +cp +e 2/k ) (9)

where use has been made of (AO)2 + (A)2 2 /k = const.x y 0

It is assumed that the distribution function G, the vector

potential k, and f are spatially periodic with periodicity length 2L.

In this regard, it is convenient to introduce the spatially averaged

distribution function GO(pzt) defined by

G (pzt) - (2L)~f dz G(z,pz,t) . (10)

Also, for small 6A, the particle energy [Eq. (8)] can be expanded

according to

y~mc 2-YMC2 + e (A0t5Ax+A0 6Ay )+..., (11)

2
where ymc is defined in Eq. (9). Moreover, the quantities G and H

can be expressed as an average value plus a perturbation,

G(z,p z t) = G O(pz t) + 6G(z,p ZOO , (12)

G1(z,pHt) = Go ,t) + 6H(z,p ,t) (13)^H(Z'pz 't ^(z, ) H z, ).()

Here, G is defined in Eq. (10),

2 4 2 2 22/2 1/2 2
H 0= (mc + cp z + e B/k 0 =ymc
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and 6i is given to lowest order by

6f e 2 (A06A + A06A)
ymc y y

(14)

= 2j (cosk z6A + sink0 z6A)
ymc k0
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III. THE QUASILINEAR EQUATIONS

A. Kinetic Equation for the Average Distribution Function

We proceed with the nonlinear, one-dimensional Vlasov equation (7)

and derive lowest-order quasilinear equations for G and 6G. Making

the substitution

2
PZ p zc

v = _- = 7 , (15)
Y yTm H

Eq. (7) can be expressed in the equivalent form

G + p c - (G = 0. (16)
at p c azliJ a~ azj

Taking the spatial average [denote by < >] of Eq. (16) over the periodicity

length 2L, we obtain

G= - <G> = <6G a 6H> . (17)
at 0 at ap z az

Subtracting Eq. (17) from Eq. (7) leads to

6G + f- z'G - (Tz6 f)a G(at ym G jap z
(18)

Sa 6G - a <6G 2 6i> + 2Z 6k a6G
a~ f) p a z az Y2 m2 2 az

where use has been made of Eq. (15), and the inverse relativistic mass

factor yT [Eq. (8)] has been approximated by

11- 32 4 (A 06Ax+A 6A) = 1 1 - . (19)

y m c y mc
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Equation (18), together with Maxwell's equations, determine the evolution

of the perturbations, and Eq. (17) describes the evolution of the average

background distribution function GO(pz, t). In the approximation

where only linear wave-particle interactions are retained in the

description, the right-hand side of Eq. (18) (which is quadratic

in the perturbation amplitude) is approximated by zero. In this case,

SG(z,pz,t) evolves according to

6G + - - 6I G,,0 =0(20)
at Ym z !z ap z 20

Equation (20) will be recognized as the linearized Vlasov equation for

perturbations about the spatially uniform distribution function GO(pZt)

which varies slowly with time according to Eq. (17). Equation (20) is

solved treating G0 as slowly varying, and the resulting expression

for 6 G is substituted into Eq. (17) to determine the reaction of G0

to the initially unstable field fluctuations.

We introduce the Fourier series representations,

G(z,p ,t) GO(pzt) + k Gk (pzt)exp(ikz)
k

II(z,p zt) HO(pzt) + 1'6Hk(pz,t)exp(ikz)
k

(21)

6A x(z, t) = 6A x(k,t)exp(ikz)
k

6A (z,t) = I 6A (kt)exp(ikz)
y k

In Eq. (21), k = nn/L where n is an integer, and the summations run from

k=-- to k=+-o. The prime on the summations denotes that the k=0 term is
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omitted. From Eqs. (13), (14), and (21) it follows that (for k # 0)

2^
6 eB [6A (k+k)+i6A (k+k )+6A (k-k )-i6A (k-k

2ymc k0 (22)

We also note that in Eq. (14), for 6k to average to zero, it is required

that k # ±k0. The time dependence of perturbed quantities is assumed

to be of the form

exp -i t Qk(t')dt] (23)
0

in circumstances where the time variation of GO(p t) is sufficiently

slow. In Eq. (23),

Sk = wk + iYk(- f' ~k + iY-k) (24)

is the (complex) oscillation frequency of the waves, and Yk is positive

by hypothesis, corresponding to temporal growth. It is then useful to

expand the field perturbations according to

t
e2 exp(ik0 z)(6A -i6A) = 16A-k exp ikz-i f Ak(t')dt'

ymc k 0
(25)

e + t

2 exp(-ik z)(SA +i6A ) = + exp ikz-i S k(')dt
-MC2 0 x y k0f
ymc

where ymc = const. denotes the characteristic mean energy of the beam

electrons, and 6 k are the dimensionless amplitudes



16

6 +e 2 [6A(kk 0 )A,t) ± i (k+kot) exp(i Q k(t')dt')
k mc y 0

From Eqs. (14), (21), and (25), the quantity 6i k can be expressed as

1 rt
2k zt) = +k0 + d-k Iexpf-i 0 Qk(t')dt')

(26)

In Fourier variables, Eq. (17) becomes

G = - a ik6'-k6Gk . (27)at 0 apz

Solving Eq. (20) and neglecting free-streaming contributions to 6Gk(pztt)P

we obtain for the perturbed distribution function

SGkfz,t) = - - k -p k+k0 + A-k0
(28)

t

x exp(-if 2 Ak (t')dt').

Here, vz = PZ/ym and use has been made of Eq. (26). Substituting Eq. (28)

into Eq. (27) yields the quasilinear kinetic equation for GO z

a-G (p t) = i 2 k2 +k + Ak + 6kkat 0 z' (Ak)2 Ak +k o 'k k 0(6A k+k 0  - ) ( 9
(29)

t 2 DG O/ i
x exp (2 t k(t')dt) k-(k)Z}

In view of the reality of 6A(z,t) and 6H^(z,p ,t), it follows thatZ

6 Hk = 6q. Thus, Eq. (29) can also be expressed as
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2
a-GO (p t) k 2p D - k GOavat 0z z Qk z kv

e (m 02 k2 6A (k+k0)+i6A (k+k0)+6A (k-k0)-i6A (k-k0 )2
2mc k4 k

a 1 3GO z (30)
p~ ~,3 2IF -k v , 3

Z Y k

where use has been made of Eq. (22). Note that Eq. (30) has the form of a

diffusion equation for GO(pzt) in momentum space.

B. Adiabatic Dispersion Relation and Kinetic Equation for the Waves

The complex oscillation frequency k (t) is obtained adiabatically

in terms of GO(pZ, t) from the linear dispersion relation. We now briefly

outline the derivation of the linear dispersion relation, which is described

in considerable detail in Ref. 3 . For the present configuration, the

nonlinear evolution of the perturbations 6A (z,t) and 6A (z,t) is

determined from the Maxwell equations

- a )2 6A = - -r d3p vx(fb-f ) (31)

C(22 z2) x c f b 0

- - 1 6A = - d p v (fb-f ). (32)

c 2at 2 az2 y cf b

In Eqs. (31) and (32), f0 is the unperturbed distribution function inb

the absence of radiation fields (SA = 0 = 6A ), and fb(z,pt) solves

the nonlinear Vlasov equation (4). When Eq. (5) is substituted into

Eqs. (31) and (32), and the resulting field equations are linearized,

making use of Eqs. (11), (19), and (28), we obtain the matrix dispersion

equation 8
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,22

,k+k 2-2 2  PtPwPk'k 0  c0k k

,2
1 WC 2

2 c 2k 2 (a3wp k , k-k 0
0

+

,2
1 c 2
2 c 2k 2 3+p k

22

22 k2 3pk))

+
A +k 0

6-k0/

which relates the amplitudes 6 A+k0 and 6A-k, and determines the

complex oscillation frequency 1k. In Eq. (33), the dielectric functions

Dk+k , Dk-k and the effective susceptibility Xk are defined by
8

0 0

D (1 2 _c2 (kk2 _aW2

Dk+k =0 - c 2(k+k0 2 - a W ,

Dk-k 0 k k (k-k0) -

X()- 22 Y2 f dpz kaG0 /ap z
Xk k YmCp Y 2 k-kv Z

Y k

(34)

(35)

(36)

where a and a3 are defined by

a3 - 3 G
Y

and

2= 2 -
Wp 4rn 0 e /ym

is the relativistic plasma frequency-squared. Also in Eq. (33),

(37)

(38)

(39)WC = eB/ymc

is the relativistic cyclotron frequency associated with the wiggler

amplitude i. Requiring that the determinant of the matrix in Eq. (33)

vanish gives the dispersion relation

= 0,

(33)0

=- f dp z G
011 ' Y G ,
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,2
(a) 0( ' [ D (S + Dk O(Q)

Dk+k 0 k)Dk-k k 2 c 2 k2  k+k0  k k-k0 k

0 (40)

x [a3 + Xk(Q k)

which determines Qk(t) = wk Yk adiabatically in terms of GO(pzt).

In concluding this section, we obtain the wave kinetic equation

consistent with Eqs. (25), (40) and the quasilinear equation (30) for

GO(pz,t). The average energy density in the radiation field is

given by

(2L) -L dz [ETj2 + (6B 2

k k(t) k(t) + [kik t) * 4-k(t)

I 6kk+k (t)12 + 16kk-k0 (t)12 + 16kk+k0 (t)12 + 16 k-k0 (t)12 /16T ,

(41)

where 6 T(z;t) and 6 T(z,t) have been Fourier-transformed according to

Eq. (21). Referring to Eq. (3), the Fourier components of the electro-

magnetic fields in Eq. (41) can be expressed in terms of the dimensionless

quantities 6A+k and 6A k-k by making use of Eqs. (25) and (21). After
kk0 k 0

some straightforward algebra, we obtain

1(16k(t)12 + 6 k 12

-~2\ 2 2 2

L c4 c2 + k 1 [I k 2+c2 (k+k 2) 2

24e / 47rc 2 k A+
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+ I6 Ak-k 2 k2 + c2(k-k0) I exp (2 fYk(t')dt) (42)
00

where the spectral energy densityEk(t) is defined by

-M 2)2 t

Sk(t) 2e 4c2) 2 exp (2 : Yk(t' )dt' )
(43)

x j{A+k0 12 kI + c2 (k+k")2 + IA-k0 1(2k 2 + c2(k-k 0) 2

From Eq. (43), it follows that k(t) evolves according to

tEk() = 2Yk(t)Ek(t) , (44)

where the linear growth rate yk(t) is determined adiabatically in terms

of GO(p 't) from Eq. (40).

Equations (30), (40) and (44) then form a closed quasilinear

description of the system including the effects of linear wave-particle

interactions. Justification of these quasilinear equations for small-

amplitude perturbations requires a sufficiently broad spectrum of unstable

33
waves that the inequalities

I(wk-kvzI k1 ' 'rel (45)

Ink1 d k k, (46)

are satisfied. Here, Trel is the characteristic quasilinear relaxation

time of GO(pzt) from Eq. (30), Yk is the characteristic growth rate
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of the unstable waves, and A(wk-kvz) is the characteristic spread

in values of (wk-kvz) over the unstable k-spectrum.
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V. CONSERVATION LAWS

In Sec. IV.A, using the nonlinear Vlasov-Maxwell equations, we outline

the derivation of three exact conservation relations, corresponding to

conservation of (average) particle density, total energy, and total axial

momentum. In Sec. IV.B aud Appendix B, we derive the analogs of these con-

servation relations within the framework of the quasilinear kinetic equations

developed in Sec. III.

A. Conservation Relations from the Fully Nonlinear Vlasov-Maxwell

Equations

The fully nonlinear Vlasov-Maxwell equations possess three exact

conservation relations. These are: average density,

z d 3pfb(z'k,t) = const., 
(47)

total average plasma kinetic energy density plus electromagnetic

field energy density,

fdL {Jdfp(YT-l)mc fb(zg,t)

(48)

+ 1((6)2 +6 )2 = const.,

and total average plasma momentum density plus electromagnetic field

momentum density,

fL {fd3 p fb(zkt) + ( xB+6Tx6)9 = const. (49)
-L Es ( z ( 47 a dp a i

In Eqs. (47) -(49), YT and Id 3p are defined by
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Y= [1I2 /M2c2 11/2 (50)

and

d3p dpx dp dpz

From the Vlasov equation (4), the time derivative (a/t)fb(z,k,t)

can be expressed as

a-fb = -v - b + e6 - fb+ VX q 0+6y) f (51)

Equation (47) is readily verified by integrating Eq. (51) over fd3pq

and taking the spatial average. It is assumed that fb, 6ZT and 4T are

periodic in z direction with periodicity length 2L, and use is made of the

relation

(~ ) = m-22 . (52)
T M C2 YT3

Equation (48) can be verified by showing that

-L 3 T-1)mc2 fb(z 0t) L (-e6 T d3 P fb(z t))

(53)

and also that

- {L dz ( T2 + =0 T L A (ed 3fb(Zk,t)).
at u-1, 2L 81T _~~1 J L 2L f J Z pb\Z~J

(54)

Equation (53) follows by substituting Eq. (51) into the left-hand side

of Eq. (53) and carrying out the integrations. The Maxwell equations

for the electromagnetic fields may be utilized to obtain Eq. (54), i.e.,
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6 E + -B = - d3pvf , (55)C at x az Y cjf x b

6E -- B = i d pvf , (56)C at y az cj yb

where 0= 4+,T. Equations (55) and (56) are multiplied by 6E and 6E

respectively and added tggether. To obtain Eq. (54), the resulting equation

is averaged, and use is made of the Maxwell equation

Vx6E = - 1/c)(3/t)4T . (57)

In a similar manner, Eq. (49) can be proved by showing that

L L
-{fL 3L d p b(z,g, t)k = T-L 9 ( 0 9T) x .f3 ~b z',t' z'

(58)

and also that

a fl, dz 1 +1x1)
at -L 2L~ ( TX xTNT z

(59)

- ( T) x b(z t)) .
-L 2Lf bz

Equation (58) follows by making use of Eqs. (51) and (52). In obtaining

Eq. (59), the time derivatives (3/at)6 ET and (a/ t)Sg are eliminated by

making use of Eqs. (55) - (57).

B. Conservation Relations from quasilinear Theory

We now demonstrate that the conservation relations (47) - (49)

are upheld by the quasilinear kinetic equations derived in Sec. III.

The distribution function fb is taken to be of the form fb(z,",t) =
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nS6(P )M(P )G(z,p ,t) [Eq. (5)]. In Eqs. (47) - (49), we expand quantitieso x y

such as YTmc and retain up to second-order terms in perturbation amplitudes.

Number Conservation: Substituting Eq. (5) into Eq. (47), and making use

of Eq. (10), we obtain

Sdpzn0G (pt) = 0. (60)

Clearly this is true for 3G 0/3t given by Eq. (30), since Eq. (30) is in the

form of a diffusion equation in momentum space and the integrand is an

exact differential.

Energy Conservation: To show energy conservation from quasilinear

theory, the quantity YTmc2 [Eq. (8)] is expanded according to

2

Yymc =ymc + 2 (A06A + A06A)
Ymc2 x x y y

2 42
+ e (6A2 + 6A2 1 e (A06A + A06A )2 +

2ymc 2 x y 2 3m3C6 x x y y

where ymc2 is defined in Eq. (9). Then the quasilinear analog of the exact

energy conservation relation in Eq. (48) can be expressed as

a 1 2 2<KED>= - < [(6E ) + ]>, (61)

where <KED> is the average plasma kinetic energy density defined by

<KED> = L df dp n0  Y-l)mc2 G+ e 22 (A 6A +A 0 6A )6G

-L - z ymc y y

(62)

2 2 1 e4  0 0 2
+ e (6A +A)G -- 336 (A06A +A06A )2 G

2ymc2 x y 0 2 3m3c6 x x y y 0)

correct to second order in the perturbation amplitude. In Appendix B, we

make use of the quasilinear kinetic equations (29) and (44) and the

dispersion relation (40) to verify that the energy conservation relation
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in Eq. (61) is satisfied to the level of accuracy of <KED> defined in

Eq. (62).

Momentum Conservation: We now verify conservation of average total

axial momentum. As noted in Appendix B regarding energy conservation, in

order to obtain the quasilinear analog of Eq. (49), the approximate

expression for the helical wiggler field given in Eq. (2) is substituted

into the equation, and the term (47rc) f L (dz/2L)( 6 Tx O)z is set equal

-L
to zero. It can then be shown that consistent with this approximation,

at the quasilinear level, is the neglect of second- and higher-order terms

when expanding the current density -efd 3p (v + v y)fb in powers of

perturbed quantities. Thus, for the form of fb given in Eq. (5),

-efd 3 p (v +v A)fb

en0  dpz
=__ -(A +6A )e +-(A +6A )e - G

m x x -x c y yrj YT
2cco

0 fdpz (A +6A )G + -A 0 6G
mc -c (1x x0 y x (63)

2'

324 6A + A 6A )A G+ ..

Y3m 2c 4 x x y y xO0 ^

yyyQ+ AyG - 3 m2 4 x y+ 5A )AG

In Eq. (63), G and 1/yT have been expressed as in Eqs. (12) and (19).

We obtain the quasilinear analog of Eq. (49) within the context of

Eq. (63). To this end, Eq. (5) is substituted into Eq. (49), the

resulting equation is differentiated with respect to time, use is made

of Eq. (16), and we integrate by parts with respect to pz. Utilizing

Eq. (8), the time derivative of Eq. (49) can then be expressed as
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L (A0+A) (AO + 6A )+ (A0 + 6A ) (A + 6A
MC 2 L c x x 3 z x x c y y 3z y y

(64)

dp JLdz 1 5 x~J XB+ 5E x 6B =0.
x G +L T 4ff,0 7 A T T z 0

-0 -L

The term in curly brackets in Eq. (64) is proportional to the z-component

of the cross-product of the current density appearing in Eq. (63) and

the total magnetic field [Vx (A0 +6A)]. The quasilinear analog of Eq. (49)

is obtained from Eq. (64) by expanding 1/YT, expressing G=G 0 +6G, and

approximating the current density as indicated in Eq. (63). After some

straightforward algebra, Eq. (64) can be expressed as

3 (65)
7t<PMD> =a- < 4 c(% x %@) z > ,(5

where the time rate of change of the average plasma momentum density is

defined by

<PMD> Ldp z ne2 A06G 6A +(2 A6G -L 6A
3t 2Lo~~AI 2 z x z y

(66)

e2 G 0(A6A +A 06A )(A 0 6A +A 6A)
3 2 4 0 x x y y x 3z x y 3z y

correct to second order in the perturbation amplitude. In Appendix B,

we make use of the quasilinear kinetic equations (29) and (44) and the

dispersion relation (40) to verify that the momentum conservation relation

in Eq. (65) is satisfied to the quasilinear level of accuracy of (3/3t)<PMD>

defined in Eq. (66).
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V. QUASILINEAR STABILITY PROPERTIES

In circumstances where the beam density is sufficiently low and

the wiggler amplitude is small, the dispersion relation (40) supports two

solutions, near Dk+k0 k) = 0 and Dk-k0 k) = 0, respectively. In the sub-

sequent analysis, we consider the upshifted branch with Dk-k 0, where
kk0

k >0 is assumed. For Dk+k # 0 and D 0, the dispersion relation (40)
0 0 k-k0

can be approximated by

0 = =02-c2 2 2
D,k kc (k-k 0 ) - l Wp

"2 ,.(67)

1 W[ 2 - 22 2 fdpz kGO z(7)
+2 2k2 3 p+Ymc 2 Y - kvJ

0 lokt

where we have introduced the effective dielectric function D(k,Qk) defined

by
-2

2 2 2 2 1 WC 2
D(k,wk+ik (Wk+iYk) -c (k-k 0 ) a W + a k

^2 d k G c k (68)

+1 Wc -2 2-2 pz 0 z

2 c2k y2 k-kvz+iyk

for Yk k>0.

A. Weak Resonant Instability

For present purposes, we consider weak resonant instability

satisfying IYk/Wk <<1 and lYk/k <<Avz, where Avz is the characteristic

spread in axial electron velocity. Introducing D = ReD and D. = ImD,

the dispersion relation D= Dr i=0 is expanded according to
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A
0=D (k,w ) +i y r(k, k kk) +..(69)

r k kwk Dr k D

and use is made of

ki-kv - ifr(5(w -kv ),(70)
0+ k kv z+iYk k- kvZ k z

where P denotes Cauchy principal value. Substituting Eqs. (69) and (70)

into Eq. (67) and setting real and imaginary parts equal to zero, the real

oscillation frequency wk is determined from

^2

2 2 2 k / 2cD k~w k Wk-c (k-k 0)2 ac1 W +~ c 2(3

A2 0 (1

+1 Wc -m2W 2 2  dp k G 0 /p (71
+2 22 ymc2 -2 k- kvzz

0

and the growth rate Yk is given by

- -i(k,wk) (72)

k 3D r (k,wk ) k , (

where

W 2  dp G
D (k,Wk) c2 2 Ymc2 2 k- kvz)k - (73)

0

In Eqs. (71) and (73), the particle velocity vz, momentum pz, and energy

ymc2 are related by

2 2 4 2 2 2^2 2 1/2
vz pZ/ym , ymc (m c + cp + e B /k 0 ) (74)

and the integrals in Eqs. (71) and (73) can be transformed from integrals

over pz to integrals over vz by making use of

dv 2 4 2^2 2
z _ m c+ eB2/k0  (75)

dp 3 3 4
z Y m c
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which follows from Eq. (74). Then D (kw k) can be expressed as

A2 3
W. 3 4 3

A ( ) - c 2-3 2 m c k Y'(6
D. --k)W y mc _P](6

i k 2 2k2 p 2 4 2 2 2k kk
C k 0 (m c + e B /k 0 ) -k

0 vz k

In circumstances where the principal-value contribution in Eq. (71) is

negligibly small, it follows that 3Dr(k,w k Wk= 2wk, and the growth

rate Yk in Eq. (72) reduces to

^2
W 2-3 2 _ I k G

Yk 4 2 2 Wp ym c2 i(, k1'1 Lez]v=W (77)

0 Ck z k

For waves excited with positive phase velocity wk/k>0, it follows from

Eq. (77) that Yk > 0 accordingly as [y3G DP IV = Wk 0. That is,

waves with phase velocity in the region of positive momentum slope in

GCO(pt) are amplified, corresponding to instability with Yk>0. (See

Sec. V.B for discussion of a specific example.) For subsequent analysis

of quasilinear stabilization in Sec. VI, it should be kept in mind that

the linear growth rate Yk(t) in Eq. (77) varies slowly in time as the

distribution function GO(pzt) evolves according to Eq. (30) in response

to the amplifying field fluctuations.

B. Stability Properties for Gaussian GO(pz)

As a specific example, and for purposes of estimating the relative

size of the various terms on the right-hand sides of Eqs. (68) and (71),

it is useful to consider the case where the instantaneous distribution

function is gaussian in pz with

)( 1/2 1 2(pZ -P

GOz )xA
2  ] (78)

z Apz
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It is further assumed that the characteristic axial momentum spread Apz

of the beam electrons is sufficiently small that the quantities v and
2z

l/Y2 can be expanded about the point pz= P0 9 i.e.,

=dvZ 1 1[dy -2
+ p-p9 - 2 + (p ) (9

vz V+ z 0) ; + = z 0) d
[p p o -2y y-p 0  z d J(7

Here, the derivatives are evaluated by means of Eqs. (74) and (75).

Substituting Eqs. (78) and (79) into Eq. (68), the effective dielectric

function D(k, 2k) can be expressed as

^ 2
2 2 2 2 1 _c_

D(k,wk + iyk) (Wk + iYk) -c (k-k 0) - 1Wp + f2 c k2

0

2
a3 p

^2 - 2 2
W yme W

-2 p 1 + Z()
c2k2 Ap Avz

0

2 2
w vw F

+ c 0  zp +2
+,r2 2k 2 .AV Z(

0

(80)

where Z() is the plasma dispersion function

f* (wk+iyk-kvO)

Z() TT-1/2] dx exp(-x 2  =21/2 k k

Here, Avz is the characteristic spread in axial velocity defined by

Avz Ap z(m c +e B /k 0)/y m3c.

In the interesting case where Jzl1, Eq. (80) cannot be further

simplified by using the asymptotic expansions of Z( ) for large or small

values of the argument. Comparing the two terms involving square brackets

in Eq. (80), the ratio of these terms for = -l//Y2 (corresponding to

maximum growth rate) is of order mc2 /vAp > p /Apz, which is typically0 z~ 0 z
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much larger than unity. Further, referring to tabulated values of the

function Z(C), it is found in the range of interest that the magnitude of

[l+EZ()j is of order unity (=0.285-iO.76 forE = -0.7). Thus, the

^ 2 22- 2 2
integral contribution in Eq. (68) is of order 2 (w /c k )ymc W z/Ap AVz

2(w/c2 ) (pO /Ap )(v0/AV z). For sufficiently small fractional

2
momentum spread Apz /p this term is larger than the a w contribution in

Eq. (68), which in turn is typically larger than (W /c k )CL3 . Moreover,

for the interaction to take place in a parameter regime consistent with the

Compton approximation and the condition lyk/k << Avz [Eq. (45)], it is

required that

A"2 _2

W 2 w
c ymc p «1 (81)
2 2 Ap Av 2
c0 z z Wk

16
For example, for the parameters in the Stanford experiment, the quantities

^2 2 2 2 " 2 2 2- 2 222 2
(W /ck 0), W , 2(A /c k )Ymc A z z and (k(- kw0 C = k) are calculated

-4 17 -2 22 -2 28 -2
to be %2.24 x 10 , 1.3 x 10 sec , 10 sec and 3.16 x 10 sec

2_ 2 2_
respectively. We conclude that wk c (k- k0 ) ~0 and 3Dr /wk 

2wk are

excellent approximations for the parameter regime under consideration. [See

discussion prior to Eq. (77). ]

Returning to expression (77) for the growth rate, we find that yk

can be approximated by

2 ^2 eg/mc 2
W W 1+ /M 2

Y = (27)1/2 _p c k k( c
k Wk c2k2 IkI -2 Av2

0 z
(82)

(vO-w k/k) 2(_k/k_-___

X Av ex 2(w /k-v0)
2

z Av2
z

2 2 2
for the choice of gaussian distribution in Eq. (78). Here, Y - [l+p0/m c

2 2 1/2 b"2 2 -3
+ (eB/mc k0) , Avz is related to Apz by Avz Ap z[l+ (eB/mck 0) ]/y m,

and v0  0/ym. Maximum growth in Eq. (82) occurs for wk/k - vo ~ -Av /20 PO/ Wkz
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where ^ 2

)l/o2 2 
+ le

[T] /() p W _ k [ k) 2 exp(-0.5)
kIIm WA 2 c2 IkI -2 Ic

0V

As a numerical example, the normalized growth rate yk/koc in Eq. (77)

is plotted versus k/k0 in Fig. 1 for G (pZ ) corresponding to the gaussian

distribution in Eq. (78). The choice of parameters in Fig. 1 is:

W = 1.25 x 10 sec-2 , y = 47.1, p0 = 1.286 x 10 -15g-cm/sec, Apz = 3.6
p

-18AX 10 g-cm/sec, wiggler field amplitude B = 2.4 kG, and wiggler wave-

number k0 = 1.96 cm 1, with corresponding dimensionless parameters

A 2 2 22 =- 5 -3
eB/mc k = 0.718, w /c k = 3.62 xl0 and ApZ /p = 2.8x 10 . Maintaining

2
y = 47.1 and eB/mc ko = 0.721, in Fig. 2 the fractional momentum spread

and normalized beam density are increased to Ap z /O 2x 10 and

W 2/c2k2 = 1.28x 10-2, and there is a concomitant significant increase in
p 0

instability bandwidth and growth rate (compare Figs. 1 and 2). For

k>>ko, it can be shown from Eqs. (77) and (78) that the wavenumber km

corresponding to marginal stability (Yk = 0) is given by
m

2(p0 /mc) 2k0
km 2 2

1+ (eB/mc k0)

For example, k /k =2930 for the parameters chosen in Figs. 1 and 2 . Shown in
mO0

Fig. 3 are plots of Yk/k c versus k/k 0 for two values of eB/mc 2k' 2 /C2 k 2

8.86xl0 , and parameters otherwise identical to Fig. 2. For the moderately large

values of wiggler amplitude assumed in Fig. 3, there is a notable down-

shift in the range of unstable k-values as B is increased. This is also

true in Fig. 4 where yk/kOc is plotted versus k/k0 for y= 10, Apz 0

3x 10 , W/c k0 1.60x 10, and the two values of normalized wiggler

S 2 2/mc2
amplitude eB/mc k =0.782 and eB/m k 0=0.879.
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VI. QUASILINEAR STABILIZATION PROCESS

A. General Theory

In this section, we examine the quasilinear development of the

system and describe the stabilization process within the context of

Eqs. (30), (44) and (77).

Equation (30) can be rewritten in the general form of a diffusion

equation in momentum space, i.e.,

G- a p, t) = [D(pz,t) GO(pz,t)] (83)
3 pz pz (3

where the diffusion coefficient D (pzt) is defined by

2o 202

D(pzst)= k)(Y )k 1 +ko + 6A-k exp 2fyk(t')dt'

0

Xi k 2

-ioTk + ikv z + Yk

Making use of the symmetries in Eqs. (24) and (A4), the diffusion

coefficient D(pzt) can also be expressed as

^ 2 2 2 t

D(pzt) = 2 k ( ) 6Ak+k +6Ak jexp( 2yk(t')dt'

k2kX k Y

(W k - kvZ)2 +Yk

We note that in obtaining Eq. (67) from Eq. (40), it has been assumed

that Dk-k0< k+kI . In view of Eq. (A3), it is therefore consistent

to approximate D(pzt) by
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g 2 \2 2  t k2
D(pzt) = 2 1 eB \ 16A.-k exp2 Yk (t')dt, k2 2 (84)

0o k\=- 0/ ( -kv ) +Y
0 k z k

Similarly, the average energy density in the radiation fields [Eqs. (41)

and (42)] can be approximated by

( 21 2 2 [k /

ymc 2 k 6Akk k + c2 (k-k0 2l2 k k(t),
27Tc k=0 0 k=

where the spectral energy density 6k(t) is defined by

ek(t)( 2e/ 2'c2 1k-k0  k + c k-k0 exp (2 Y (t)dt' . (85)

0

Approximating Ik 1 2k in Eq. (85), and combining Eqs. (84) and (85)

gives for the diffusion coefficient

k 222  (t) Y

D(p 2t) =d4Trek c 2 - k 2 - kv (86)

Z \c k0 /\Y 0  [W k+ c (k-k0 ) J (Wkv +Yk

Here, we have taken the continuum limit f dk, and introduced the
k=0 0

cyclotron frequency w = eB/ymc associated with the wiggler amplitude.

In relation to the diffusion coefficient D(pzt) defined in Eq. (86),

we distinguish two regions of momentum or velocity space, namely the

resonant region corresponding to particle velocities that satisfy

vz k/k vres (87)

for those k and wk making up the spectrum of unstable waves (Yk> 0), and

the nonresonant region corresponding to particle velocities that satisfy

(kv Wk)Y 2> (88)

In momentum space, the resonant region corresponds to the region of

positive momentum slope of G z(pt) [Eq. (77)].
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Only waves interacting with particles in this range can be excited and amplify.

The momentum pz of a resonant particle is related to the phase velocity

Sk/k of the wave with which it interacts by

k2
e2fi2 22 11/2 k -1/2 Wk

Pz res +c 2k2 2 c2k2 m -(89)

0-

where use has been made of Eq. (74). Moreover, combining the simultaneous

resonance conditions kv = wk and wk = (k- k0)c, the wavenumber k and the

resonant particle velocity vz are connected through the relation

k = k0c/(c-vz)E (vz ). (90)

For small yk, we write D(p , ) D r(p zt) in the resonant region of

velocity space (wk - kvz= 0), where

00 2 2 k~2 6 (t)Dr (p,t) = k 2 c2ek 2 (k kvz

( (Y) d k +c (k-k 0

(91)

2 e() (j)2 (c)2( v=2T2 2 2k) 2 V (c - v Z)6 (t).

In Eq. (91), we have made use of the identity (for w k kv Z)

lim _ k =2 _(k - kv)
k+O+ (Wk- kv + k z +v

T= 6[k-k(v )],
(c-vz) z

and expressed [Wc + c 2 (k-k = 2k2v for k = k = (k-k 0 )c.

Moreover, k(v z) is defined in Eq. (90).
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2 2
In the nonresonant region of velocity space, where (wk-kv) Yk'

we approximate D(pzt) ~Dnr(pzt), where

( \ -2k22 (t)

D (p , t) = 4Tre 2 (S- ( fdk k k . (92)
nr z ckoj (y +c 2 (k-k 2 kv) 2

0 [kc (- 0) I z-

The nonresonant region includes the range of pz where 3G0 z < 0 and the

wave spectrum is damped in Eq. (77). Within the context of the same

approximation that the principal-value contribution in the dispersion

relation (71) is negligibly small, it also follows from Eqs. (91) and

(92) that the effects of nonresonant diffusion can be neglected in

2 2 2
comparison with resonant diffusion. That is, for k 2v k we

z k

approximate Dnr ~ 0 in analyzing the quasilinear development of the system.

The quasilinear growth rate Yk(t) given in Eq. (77) involves the

electron distribution function in the resonant region. Moreover, the system

of equations (44), (77), (83), and (91) reduces to the following two coupled

equations for the evolution of the wave spectral energy density and the

distribution function in the resonant region:

G (pzt)= 22 2c2 e2 c 2  1 k GO 0 t) , (93)~~~~ 0 vz 2 r~k)\/~ ) (c-vz) k~- 2  C (pz

and

\2 6-(t) (c -V)
a (t)= ' c 22  B3 2  2 k vZ Y LG (pzt). (94)

~T k 2 O) Wp Ymc /mc)2] kovzc 3z 0k

Here, k(v ) k c/(c-v z), and pz is related to Wk/k by Eq. (89). From

Eq. (94), for positive 3G /9p at the point p' kjF increases in time.

However, the diffusion coefficient appearing in Eq. (93) is

proportional to 6^ and hence as E-(t) increases, G (p t) diffuses to
k k 0 z'
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decrease the gradient 3G0 /pz, thereby reducing adiabatically the rate

of increase of g. Consequently, the behavior of this pair of equations

is such as to limit the amplitude of'6 and reduce G z and the growth

rate. The time-asymptotic state is one for which (/ p z)G (pz,oO) = 0 in

the resonant region, corresponding to the formation of a plateau with

Yk() = 0, while 6 k (t) increases from its initial value to some steady

asymptotic level k o). Combining Eqs. (93) and (94) yields a con-

servation relation between the electron distribution function and the

spectral energy density generated by the instability, i.e.,

4(re-2 k ^ 2

GO z,t) - 2-41+ B mc
z m Y m 2

p '(95)

x i3 C 6 2 (t) =0,
rli G z (c-vZ) k

which may then be integrated to give

41e2 k - 2

GO (z~t) = G (PzO)+ 301 + Bm

(96)

X 3 C 1 2S0
Y vz (c-v Z)2Ik

relating GO (z~t) and 6^(t).

Equations (93) and (94), which can be combined and integrated to

give Eq. (96), constitute the final quasilinear equations that describe

the nonlinear evolution of GO(pzt) in the resonant region and the

concomitant evolution and saturation of the spectral energy density

ej(t).
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B. Time-Asymptotic Saturation Level of Radiation Fields

We now make use of Eqs. (95) and (91) to obtain estimates of the

time-asymptotic energy density in the electromagnetic wave spectrum, the

efficiency n of conversion of beam energy into radiation energy, and

the characteristic time Trel for plateau formation in momentum space.

The model we adopt is one in which plateau formation occurs over the

interval pZ1 <z z2 where pz z zl + (1/2)(pz2- pzl) is the point

of maximum momentum slope of G 0(pO). Moreover, the wave spectrum

ek(t) is excited substantially over the interval k1 < k< 2, where the

phase velocity wk/k falls in the region of maximum slope. Here,

k=k 0c/(c-vz), and k1 and k2 are defined by k1 k0 c/(c -vZ1 ) and k2

k0 c/(c - vz2)'

(a) Saturated Wave Energy: Assuming that the initial energy density ek(o)

in the wave spectrum is negligible in comparison with the saturated

level ((), the conservation relation (96) can be integrated over pz

to give

2-42 -1 3

2 +(e/mc)
4Tre 2k 0  k

(97)

p

x (c -v) z [GO(pzt+-)- GO(p', 0) dp,

zl

where k=k 0c/(c -v z), and the time-asymptotic distribution function

G0z, t-+O)= const. is assumed to be flat, corresponding to plateau

formation over the interval pZ1  z < z2* To estimate the right-hand

side of Eq. (97), we Taylor expand the initial distribution function

G (p ,t=0) about p 0 , the point of maximum momentum slope. Since
0 zI o
2 '2

[( / pz )G (p90)] = 0, we express, correct to second order,
z 0 PZO
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Go(p, t=0)=Go (p ,t= 0)+ -[ y 0 (i 0) (p -P)+ ... (98)
0L z 0pz

Moreover, we take G (p' ,t- G zt=0) in Eq. (97). Substituting
0 z G0( t0)

Eq. (98) into Eq. (97), we find for the asymptotic spectral energy density

2-42 ( 2 -1 3 v

S8r 2k0 1+ ) m(

2 2 2 F G0(z'0)]X (c-vz ) z p2+2pz zP +z- _2pz zP3
z z zo Z1 o Z 3Pz pz0

Making use of Eq. (99), the total saturated wave energy density eF(w)

is given by

F() dk () z2 dp
k f z dp zk

0 p zl

pz2 k2c 24 2 2 2
Z2 dp 6 ( 0) -k0 C m c + e B /k 0

= dz k C- 2 Y3 M3 C4
Pzl (c-v) ymc

(100)

1 L.G (p ,0)1
2 n0v0  GO z

)( )2 1 3 1 3]

[pz2 zl zO zi 3 z2 zO 3 zO zl

In obtaining Eq. (100), use has been made of Eqs. (75) and (90), and

we have approximated the factor vz/c by v0 /c= p0/ymc in Eq. (99), corre-

sponding to a narrow fractional velocity spread. Denoting p z2~zl/Z'

and assuming that p is centered between p Z1 and pz2 with
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PZ zl +Ap z/2=pz2 Ap/2, then the saturated wave energy

density in Eq. (100) can be expressed in the convenient form

136 T2n 0 v(AP)G~zO (101)
$Fm= ~ 0 z 3 z zo

Equation (101) can be used to estimate 6 () for a wide range ofF

initial distributions G (Pz,0) corresponding to weak resonant insta-

bility. Here, keep in mind that p corresponds to the point of

maximum slope of GO(pzO). As an example, consider the gaussian

distribution in Eq. (78) where p 0 p 0 - (1/2)Apz. In this case

(DG 0 /p ) (8/lT)1/2 (l/ApZ) 2exp(-0.5) and Eq. (101) reduces to

F ()= 1/2 exp(-0.5)n0v0 z ' (102)
F 12 007r(02

Note from Eq. (102) that 6F(-) can be substantial, depending on the

momentum spread Apz'

(b) Efficiency of Radiation Generation: We define the efficiency of

radiation generation n as the ratio of saturated wave energy density

2
to the beam kinetic energy density (y- 1)n0 mc . Making use of

Eq. (101), this gives

$F

(y - I)n0mc

(103)

_ 1 v0 (Apz 3 G(p O
12 - z'

(Y- 1)mc P zI ZzO

which can be used to calculate n for specified G (p,0). For highly

relativistic electrons, v0 ~ c and (T- 1)mc2 ~cp 0, and Eq. (103) can

be approximated by
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1 zp~ 1
1 A0 [~G (PZ90)Jp (104)12 p0 KPz 0pzO

2
If further we estimate (3G 0 pz ) z PI(Ap) , then Eq. (104) gives

for the efficiency

1 2 (105)

(c) Time Scale for Plateau Formation: From (3/ z)(Dr G0 z '

the characteristic time Trel for plateau formation in the resonant

region is approximated by

(Ap )2rel % Z) 2 (106)
D r(p o)

where

Dr (pz,o) = 2r22 2 ( dk )6(wk -kvz)

0
(107)

2 2 2 2

F 

In Eq. (107), k=k0 c/(c- vz), use has been made of Eq. (91), and we have

expressed 6F(-)= (-)A'k, where Ak is the characteristic width of the

unstable k-spectrum. In Eq. (107), we estimate Ak k 0 (Avz /c)(l -vz 2c)
and(A /CM/~ l 2 2 -1, )wt

and (A)/~ (1+vz/c)(vc) -v /c -, and evaluate D ,(p ) with

2 2 -3Y ~ Y, vz V0 and Avz Apz [l+(eB/mc k0) ]/y m, where v0 = /ym and

Y= [1+ p /m c2 + (eB/mc k0
2]1/2. After some straightforward algebra,

this gives

2A2

D0_ _ 2 (Yin2c F(1 8
Dr zo) 2 c3k3 rv0, (1+v 0/c)n0  z 80 z



43

Estimating (9G0 z p z %I(Ap 2 in Eq. (101) gives 6F()n 0v0 (Ap z)/12,

and substituting Eq. (108) into Eq. (106) then gives

3 3 3 2

relT - + 2 )(4)( ) (109)

P c

Equation (109) gives a convenient order-of-magnitude estimate of the

characteristic time scale for plateau formation in the resonant region in

terms of ck0  W, WC, and the fractional momentum spread Apz/po. In the

limit of highly relativistic electrons, v0 ~c and Eq. (109) can be approxi-

mated by 3k3  2

T 48 c~ k0 pZ (110)
Trel F T2 .5 (10

S 2 0p
p c

(d) Range of Validity: It is important to quantify the range of

validity of the quasilinear analysis in Secs. V and VI which assumes

weak resonant instability. First, the fractional momentum spread of

the beam electrons is assumed small with

«<< 1. (111)
P0

In terms of the width of the wave spectrum, we estimate Akk (Av z/c) X

(1-v z/c)-2, where k=k0(1-Vz/0)1 and the velocity spread and momentum

A 2 21/3 -3iain
spread are related by Avz Ap z[l+ (eB/mc k0 2 m. Estimating vZ 0

p /ym, where y= [1+ p /m2 c 2 + (e/mc k0) 2 1/2, we readily obtain for the

characteristic width of the wave spectrum

A + ) z <<. (112)
k c c p0

Note that the spectrum is narrow by virtue of Eq. (111).
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The analysis in Secs. V and VI also assumes IYk/kAvZI « 1. We

estimate the maximum growth rate from Eq. (77) by evaluating G0/p z

at the point of maximum initial slope (pz 0 z) with [G 0 Ipz I zo
1/(Ap ) . This gives

^2 2 2 2
Y- c -2 C 2 1 2 k c

~~~AV( 4 42 2]07'\i
kVz c4 k [1+ (eB/mc 2k ) 2 0 ) z/ \k ivzi

0 0

where/m. From w ~ (k-k0 )c, k= k0 (l-v /c) 1 Avz z1 +

(eB/mc k0) 2 3m, and vz v0 , we obtain the characteristic value at

maximum growth

A'2 2
k TT c p 1 P . (113)

Rz c ko (1+ V0 /c)2 (v0/c)0 z

Therefore, the condition IYk/kAvzI << 1 imposes the restriction that the

beam density and wiggler amplitude be sufficiently small that

-2 2 2 4 3

Ck << (,+-V)( "

Finally, an important condition for validity of the quasilinear

analysis is that the wave spectrum be sufficiently broad that the wave

autocorrelation time Tac A(w - kvz)11 be short in comparison with

the time Trel for quasilinear relaxation [Eq. (45)]. Estimating

A(W - kv ) (c- v )Ak, and making use of Eq. (112) for Ak and Eq. (109)
k z z

for Trel, the inequality Tac rel can be expressed in the equivalent

form 2-2
W p WC 24 40 2 40 A 3
pc 4 + (115)
c k 0 c C PO

Apart from numerical factors, Eq. (115) is similar to the requirement in

Eq. (114) that IYk/kAvz< 1.
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VII. CONCLUSIONS

In this paper, a quasilinear model was developed that describes the

nonlinear evolution and stabilization of the free electron laser insta-

bility in circumstances where a broad spectrum of waves is excited. The

relativistic electron beam propagates perpendicular to a helical wiggler

A A A

magnetic field - cosk z e - B sink z e , and the analysis is basedO - 0 0 0 y

on the Vlasov-Maxwell equations assuming /3x 0 = D/3y and a sufficiently

tenuous beam that the Compton-regime approximation is valid (6~ 0).

Coupled kinetic equations were derived that describe the evolution of

the average distribution function GO(pzt) and spectral energy density

ek(t) in the amplifying electromagnetic field perturbations. Following a

thorough exposition of the theoretical model and general quasilinear

formalism (Secs. II- IV), we examined the stabilization process for weak

resonant instability with small temporal growth rate yk satisfying

yk /Wk << 1 and IYk/kAvzI << 1 (Secs. V and VI). Assuming that the

beam electrons have small fractional momentum spread (Apz 0 << 1), we

investigated the process of quasilinear stabilization by plateau forma-

tion in the resonant region of velocity space (w k- kvz= 0), including

estimates of the saturated field energy, efficiency of radiation genera-

tion, etc. [Eqs. (101) and (103)].

As a final point, it should be emphasized that the analysis in

Sec. VI has focussed on the (relatively fast) process of plateau forma-

tion in the resonant region of velocity space. Therefore, at least with-

in a quasilinear model, if there is to be efficiency enhancement above

the level associated with plateau formation in Eq. (103), it is neces-

sarily associated with a long-time quasilinear degradation of the beam
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distribution that occurs on a time scale t > Trel, which is beyond

the scope of the analysis presented in Sec. VI.
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FIGURE CAPTIONS

Fig. 1. Plot of normalized growth rate yk/kOc versus k/k0 [Eq. (77)]

for eB^/mc 2 k0= 0.718, w /C 2k 2= 3. 62 x 10-5, 7' ', p = 1. 286 xop 0

1015 g-cm/sec, and Ap /p = 2.8 x 10-3.

Fig. 2. Plot of normalized growth rate Yk/kOc versus k/k0 [Eq. (77)]

2 2 2 2= -2,1 8for eB/mc k = 0.718, w /c k = 1.28 x10, T=47.1, p =l.286x

-15 -2
10 g-cm/sec, and Apz p 0 = 2 x10

Fig. 3. Plots of normalized growth rate Yk/koc versus k/k0 [Eq. (77)]

2 22= -3 - -15
for w /c k 8.86 x 10 , y =47., = 1.286 x 10 g-cm/sec,

APz /O= 2x 10- 2 , and two values of normalized wiggler amplitude:

eB/mc2 k = 0.718 and eB/mc2 k = 0.823,. corresponding to B=2.4 kG and

B=2.75 kG.

Fig. 4. Plots of normalized growth rate Yk/kOc versus k/k0 [Eq. (77)]

2 22= -3 -- 16
for w /c k = 1. 60 x 10 , y = 10, p0 = 2.71 x 10 g-cm/sec, Apz /p

3x 10 2, and two values of normalized wiggler amplitude:

2 2
eB/mc k =0.782 and eB/mc k =0.879, corresponding to B=4 kG and

B=4.5 kG.
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APPENDIX A

AMPLITUDE SYMMETRIES IN QUASILINEAR THEORY

The matrix dispersion equation (33), which relates the amplitudes

6A+k0 and 6 A-k0 appearing in Eq. (25), is equivalent to the equations

,2

0
,2

D A + 2 2 )6 + - (Al)
2 2 2 3wpk i+k 0 -Akk )+Dk-k k-k = 0(A2)

c k 0  0 0 0 0

These equations can be rewritten in the form

_+k_ Dk-ko
- 26Ak-k 1 Wc 2
0 c 2k2 3 P+Xk)

c 0

6A-k,) Dk+kC+ 

-21 c 2

c0

from which it follows that

A+k D6 k -Dk /Dk~ (A3)
+k 0 0 6 k-0 k+k0

The Fourier amplitudes 6A +k0 and 6A-k0 can be expressed as

0t

+ k -e 2 [6A (kkot)±i6A (kk t)]exp kQ k(t')dt'

SymC 0

and therefore obey the reality conditions
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(6Ak+k
0+k 0k-k0

- ) = 6A +
('kk0 . -k+k 0

(A4)

Furthermore, from Eqs. (24), (34), and (35), the dielectric functions

Dk+k0 and D k-k0 satisfy the conjugate symmetries (since W -k =_Wk and

Y-k k)

D k+k0 = D-k-k
0

Dk-k = Dk+k0
(A5)

Making use of Eqs. (A3) and (A4), the left-hand side of Eq. (B4)

can be expressed as

I6A +k 0+k-k0 0

2 Dk+k Dk-ko

k+k
0 k-k

+ 2 2 + + - - k ]k D k+k 0Dk-k0
- k 01+kl +'Ak-k 0 Ak+k0 A-k+k0 Ak-k 0 A-k-k (Dk+k0 Dk-k0

+ 2  2 +
6A+k 0 +I'Ak-k 01+6A+k 0

2 D-k-k

D 0 +lA -k 0
-k~k 0

Dk+k
0 Dk-k0

(Dk+k 0+Dk-k 0

Substituting Eqs. (A3) and (A5), the right-hand side of the above equation

becomes

2 2

(6 A +k 01+16A -k 0
0 0

+ IS k

Dk+k0 
Dk-k

(Dk+k +D kk )
k0 k-0 2

2 D2 2 Dk+k
k-k+ 0

(Dk+k 0+Dk-k 0 + 1 0 (Dk+k0+D k-k0

Hence we obtain

Ak+k0+ A-k

2 Dk+k Dk-k 2 2

(Dk+k +D kko k+k0 6Ak+k 0 +Dk-k 0  k-k0

(

D

-k-k 0

A6)
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It can also be shown, by a similar derivation, that

(6A +k - ) (6A +k - _k * Dk+kUDk-kn
(+k0 +"k-k 0 ) +k0  Akk0  (Dk+k0 Dk-k0 (A7)

2 2iDJA + 1D 6Akk
k+k06Ak+k01 -Dk-k 0 0 .

Equations (A6) and (A7) are used in Sec. IV.B and Appendix B. As

can be seen from Eq. (40), employing the dispersion relation to eliminate

Xk( k) leads to the appearance of the combination of dielectric functions

which occurs on the left-hand side of Eqs. (A6) and (A7). We then make

use of Eqs. (Al) - (A5) in order to reduce the expressions in Eqs. (B3)

and (B8) to the forms given in Eqs. (B5) and (Bll).
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APPENDIX B

PROOF OF ENERGY AND MOMENTUM CONSERVATION RELATIONS

FROM QUASILINEAR THEORY

Here, we make use of the quasilinear kinetic equations (29) and (44)

and the dispersion relation (40) to verify energy conservation [Eqs. (61)

and (62)] and momentum conservation [Eqs. (65) and (66)]. All terms are

expressed in terms of sums over k involving the dimensionless amplitudes

OAk k0, the wavenumbers k±k0, and the complex oscillation frequency Qk(t)

that solves the dispersion relation (40) adiabatically in time.

Energy Conservation: To verify Eq. (61), we proceed by taking the

derivative of Eq. (62) with respect to time, and substituting Eq. (29) for

DG0 /3t into the first term on the right-hand side of Eq. (62). The

perturbed distribution function 6G appearing in the second term is obtained

from Eqs. (21) and (28). In the three last terms on the right-hand side

of Eq. (62), 6A and 6A are expanded according to Eq. (25), and the

spatial average is taken, making use off exp(ikz)exp(ik'z)dz= 2 L6k,-k'
f-L

where 6k,-k' is the Kronecker delta. Moreover, we employ the symmetries

Wk Wk' -Y k[Eq. (24)] and (6k+k )*= 6A k k)* = 6A +
_k k Y- k A~k _-96Ak k 0 _kk0

[Eq. (A4)]. Further, in the last two terms, use is made of the definitions

in Eq. (37). After simplifying, this gives

t<KED>= -n0  _ 2 6A+ + -kk exp 2 Yk( t')dt)

k 2 - k Az-k I' 2kk +6kk

x x 20 k ') 2 d k

J dp k9 /p \22
z zB 2_ _

2 Q2 -kv O2k t k+k k k.- Oy k z kO / k O 0

" exp (ft Yk(t')dt)2f - dp kG 'p
k ~ 2 -kv
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+ ncc ymc 2 116A+ 2 + 2 - ] exp (2f t kt)dt0 1 4 _t k[ k+k 0  I K-k 0 1 J

(Bi)

1 eB 2 3 D + - 2 2 t
2 "0 2  2 t k +k + A-k ex ( f k )

In evaluating the right-hand side of Eq. (62) and obtaining Eq. (Bl), it

has not been assumed that 3 3

<[6A (z,t)] > =<[6A (z,t)2 >, <6A (z,t)6A (z,t)> = 0 . (B2)

The conditions in Eq. (B2) correspond to the requirement that the field

fluctuations are excited in an axisymmetric manner. However, it can be

shown from Eq. (25) that this assumption would not be justified in the

present analysis. The dispersion relation [Eq. (40)] is substituted into

Eq. (Bl) in order to eliminate the integrals over momentum in favor of

the dielectric functions Dk+k0 and Dk-k . Further, combining all terms

involving a 3, we find that these terms make zero net contribution to the

sum over k. Collecting terms then gives

m <KED> 12 k k)16A+k + 6A- 2
-~<ED= 2e/2Trc k 0 0

) Dk~ Dk-
exp ( 2ft Y(t')dt' D k+k D 0  (B3)

0 (Dk+k0  Dk-k 0

- 2 1+ 2 2) t
+ n XYmc 2y A + k exp 2 (t')dt'

0 1 4 0 0 / K2I+ t')dtk)
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We now make use of the relation

2Dk+k k-k +
6Ak+k +A k 2 0 Dk+k + 1' k+ 1 2 + Dk-k k-k , B4)

k0 +6k 0 1 Dk+k 0 +Dk-k 0 k 0 Ak0 k 0 -k01

which is proved in Appendix A [Eq. A6)]. Substituting Eqs. (B4), (34),

(35) and (24) into Eq (B3), and eliminating terms in the k-summations

which are odd functions of k, yields

-<KED>= - - exp 2f (t')dt'
(ate 4c 2  C Ykexp

4Trc k 0

x 6A+k1 2 [10k 12+ c2 k+k + -k 12 (B5)
~I5k+kI[ ckkO]IAk

" [k 12+c2 k-ko) 2

The right-hand side of Eq. (61) can be evaluated by making use of

Eqs. (3), (21) and (25). It is straightforward to show that

- < - [(6E ) 2+ (B+ 5B)2]
-t 87T [%T "0%TU

3 1 6A (k, t) -L 6A* (k, t) 1 6A (k, t) A* (k, t)
8- - rrt k (c2 t x at x + 2 at Ayk at y

+ k2 6A (k,t) 2 +k2 6A y(k,t) 2) (B6)

(Ymc 2 2  1 3 Y exp 2ft k(t')dt'
2e 4c k / r/

1A k+k 0 [k 2 (k+k 2 + Ikk02 [1k 2+ c2 (k-ko )2
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Comparing Eqs. (B5) and (B6) completes the proof of Eq. (61). Note that

the applied field ko does not occur explicitly on the right-hand side of

~lL 2
Eq. (B6). This is because of the identify (87)- dz(B +6BT 2B

(8r) Ldz(6B )2+ (8T) B (2L), which follows from the form of the
-L U

wiggler field in Eq. (2), for k 0 k0'

Momentum Conservation: Rearranging the terms in Eq. (66), employing

Eqs. (21), (25), (28), and (37), and taking the spatial average yields

<PMD> = - ( 2 exp 2 Yk(t')dt'

X k(6Ak+k + 6  ko)(6A-kk + 6Ak+k) + k( +k + 6Akk
k~ 0 A-k0 k- kk0 0Ak 0 k 0

(B7)

+ ] -2 dpz k'Go/p

( k-k - k+k 2 Q -kv
0 0 -00 Y k z

2 a
-n i e - 32 ko(6A+k -k )(6A-k -6A +k )exp 2f t k(t')dt'.

0Fk0 ) mc2 k k 0O A- 0 -kk0 -kk0 0 k

With the use of the dispersion relation [Eq. (40], and combining and

simplifying terms, Eq. (B7) can be rewritten as

- 2 2 D2 ex ) k+k Dk-k
2> 2 x k( t)dt'(Dk + D )

2Trc k 0 k+k 0 k-k 0

(B8)

x k(6A+ + 6Ak)(6A + 6A+ (+k (%A - 6-k-k - 6A +k 0

I k~ k k 0 k-k 0  _k+k 0  0 k+k 0 + 6A 0 (5A 0 _kSkk 0

To proceed further, we substitute into Eq. (B8) the relations [Eqs. (A6)

and (A7) in Appendix A]
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+ Dk+k0 k-k0

+k0 + -k0 k-k0  -k+k0  (Dk+k + Dk-k
0 0

(B9)

Dk+k 0 A+k 0 2+ Dk-k0 16A k-k 0 2

Dk+k 0k-k

( +k0 + 6A k-k0) (6Alk-k0 - 6A k+k0 TDk+k0 + Dkk

(BlO)

D k+k 0 A+k0 12 - Dk-k0 A-k0

Finally, Eq. (66) reduces to

-mc2 2  i ( t
9<PMD) = c - a exp (2f Yk(t')dt' oTt 2e c2 -5t 1 i ki

27T k

(Bil)

x (k+ko)6A+k 2+ (k-k ) -k 12

where wk is the real part of the oscillation frequency 0k(Wk+iYk). We

now evaluate the right-hand side of Eq. (65). After some straightforward

algebraic manipulation, which makes use of Eqs. (3), (21), and (25), we

find

S(6E x 6B )>
t 47rc nT rjTz

=- 1 c A (k,t) a6A (k, t)+ A , 0 6A (k,t)
at4ck y a y 7-J

(B12)

- 2 2 2 c2t k t' t' k- ymcI 1 tv

x I (k+k0) 6Ak+k 2+ (k-k0)16Ak-k 0 2

Equation (65) follows directly upon comparing Eqs. (Bll) and (B12).
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