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ABSTRACT

The collisional Fokker-Planck equation combined with an externally imposed quasilinear

RF-diffusion is solved for energetic electrons under conditions of detailed balance. The

detailed balance condition restricts the functional form of the quasilinear diffusion

coefficient. This restriction is tightly related to the simultaneous flattening and

broadening of the distribution function in the parallel and perpendicular to the

magnetic field direction respectively.
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Radio frequency waves (RF) are of major importance for plasmas since RF provides

the means of heating toroidal plasmas and generating the current necessary for their

confinement in a steady-state (as opposed to the ohmic approach) fashion. Lower

hybrid waves (LH), for example, can be used for current drive since they can resonate

with fast electrons moving along the magnetic field (mainly toroidal).

The Fokker-Planck (FP) equation, which normally models RF-current-drive or

RF-heating, combines both collisional and quasilinear RF-diffusion of energetic (current

carrying) electrons colliding with the thermal ions and electrons and interacting with

the applied RF fields. Only unidirectional resonant RF-diffusion (along the toroidal

magnetic field) is considered since this is the relevant dominant mechanism in the

RF-current-drive problem. The normalized form of the FP equation in cartesian

momentum coordinates, pi , i = x, yJ, z, written for relativistic electrons is [11

af aF a (1)
at ap; api

where the summation convention is being used. The diffusion tensor Dii and the

friction vector F; are given by

Dij= - p2j + - )p] + bizjzDrf (2)

and

Fi = -- (3)
apj p3 P

where ;jj is the Kronecker's delta, D,f > 0 is the normalized modified RF diffusion

coefficient for unidirectional wave-particle interaction (z-direction), Y = 1+ P2 h

with ith = Vth/c, and i = (Zi + 1)/2, Zi being the ion charge number. The variables

pi, py vary in the interval 0 to -oo while pz varies in the interval pmni to oo, (pmin > 1).

The diffusion coefficient Dqj is non-zero in the interval p, < P11 < P2 (P1 > Pmin).
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Appropriate boundary condition must now be provided for a quasi steady state

solution of eq. (1), (a f/at = 0), in the sense that this solution will be valid for time

scales shorter than the time it takes the distribution of the thermal particles to be

affected. It is assumed here that the distribution function matches to a Maxwellian

at pu = pmin. This approximation is in accordance with the one used for numerical

computation [2], [61, [8]. For p --+ oo it is assumed that the values of the distribution

and all its derivations vanish. With these boundary conditions the uniqueness of a

(quasi) steady-state can be assured since Dij is positive definite.

The most recent attempt to anaytically solve eq. (1) for 'the steady state for

large Df's and =y = 1 is by Krapchev et al. [2]. However, the application of the

boundary conditions in [2] is not clear and the method used applies restrictively only

for I = = 1 and cannot be. generalized to encompass other cases. In the regime

of applicability of the theory in [2], Df is an externally imposed parameter. In this

letter I follow an entirely different road posing a qualitatively different question which

will eventually restrict the functional form of Df : What are the physics implications

from imposing the detailed balance condition (DBC) which we know freqently lead to

a closed form solution of the steady state FP equation?. Then, one may envision a

variational scheme in which the DBC- solution could be used as a trial solution. First,

the plausibility of the DBC assumption-approximation is investigated.

The DBC are associated with the existence of a stationary state and lead to a

particular class of steady state solutions of eq.(1). Such states are local equilibrium

states and are likely to be found on the flux surfaces which are away from the external

source of energy, such as wave guides. Accelerating forces such as toroidal electric

fields as well as radiative processes are excluded otherwise the DBC will not be valid [3].

There are two main points on the basis of which one can justify the DBC assumption-

at the microscopic level as a valid approximation. First, the energetic electrons, which
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eq.(1) deals with, are circulating particles (as opposed to trapped particles). These

electrons interact periodically with the several spatially localized RF-field' "islands",

which they encounter during their circulation, in an incoherent fashion. These "islands"

are the multiple crossings of the flux surfaces of the toroidally confined plasma by

the resonance cones. The electrons resonate as long as they are in an "island". When

circulating electrons reenter a different "island" they do not carry any memory of

their previous resonance since they suffer randomizing collisional interactions between

resonances. The second point is the fact that eq. (1) has only a flux surface average

meaning; therefore this loss of memory is actually spread over the entire flux surface

the equation is written for. One can consider this flux suface averaged randomization

as a stationary process which obeys detailed balance in momentum space. Implication

of DBC is the following relation
f2 1T (4)

f2(p, N,, r; B) = f2(-', -o, r; -A),

where f2(, 7, ; B) is the flux surface averaged stationary joint distribution for the

points P and P. in momentum space at times t and t. (r = It - tol) respectively.

Marginal particles with momenta very close to p1 and P2 are excluded from this

analysis since, being able to jump from the state of being resonant with the waves

to the state of not being resonant (during their crossing of a resonance cone), they

constitute a two state system. The joint distribution function, f2(', ', r; A), of eq. (4)

is not well defined (or, at least conventionally defined) if, for example, ' and ' fall

inside and outside the resonance region respectively. According to numerical evidence

[6], the boundary layers the marginal particles constitute are very thin. In the present

work the effect of these layers has been ignored on the basis of the smallness of their

thickness.

One can now introduce the vectors Ri and Ii [4] such that
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F = Ri + Ii (5)

with

Ri() = [F(p; b) + F(--; -b-)]/2, Ii(-) = [Fi(p; B) - Fi(-p; -B)]/2 (6)

where B is the magnetic field. The vectors R1 and Ii are called "reversible" and

"irreversible" drift, respectively. These vectors have the following property

7-( aR')=--a.A, T - Ii = (Ia (7)

where 7 is the time reversal operator. From eqs. (2-3) and using eq. (6) one simply

has,

4= 0 (8)

since D,. does not change sign under time reversal. The necessary and sufficient

conditions for detailed balance, namely the conditions equivalent to eq. (4), are

Dig(y; p ) = Dii(-q; -B) (9)

a-(foRi) = 0 (10)
ap;

a = (D-)i(aDkl - Ik (11)
JSICI apt

where f0 = exp(-4) is the steady state solution of eq. (1). Equations (9-10) are

automatically satisfied by virtue of eq. (8) and since D,. does not change sign under

time reversal. Equation (11), on the other hand, will provide the steady state solution

of the FP equation and is equivalent, in our case, to the DBC, eq. (4). Solving eq. (11)

requires that the integrability conditions

a[ (Dik)1 - Ik = -(Djk)~ - Ik (12)
apj ap ) ap ap-
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be satisfied. As it is readily clear only those Df's which satisfy eq. (12) are associated

with the existence of a stationary steady state satisfying the DBC. The interpretation of

these restrictive integrability conditions is that the normalized RF diffusion coefficient,

which is related to the imposed RF spectrum, evolves in time and becomes eventually

a functional of the stationary distribution function.

Utilizing eqs. (5), (8) and (11) one readily obtains

- = (D )ik ki - Fk) (13)

This equation implies that in our particular case the flux, Saj, associated with the

steady state distribution function f0 :

So; = -foFi + a-Di fo (14)
aPk

is zero. Therefore the stationary steady state solution of the FP equation as in eq. (1)

is associated with zero flux.

Equation (11) is now replaced by

D = - ' Drf +21 Pa) D.LO = 2! - PZ (15)0 a y ' 2 P'j P 2 j P' aP p 2p2 ; p

where a = x, y and D = det Dij is given by

D = - D - + 32 + - . (16)

For the case of Df = 0 one can recover the relativistic Maxwellian distribution since

then eq. (15) becomes,

C9 Pi-t =_xyz (17)

which implies that

6



p2  
_____ ____= constant + 2-= constant + c(b -1)(18)

+ T)

= 2where the bulk temperature is: TB = mvth.

In the large p limit, that is, when the driving RF spectrum is located away from

the thermal bulk one can drop the -y2 /P2  1/p 2 + #2a terms in eq. (14). Then, in

cylindrical coordinates, pl = pa, pL = p2 + p , one has

84 PL pDr/t + 1 8 O 1 (19)

ap 'y pp2 Df /y3 + 1' dp 'I ppDrf I3 + 1

along with the associated integrability conditions which are meaningfull only in the

region p1 < p|| < P2. Equation (19) can be used to compute expectation values of.

various physical quantities (like momentum, energy and current) by an alternative to

the standard Monte Carlo technique [5].

An analytic solution to eq. (19) can be found for the nonrelativistic case. For

y = 1 eq. (19) along with the integrability condition, eq. (12), becomes

__ 1 ao 1 pfT (0

p2 2T pp22T p[-1

where T is a function of the general form

T(p1j,p 1 ) = T(p2 + P2 +1/ ln( P ) pflCpi,p2) (21)

arising from the integrability conditions for Df which now becomes

ST-1
Drf(pj, pL) = - T (22)

The positivity requirement for D,.f implies that

1< T < . (23)
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The interpretation of the function T(pj, pI) is the following: in the absence of the RF

drive, T = 1 and thus T(pil, pI) plays the role of the normalized temperature of the

distribution of the energetic electrons which, in this case, becomes part of the bulk

distribution with a temperature equal to the bulk temperature. When the RF drive

is present there is evidence from the experimental data [6] as well as from numerical

simulations [7] that the distribution of the energetic electrons is much "hotter" in the

perpendicular direction than it is for the bulk electrons, that is, 4 -< . It is also

very well known [8] that the distribution of energetic electron flattens in the parallel

direction. From eq. (20) it is clear that for T(p1 , pI) > 1 one has a simultaneous

broadening and a flattening of the distribution function in the perpendicular and

parallel direction respectively.

In actuality only the RF spectrum of the wave guide is quite accurately known.

The spectrum inside the plasma, and therefore D,f, can be calculated by solving the

entire self-consistent problem in toroidal geometry, a quite arduous task. There are

simpler methods [9], of course, but they are based on many, not yet well-founded,

simplifications. Assuming that Df is known on a given flux surface inside the plasma,

then, if DBC have been achieved, the function T will satisfy eq.(22) and (23). The

simplest possible model for the function T for p1 < P11 < P2, supported also by

numerical evidence [6], is

T(p1 ,p 1 ) = constant = T > 1 (24)

where T satisfies eq. (23). The solution for f(pll,p ) based on eq. (24) can easily be

obtained and is given by,

f(P=, P exp - P ( - 1)T7. (25)

8



The average perpendicular energy T 1 = fo' dpI pIf /2 fo dpI pIf coincides with T

in eq. (24). Matching to a Maxwellian distribution at p, and/or P2, leads to discontinuity

of the solution, eq. (25), and a slight underestimation in the number of particles,

resonant or not, involved in the actual distribution of the energetic electrons. One

has to solve the Fokker Planck equation, eq. (1), in the left boundary layer in order

continuously match the solution, eq. (25), to a Maxwellian distribution function at

pg1 = pmin. The numerical results, [6], suggests also that the distribution goes to a

Maxwellian function at a point pl = p'1, Prin < P' < PI (actually p'i is very close to

Pi) Finally, eq.(22) suggests that the diffusion coefficien, Df, has its highly localized

maximum value in the vicinity of pg = pl. This feature is in accordance with the

one used in the numerical solution for entirely different reasons (Bonoli-Englade's ray

tracing results for Alcator C [9]).

One can calculate the current density, J, associated with the resonance region, as

well as the power density dissipated, Pd, required to raise that current in the regime

p > 1. These quantities are of major importance in the RF current-drive theory.

The current density J which is defined by 27r f,2 dpil fo dp 1 pjp f is given by

T- 1

2 - ( p2 T - 1 T - 1 11
J = 2rT2(2T )M{ (T exp -FTT r(2T- - '} (26)

where r is the incomplete gamma function and {h(pII)}1 = h(pi) - h(p2). The power

density, Pd, which is defined.by, 27rf, dp11 fo* dp 1 p+ D,.f 9 is given by
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Pd=- 1r(T - 1)(2TT+1 2

T( +1)-1 12T

T-1 FT iT T 2 T 2 eT_T 1 1  T(+ + 1)- - (27)
T 2Tg 2 p2 2T 2TP

-T(g+1)+1 __

2

where cp is the error function.

An important quantity, which determines the efficiency of the current drive is the

figure of merit, IJ/Pl. From eqs. (26) and (27) one has

1+11+I 2fv1 L

2T 2 Tr~ 12-

2 F(28)

This equation exhibits the leading order dependencies of the efficiency on and T.

Since marginal particles have been excluded from this analysis, eqs. (26), (27) and (28)

are approximately valid. The approximation is based on the smallness of the thickness

of the boundary layers. Solution of the Fokker Planck equation in the left boundary

may provide the value of the constant T.

The method of solution investigated in this paper may serve as a trial solution

in a variational scheme in which the DBC are only approximatelly satisfied. In such

a case the fluxes S0, will be finite but small. This scheme may provide an alternative

method, more appropriate for arbitrary D,., to those existing in the literature, for

example, [2] and [10] for strong and weak RF diffusion respectively.
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