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ABSTRACT

This paper gives an extensive characterization of the range of validity

of the Compton and Raman approximations to the exact free electron laser

dispersion relation for a cold, relativistic electron beam propagating

through a constant-amplitude helical wiggler magnetic field B --B cosk4w 0coAxz~-

B sink z& . Here X =27/k is the wiggler wavelength, B the wiggler
0 0 NY X02/ 0  B0

amplitude (assumed constant), and the electron beam is treated as infinite

in transverse extent. For example, a detailed numerical analysis shows

that the Compton approximation (6$~O) gives a valid estimate, to within

ten percent, of the maximum growth rate of the upshifted emission peak

for system parameters satisfying

3
Sck0  

Tb (l+Sb
2 <25 ab

Here, w -4n 0e
2/ydm is the relativistic plasma frequency-squared, wc=eBo/yomc

is the relativistic cyclotron frequency, yb=(l2) -1/2 is the relativistic

mass factot, ebc.=po/Y0m is the axial beam velocity, y0 is defined by y0o

(1+p /m2c2+e2B 2 /m 2c4 k )1/2, and G0 ()- 6 (p -p0 ) is the equilibrium axial

momentum distribution of the beam electrons.

t Permanent address: Massachusetts Institute of Technology, Cambridge,

MA, 02139.
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I. INTRODUCTION

Recently Davidson and Uhm have developed a fully self-consistent

treatment of the free electron laser instability based on the Vlasov-

Maxwell equations. Their analysis treats an intense relativistic electron

beam, with uniform cross section, propagating through a constant amplitude

magnetic field approximating a helical wiggler field [Eq. (1)]. The

description includes beam kinetic effects and coupling to higher harmonics

of the wiggler wavenumber k0, and makes no a priori assumptions that any

off-diagonal elements of the dispersion matrix [Eq. (9)] are negligibly

small. The class of distribution functions considered in Ref. 1 is a

product of delta functions of the transverse canonical momenta, including

electromagnetic components, times a function G(z,p ,t) of axial position,

momentum and time [Eq. (2)]. The complete dispersion relation [Eq. (20)].

obtained in this analysis1 is referred to as the full dispersion relation (FDR).

We are engaged in analytic and numerical studies of the properties

of the FDR [Eq. (20)] and the corresponding matrix dispersion equation

[Eq. (9)]. The work has proceeded at three levels: a study of the cold-

fluid (cold-beam) FDR, of the warm-fluid FDR, and of the complete Vlasov-

Maxwell FDR. There are two general goals of this work. The first goal

is to identify important qualitative properties of the solutions of the

FDR. Because of the few approximations made in the derivation of this

dispersion relation, these properties can be expected to be reflected

in the physics of the free electron laser instability and are not simply

characteristic of the model. The second goal is to compare solutions of

the FDR with those of approximate dispersion relations. Such comparisons

enable one to determine the range of validity of such approximations, and

more importantly, to identify the key physical processes contributing to

the instability.
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In this paper, we restrict the detailed stability analysis to the

cold-beam version of the FDR [Eq. (28)]. The cold-beam stability

properties discussed below, many of which are new, provide a point of

reference for the inclusion of thermal effects which will be considered

in subsequent papers. Most of the techniques applied here for a cold

electron beam, can be extended directly to the case where the electrons

are treated as a warm fluid. However, in the latter case, the introduction

and application of these techniques are not so simple and straightforward

as in the cold-beam case.

Section II begins with a concise outline of the principal analytic

results of the Vlasov-Maxwell treatment in Ref. 1, including the matrix

dispersion equation [Eq. (9)] and the full dispersion relation (FDR)

in Eq. (20). Analytic expressions are obtained for the ratios of the

electromagnetic energies (averaged over one cycle) contained in the left-

and right-hand circularly-polarized radiation fields and in the longitudinal

fields [Eqs. (24) - (26)]. An important result in this section is the

full Compton dispersion relation (CDR) given in Eq. (27). Its derivation

is the same as that of the FDR in Eq. (20), with the additional assumption

that the longitudinal field is negligibly small (6d=0). The cold-beam

limits of the FDR and CDR are then obtained [Eqs. (28) and (33)], as

are the corresponding limits of the field energy ratios [Eqs. (35) - (37)].

These cold-beam results are then used in the remainder of the paper.

Detailed properties of the cold-beam FDR and CDR growth curves [Im(63)

versus k] are rigorously derived in Secs. III and V. As one result

of this analysis, we conclude that the growth rate curves obtained from

the cold-beam CDR [Eq. (33)] are not generally valid, except possibly in

the vicinity of the maximum growth regions (as functions of k) obtained

from the FDR in Eq. (28) (Sec. VI). A criterion is established for
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classifying cold-beam systems as Compton or Raman based upon the accuracy

of the grawth rate obtained from the CDR at the upshifted maximum of

the growth rate curve obtained from the FDR. (In this paper, the Raman

classification is applied to any system for which the CDR is not a valid

approximation at the maximum growth of the upshifted peak.) Using a

combination of analytic and numerical studies, we obtain a condition

for the validity of the Compton approximation for a cold electron beam.

The validity condition for the Compton approximation is given by

[Eq. (64)]

3
W ck b (1+6b

2 25 ~b
c

where W WC: Yb, and b are defined in Eqs. (18), (19), (30), and (31),

respectively.

An immediate result of the analysis in Secs. III and IV is the

derivation of a sufficient condition for stability of a cold-beam

system, i.e., Im(!)=0 for all k. This condition is given in Eq. (53).

A numerical example showing the approach to stability with increasing

beam density is presented in Fig. 6.

In Sec. VII, we obtain an approximate dispersion relation [Eq. (68)]

known as the Raman approximation (RA) to the FDR. This dispersion

relation [Eq. (68)] is applicable when the primary coupling is between

the left-hand polarized radiation field and the negative-energy longitudinal

field.

Detailed numerical examples comparing stability results from the FDR,

CDR, and RA dispersion relations are presented in Sec. VIII.
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These confirm several analytic results obtained in previous sections.

Plots of frequency mismatches as functions of i over the (upshifted)

growth regions are also presented, since assumptions regarding the

relative values of these mismatches form the basis for most approximate

dispersion relations applied to the free electron laser instability.

The numerical analysis in Sec. VIII shows that- the relative values of

the frequency mismatches may vary significantly over the growth interval.

Thus, approximations to the FDR which are valid at maximum growth do not

necessarily give a valid description of the detailed shape of the growth

curve, Im(w) versus k.

The numerical analysis shows that an important feature of the

FDR growth curves for cold-beam Compton systems is a tail extending

from the maximum growth in the direction of increasing i. In Sec. IX, it

is shown that the instability in the tail region is produced by a

coupling of the positive- and negative-energy longitudinal oscillations

with the wiggler and radiation fields. We derive a condition for the

2
existence of this tail, applicable to high-gamma systems with 

2yb 1

+ W2 /c2 k2
p 0
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II. DISPERSION RELATION

A. Introduction and Background

In Ref. 1, Davidson and Uhm developed a self-consistent description

of the free electron laser instability for a relativistic electron beam

propagating in the z-direction through a left-circularly-polarized helical

wiggler field of the form

= -B0cosk 0oz - B0sink0zey , (1)

where B0 = const. is the wiggler amplitude and X0=21T/k0 is the wiggler

wavelength. In the linear stability analysis, it is assumed that the

equilibrium self-electric and self-magnetic fields are negligibly small,

that perturbations depend only upon axial coordinate z, and that the

beam is cold in the transverse directions. It is further assumed that the

beam distribution function fb(z,p,t) is of the form

fb(z,p,t) = n(0 Px MPy)G(z,pz~t) , (2)

where P and P are the canonical momenta transverse to the beam
x y

propagation direction, and pz is the mechanical momentum

in the z-direction. The distribution function G(z,pz,t) satisfies

the one-dimensional nonlinear Vlasov equation
1

(- + vz !- - - (z,pzt) a )G(z,pzt) = 0 . (3)

2 4 2 2 2 0 2 2 0 21/

The quantity H(zpz ,t) = [m c +c p +e (A -h6Ax) +e (A yA y) ]l/
2-e (z,t)

is the potential giving rise to axial forces on an electron due to

ponderomotive and longitudinal electrostatic forces.
1 The equilibrium
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one-dimensional distribution function is denoted by GO(pz). In the

equilibrium configuration, the energy

Ymc2 = [m2c4+p c2+B e2/k 2 1/2

is conserved, as is the axial momentum

pz= Ymvz . (5)

In the subsequent analysis, we consider the following three perturbed

field quantities: (a) the vector potential for the left-circularly-

polarized radiation field with wavenumber k-k0 and frequency w,

=Ak-k 0 Ak- exp[i(k-k0 )z-iwt] , (6)
o /2

(b) the vector potential for the right-circularly-polarized radiation field

with wavenumber k+k0 and frequency w,

6+ exp[i(k+k0 )z-iwt] , (7)

and (c) the scalar potential for the longitudinal electric field with

wavenumber k,

6 k *Okexp(ikz-iwt) . (8)

In Ref. 1, use is made of the linearized Vlasov-Maxwell equations

to show that the perturbation amplitudes are related by the matrix

dispersion equation
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- T - 2 2 (2)) G)-2 (a 2 (2) (1) - -+ -D. +.1 +1)-c
k+k+ 2 Wc 43&p k ' 2 c 3Wpf k )c k +k0

1 2 -2 (2) b + T 1 C 2 2 (2) - (l)1 c 2 3 -3 p k ), k-k 0 .6+

- ~(1) - (1)2LT c k cXk - k 0

L ~ A c k k k

(9)

Higher-order couplings are included in the derivation of Eq. (9).

Definitions of the quantities appearing in the above matrix dispersion

equation are the following. The (dimensionless) longitudinal dielectric

function and the transverse dielectric functions are given by 1

'L . k2 + (0)(()(0k - fC2 + (G) , (10)

.T 2 - 2 2

and

T 2 2 -'2
Dk+kO - (k+l) 2- p . (12)

The dimensionless susceptibilities are defined by

0) - m dp G 0 / , (13)
J p -kv z/c

Xk - ymcW2 Y z 0 z (14)

z
and

(2) - .2-2 dpZ kG 0/p z
Xk Y- pYmc y (15)

f y 6-kv /c

2
where ymc = const. is the characteristic electron energy and a and a3

are defined by
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Sdp
Y J Go (pz) . (16)

Y

The remaining dimensionless quantities are defined by

k - k/k0  (17)

eB
W , where - - 0 (18)

c ck0  c -
0 YmC

and 2 47ne 2

2 __ 2p- , where w 29
0 109

We refer to the secular equation corresponding to the matrix dispersion

equation (9) as the full dispersion relation (FDR). The FDR is given by1

k D()Dk+k0 D kk0

(20)

2 (iDck+k0 (!+Dk-k 0 %/J 1) k 3 2)kpw)(c(6)) 1 -0.

No assumption that any of the dielectric functions, the wiggler field,

or the beam density is small has been made in deriving Eq. (20).

We return briefly to the effective potential H(z,p ,t) appearing in

Eq. (3). In Ref. 1, it is shown (after linearization) that the portion

of k(z,p ,t) contributing to the ponderomotive and longitudinal electro-

static forces on an electron is proportional to

jexp(ikoz)6A_ + exp(-ikoz)A+ - 6, (21)
2 cY

where 6A±-6A ±i6A is the vector potential for the left- and right-
- x y
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circularly-polarized radiation fields and 6&f is the longitudinal

potential. It follows that the harmonics of the pondermotive and longi-

tudinal potentials with normalized wavenumber k and frequency w have

phase velocity w/k. Also note from Eqs. (6) and (7) that for a given

frequency w, the phase velocities of the left- and right-circularly-

polarized radiation fields are w/(k-k0) and w/(k+k0), respectively. In

particular, for W>0, the left-circularly-polarized field propagates in

the negative z-direction for k<k 0 (i.e., k<1), and in the positive

z-direction for k>k 0 (i.e., k>1).

B. Polarization and Electromagnetic Energies

Solving the matrix equation (9) with the aid of the FDR [Eq. (20) ),

we obtain the following amplitude ratios

I Dk~ +Dkk
k c k+k0 k-k0 A (1)

k 2 LT X k
0 kk+k0  (22)

[D +Dk I
$k W k+k 0 k-k0 A(1)

+ 2 ^L^T Xk
o+k k k-k0

and
- AT

Ak+k Dk-k

~~T
Ak-k0 k+k0

For the special case of monochromatic perturbation with IIm(W) I<<Re(w)

the electromagnetic energy density, averaged over one cycle, is given by

(B(* (E(*

E = I + 8 (23)

The perturbed fields are
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and -

1
6E - _y$ - c t

where 6A - (l/)(e +i )6Ak +(1/)( -i)S4+k , and 6$-6$k [seer ~ V -y kk0 \J k0 ""

Eqs. (6)-(8)].

From Eq. (23), it follows that the contributions to the longitudinal

oscillations, the right-circularly-polarized radiation field, and the

left-circularly-polarized radiation field to the total electromagnetic

energy are separable. Denoting these contributions by EL(G,k), E+(0,ic+l)

and E_(j,k-1), respectively, and making use of Eq. (22), we obtain the

electromagnetic energy ratios

~2~ [T ^bT ] 2
E (tok __ _ __ _ __ _ __________Dk

L k+k0  k-k0  (1) (24)
______ =2+1 A2] ^IT Xk (4

E+( ,k+l) 2[(k+l) 2wk D ^Dkk-k0

E (W ,k 2k 2  [bDk+k +Dk-k 2
L____ c 0 0 (1)

E_ (^,i-l) 2[ (k-1)2+1 
2  kk+k X k , (25)

and ^T 2
E+(ank+l) k+1)2  &()12  Dk-k 0  . (26)

E (w,k-1) [(IC-1) +1(k)12 Dk+k

The cold-fluid litmits of the above energy ratios are used later in this

paper.

C. The Compton Dispersion Relation

If the longitudinal potential 6$ is neglected in the derivation

of Eq. (9), then we obtain a two-dimensional matrix dispersion equation

involving only the vector potentials k+ . We refer to the corresponding

secular equation as the full Compton dispersion relation (CDR). 
The CDR

is given by
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T ^ T 1 ~2 ^T - T 2()
D +k -k c k+k0  k-k 0 3 2 2) . (27)

0 0 p k

D. Cold-Beam Dispersion Relations

In this paper, we deal with the FDR and CDR for the case of a cold

electron beam. To obtain dispersion relations for a cold beam, the

equilibrium distribution function is specified by G (pz)=6 (pz-o) in

Eqs. (13) - (16). The resulting cold-beam FDR [Eq. (20)] is given by

[ 2 2- +1)222 2_ 2_

(28)

-2[&2_ 2 2 ][(2_j 2cp p p

To obtain the above dispersion relation, we have set the constant y

[appearing in Eqs. (13) - (15) and (18) - (19)] equal to y0 , where yo

is defined by

2 2 4 2 2 2 2 2 (29)
y0mc _m c +p0c +e2BO/k2/ (29)

Moreover, the quantity Yb is defined by

-b (1 2 -1/2 (30)

where 0 b, the ratio of the unperturbed axial beam velocity to the speed

of light, is given by

. 0PO (31)
b Y Omc

The quantities Y0 and Yb are related by the expression
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1 + ) 2 (32)
2 2 c'
b 0

where & - (eBO/yOmc)/ck0 , andyo Y b necessarily follows from Eqs. (29) -

(32). We note that it is (incorrectly) assumed that Yb > Y0 in several

of the cold-beam numerical calculations in Ref. 1. These nonphysical

examples are those whose temporal growth rate curves fail to vanish

above some finite value of the wavenumber. (See Figs. 2 and 5-11 of

Ref. 1.)

The cold-beam CDR [obtained from Eq. (27)] is

[-b 22 2- 1)2_,2 2 22[w-k~ [w -k+) -W p [w -(k-1) -W p

(33)
- "2^2 "2_ 2 "2 2 2-
W w [-2(k +1)-w ][w 2kk

Comparing Eq. (33) with Eq. (28), we find that a condition for validity of

the cold-beam CDR is that

w-k b / b (34)

Clearly, a second requirement for validity of the CDR is that 2$ -2 2>>w

However, it can be shown that Eq. (34) implies this second inequality if

"2> 4
p /Yb < 1 and k > Y b. Thus, Eq. (34) assures the validity of the Compton

approximation at the upshifted peak for all systems of moderate density.

For the case of a cold beam, Eqs. (24) - (26) reduce to

* 2 4 [ 2 - 2 - 1[bk 2
ELQ,k) = 2 cp 2_ _ _ b_ 2, (35)

2 2 2 2 2 b 2

L = 2 c P P], (36)
E (&,k 6) [(k2) +j |j ] [Ci -( k+1) 2 2 )2.. 2/ 2

E_ I k-1)p I Ub) p/bl

and 2
E+(,k+l) +2 2 -(2 -)2t
+ ' (~ ) I2 (k)-

a (37)
E (, k-1) [(i-l) 2+I 2 (-3+7)



14

In Eqs. (35) - (37), the quantities EL (,k), E_(&,k-1) and E+(G,i+l) are

the electromagnetic energy densities associated with the longitudinal

oscillations and the left- and right-hand circularly-polarized electro-

magnetic fields, respectively, for the case of a monochromatic wave

perturbation with frequency (.

It should be noted that both EL(0,k)/E+(Ck+l) and EL (Gk)/E_(,k-l)

approach infinity as (a-kC by2+C /Y. On the other hand, non-zero

electrostatic energy remains in the longitudinal plasma oscillations

a 2 2 2
as w +(k1) -1-a

p
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III. PROPERTIES OF THE COLD-BEAM DISPERSION RELATION

The cold-beam full dispersion relation FDR [Eq. (28)] is a sixth-

degree polynomial in G. Thus, complex roots of the FDR will occur in

complex conjugate pairs, one of which will represent growth, when

2
Im(w)>O. The occurrence of complex roots can be analyzed by writing

the cold-beam FDR in the form

LHS - RHS , (38)

S 2 2 2
where LHS is the parabola defined by LHS b)2 /Y , and RHS

is the discontinuous curve

RHS 2 2 2 22
[ _ - ][ - _

Here we have defined the frequencies

- (k2+1 2 )1/ 2 , (39)
1 p

S =(k2+1+21/2 , (40)
2 p

= [(k+l)2+& 2 / (41)

and

G= [(k-1) 2+J2 ]1/ 2  (42)
p

For k > 0, these frequencies satisfy the orderings
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+ 2 > 1  G, fork > , (43)

and

+ 2 -G) , for 0 < k < . (44)+ 212

Graphs of LHS and RHS versus real & for fixed k are shown schematically

in Figs. 1(a) and l(b) for 0 < k < 1/2 and 1c > 1/2, respectively. For

the values of k shown, there are six real roots and no complex roots of

the FDR because the LHS and RHS curves are shown to have six intersections.

Additional frequencies shown on the graphs are

Wu lb + 'P/yb (45)

and

Z- b - wp/b ,(46)

which are the positive- and negative-energy longitudinal space-charge

wave frequencies, respectively. The occurrence of complex roots W

of the FDR for positive k can be determined by considering the manner

in which the graphs in Figs. 1(a) and 1(b) change as Ik > 0 varies.

Consider the behavior of the quantity W u - W . Using Eqs. (39)

and (45), we find that U - 6 1 - -p Y1 1 b) < 0, at 6=0. The quantity

Su - & 1 attains a maximum value of zero at k - &py b b (where (Q is

a real root of the FDR), and then approaches -w as 't approaches +- .

With the aid of Fig. 1(a), we find that the FDR has six real roots

(and therefore exhibits no instability) for all k in the interval

0 < k < 1/2 by using the following argument. Making use of Eq. (38),

it is easily shown that RHS (w, k) is a monotonically increasing function
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of & for 0 < & < & provided 0 < k < 1/2. The minimum of RHS at G = 0

is given by

2 A2

RHS(0,k) - -22 1 1 2c p 2 .2

whereas the minimum of the parabola is -2 /Y . According to the

inequality in Eq. (44), JRHS(0,fk) < &2 2, whereas it follows from Eq. (32)
c p

that

62 2 2(l. + 12) 2 2
&p /Yb p 2 c p W

YO

It was noted in the preceding paragraph that &U < . Therefore, the

FDR has two real roots in the interval 0 < < &_ and four elsewhere,

for a total of six. For the FDR, it therefore follows that Im(W)=0 for k

in the interval 0 < k < 1/2.

Next we consider the case where i > 1/2. We give here a qualitative

description of how the complex roots of the FDR appear and disappear as

k ranges from 1/2 to infinity. Mathematical details are given later in

this section. Referring to Fig. 1(b), we note that all of the quantities

VZ, Ub' "Ju' 63-, (l' 6)2, andfl+ increase with increasing k. However,

the parabola (LHS) at first shifts to the right relative to the RHS

curve, for increasing k. Then, with further increase in ^k, the parabola

shifts back to the left. If the parabola shifts sufficiently far to the

right, it will no longer intersect with that portion of the RHS curve

between 0 and e_ in Fig. l(b), and two complex conjugate roots of the

FDR will appear. The parabola may then shift back to the left. As a

result, a plot of Im(Co) versus 'k will exhibit a single growth interval

where Imw) > 0 [see Fig. 3(a)]. A second possibility is that the
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parabola shifts sufficiently far to the right that it intersects the

A A A

RHS curve in the interval W_ 4U3 <- W as shown in Fig. 2. Then a plot of

ImQI) versus k will exhibit two growth intervals, the first being produced

as the parabola shifts to the right and the second as it shifts back to

the left. We refer to these as the downshifted and upshifted peaks,

respectively [see Fig. 3(b)]. Since u < Gl, the parabola will always

intersect that portion of the RHS curve in the interval 6_ < W < W +* Thus,

the FDR has at most two complex roots, one of which corresponds to growth

[Im(W)>Q].

The mathematical details justifying the above description are the

following. Making use of Eq. (42), one can easily show that the quantity

(I bw-) increases monotonically with increasing k from the value -&

at 6-0, to a maximum value of b~ip yb at i=l+b p p. With a further

increase in i, the quantity (6 b -G_) decreases monotonically approaching

-c as i approaches +-. Further, if we evaluate RHS at G=kb (the position

of the minimum of the parabola) and let k4, we find

^ 2 2
lim RHS(k8 ,k)--w w

bp c p
k+-o

Since (2 2 21 = the distance of the minimum of the parabola below
c p p b

the real 6-axis, we find that the parabola must intersect the RHS curve

between 0 and &_ for all k larger than some finite value. Therefore,

there is some finite value of k beyond which Im(G) = 0.

The boundaries of the growth peak (or peaks) in a plot of Im(!)

versus k are those values of k for which LHS and RHS versus ( have points

of tangency; that is, those real values of k which obey the two equations

LHS-RHS and aLHS/awaRHS/3w. However, we have had little success in

obtaining analytic solutions to these equations. Upper and lower bounds
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(kub and^k ) of the entire growth region, however, can be obtained as

follows. Referring to Fig. l(b) and assuming that the parabola shifts

to the right (with increasing k) relative to the RHS curve, we note that

w=k$b will become a root of the FDR before the left-most boundary of a

growth peak in a plot of Im(6) versus k is reached. Then, assuming that

the parabola shifts to the left with increasing k, we find that !=k6b

again becomes a root, after the right-most boundary of a growth peak is

attained. Substituting 6=1Sb into the FDR and solving for k, we obtain

the solutions

kub =1 -b (b2-4c) 1/2] (48)

ib

where

2 2 2L2 2 2
b - -[4yb 2 

- 2y bk - Y Yb

and

c - (14)2 )Y [ 4 2 .
p b 0pyb

Thus, kub > 0 and kb > 0 provide upper and lower bounds respectively

on the entire growth region for nonnegative k as shown in Figs. 3(a)

and 3(b). (For a high-energy beam satisfying y0  ,b > 1 and G 1,

it follows that kub b 2y g

In the numerical analysis, we often find that 'kub and k b provide

excellent approximations to the upper and lower boundaries of the growth

region. This situation occurs when the RHS curve between 0 and &_ does

not deviate appreciably from the horizontal at its point of tangency

with the parabola. On the other hand, we find numerically that kub
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and k Lb are poor (but still useful) approximations to the boundaries of

the instability region if the point of tangency of the LHS parabola with

the RHS curve for 0 < ( <&_ occurs close to Co, where the magnitude of

the slope of the RHS curve is relatively large.

Upper and lower bounds (kub and k'b) on the interval between the

downshifted and upshifted peaks can be obtained by noting that with increasing

k, Rcoincides with G_ before the situation depicted in Fig. 2 occurs and

coincides again with 6_ after the situation ceases to occur. Setting w=w_

and solving for It, with the aid of Eqs. (42) and (46), we obtain

S 2& 2 _2 p (491/2

Zb

The quantities k'b and kb are upper and lower bounds, respectively,

on the interval between the unstable k-ranges.

Equation (49) is normally used in the literature to estimate

positions of the maxima of the upshifted and downshifted peaks and not

to bound the interval between the unstable k-ranges. From our numerical

studies, we find that if two well defined peaks are present, Eq. (49)

gives better estimates of the maxima of Im(W) than of the actual marginal

stability boundaries. Nevertheless, Eq. (49) does provide us with a
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sufficient condition that no interval with Im(w)=0 exists [as in Fig. 3(a)].

Clearly, real solutions for k' and k' do not exist if the discriminantub 6b

in Eq. (49) is negative. Thus, the upshifted and downshifted unstable

regions will overlap provided

S3 > .O b (50)

In Fig. 4, we plot the minimum G (=Ybab/2) for which the inequality in

Eq. (50) holds versus Yb. Note that if 6P < 1, then the sufficienty

condition is satisfied only if yb < 2.3. Of course, unstable regions can

overlap before the sufficiency condition is satisfied.

The discussion in this section is concerned mainly with the behavior

of two of the six branches &(i) of the cold-beam FDR, namely, those two

branches which become complex conjikgates in the unstable k-intervals.

The large-k behavior of the two branches is given by

2 1/2

W j1/2 -2 (51)
'b 2 - CP YO

The above result is obtained by co-locating the intersections of the

2 2
parabola in Fig. 3(a), with the horizontal line RHS -Co p as k-o,

0 < & < &_. Equation (51) shows that these branches become longitudinal

plasma oscillations for large k, provided that yb Y0 . However, for a

sufficiently large wiggler field, y0 may differ significantly from Yb

[as evident from Eq. (32)] and an appreciable amount of the energy in

these branches may be contained in the radiation fields at large k.

In the limit of large k for these two branches, the energy ratios in

Eqs. (35) and (36) become



22

EL (w,k) EL (G,k) 2
lrn - lr - 2 (52)

fe E+ <^,k+l) ic+ - E_ (6), k)-1) C Y (1+0

IV. A COLD-BEAM STABILITY CRITERION

Equation (48) gives upper and lower bounds ( %b and kZb) on the

entire unstable k-region for the case of a cold beam. Thus, if distinct,

real kub and k b do not exist, then there will be no growth region.

It follows from Eq. (48) that a sufficient condition for the full

dispersion relation (FDR) in Eq. (28) to give stable solutions (Iu4=O) for

all k is

b2 < 4c.

This stability condition can be written in the form

2 2
2 > Y2 + 2 +- 1 + + 1 1 [(12] (53)p-0 2 16 42 l 2+ 2/ WPMIN

16y0 b b 4yb

A free electron laser for which the cold-beam FDR [Eq. (28)] is applicable

will become stable at sufficiently high beam densities. However, for

moderate densities ( 21), the above inequality is not satisfied except

for beama with low values of y0.

Figure 5 shows contours of constant U 2MIN in (y O'Yb ) space.

Referring to Eq. (32), we note that 62 0 on the diagonal (Y b - Y 0

and that W 2 attains a maximum value of 2 = (Y -1)/y on the y 0-axis.

For 2 > {G I the system is stable for all values of yo and

below the corresponding contour in Fig. 5.
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The-condition 6p 1 yb~b/2 [Eq. (50)] is sometimes given as an

approximate cold-beam stability criterion.
3 However, this condition bears

little similarity to the inequality in Eq. (53). For example, contours

of constant Yb~b/2 appear as vertical lines in Fig. 5. In Sec. VII,

we investigate an example of a system satisfying the inequality in Eq. (50)

which exhibits a large growth rate. In the. limit Yb=YO' the inequality

in Eq. (53) reduces to @ > Yb'

Figure 6 gives numerical results obtained from the FDR [Eq. (28)]

illustrating the onset of stability, with increasing G , for fixed y0=1.3

and Yb=*1.. The sufficient condition for stability [Eq. (53)] is satisfied

by all t2 > 0.498. On the other hand, our numerical analysis shows that
p -

2
instability ceases when 62 > 0.37.

p

..... omen
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V. PROPERTIES OF THE COLD-BEAM COMPTON DISPERSION RELATION

The analysis of the cold-beam Compton Dispersion Relation (CDR)

is analogous to that of the FDR in Eq. (28). We express the CDR in the form

LHS = RHS (54)

where

LHS = [-4C b]

and 2 _ 2 ] 2

RH S 2 - ^~ 2 2 22 *c p 2 2  2 2
[6) -(!+][w -6)_1

The frequencies appearing in the above definitions are

- [(k+1)2 ]/2 (55)
+ p

2 [ - 2 1/2 (56)
p

and

& . (2+1+,C2) (57)
2 P

where the following orderings are satisfied

G)+ > " 2 > i 1, if k> 2 p

and
1+Gj

> &2k> if 0< k <-2
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Schematic plots of LHS and RHS versus i, for fixed i, are shown in Figures

7(a) and 7(b) for the cases where O<k<w /2, and k>w /2, respectively.
p p

It is evident from Fig. 7(a) that the CDR has exactly two complex

conjugate roots (one of which represents growth) for all k in the interval

0 < k < (1+l )/2. Referring to Eq. (33) for the CDR, we see that these
p

complex conjugate roots reduce to a double root at Gj=O for i0. The

behavior of the complex conjugate branches of the CDR for small k>O is

determined by neglecting all powers of 6 higher than quadratic in Eq. (33)

and solving for a to linear order in k. The result is

A2 i 2/ 2 2 1/2

2 22 2 c p 2  22 (58)

p c p p C p

It follows that a plot of Im(&) versus k > 0 for the unstable branch

gives zero growth rate at k-0, increases linearly in the neighborhood

of k-0, and remains positive over the interval 0 < i < (1+& )/2. Also
p

note that the phase velocity Re(t)/k is greater than 8b in this small-k

growth region.

The treatment of the CDR for k > (1+& )/2 is somewhat similar
p

to that of the FDR for k > 1/2. As shown in Sec. III, the quantity

(Wcb w_) increases monotonically with increasing k, from the value -G

at 0-, to a maximum value of (b- p b) at K+Bb pVb. Then, as k+-o,

the quantity (0b -) decreases monotonically to -c. The process can

be pictured as a shift to the right of the LHS parabola relative to the RHS

curve in Fig. 7(b), followed by a relative shift back to the left. If,

as a result of this process, the parabola fails to form additional

intersections with the RHS curve [in addition to the original four depicted

in Fig. 7(b)], then the cold-beam CDR exhibits instability for all k>0.

However, an interval of no growth will exist over a finite interval

of k if the situation shown in Fig. 8 exists over that interval.
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The CDR will then be unstable in two regions of k-space. The first

region will extend from C-O to the lowest value of k for which the

parabola is tangential to the RHS curve in the interval (_ < ( < i.

The second region will extend to infinity from the larger value of k

for which there is a tangency.

Since kOb < k, the LHS parabola always has two intersections with

the RHS curve in the interval &_ < < [see Fig. 7(b)], Thus, the

cold-beam CDR in Eq. (33) has at most two complex roots, one of which

corresponds to growth (Ims>O).

The discussion in this section is concerned with those two of the

six branches of the CDR which are complex conjugates in the unstable C-

regions. The behauior of these branches for large k can be determined

by letting ik-o in the RHS of Eq. (54), and solving for &. We obtain

U + ± iw w . (59)

Therefore, in a plot of Im(&) versus k for the CDR, Im(G) approaches

the asymptote Im(3)-&C p as k approaches infinity.

The behavior of the cold-beam CDR growth rate curves discussed in

this section is shown schematically in Figs. 3(a) and 3(b).
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VI. CONDITION FOR VALIDITY OF THE COMPTON APPROXIMATION

From the discussion in Secs. III-V, it is clear that the cold-beam

FDR [Eq. (28)] and CDR [Eq. (33)] are qualitatively different for both

small and large values of k and that the Compton apppoximation

is not valid in those limits. On the other hand, the two treatments are

qualitatively similar for those values of k in the region of maximum

growth. We adopt the following criterion for the validity of the Compton

approximation. We compute the growth rate at the maxima of the (upshifted)

peaks for the FDR and CDR, using Eqs. (28) and (33), respectively. If

these values agree to within 5% of the FDR value, and the corresponding

real parts of & also agree to within 5%, then we consider the Compton

approximation to be valid. If not, but both of the above quantities agree

to within 10%, then we consider the Compton approximation to be marginally

valid. In either case, we refer to the system as a Compton system.

All other systems are classified as Raman.

Cold-beam systems governed by the FDR or CDR are characterized

by the three parameters yo, Cc, and P. Strictly speaking, an exhaustive

study of the validity of the Compton approximation for cold beams would

require a determination of the region in a three-dimensional parameter

space in which the approximation is valid. We reduce the parameter

space from three to two dimensions in the following way. First, we use

a procedure similar to that of Kroll and McMullin4,
5 to obtain a condition

for validity of the Compton approximation for cold beams in the neighborhood

of the upshifted peak. If it is assumed that Dk (-() 0 and k (6) 0k-k 0  k+k 0
in Eq. (27), then the cold-beam CDR [Eq. (33)] is given approximately by

2 C2 _ 2 1 2 2_22) , (60)
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where =(k-l)2-0 . Assuming that &~ksb=- at the upshifted peak, we find

that the solution to Eq. (60) corresponding to growth (Inm>O) is given

approximately by

2 2^ 1/3

S- k/b =-(61)

A condition for validity of the CDR is I(-^kb!Ep/yb [Eq. (34)]. Sub-

stituting the approximate solution (61), one obtains the validity condition

Ybk &
>> -- (62)

46 b g2Wc

A A

If we approximate k at the upshifted peak maximum by k~l1/(l-b), then

the condition for validity of the cold-beam Compton approximation can

be expressed as

y >> 4 (1 ) , (63)

where

x + 6) 12 2'

and 2
CLc

y (I -
p

By numerically determining the roots of the FDR and CDR [Eqs. (28) and

(33)], we have classified a large number of systems as Compton,

marginally Compton, and Raman according to the criteria established

earlier in this section.
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We find that the solid curve y = 25VrT'l-x(l-~_x), shown in Figs.

9(a) and 9(b), separates the Raman region of the two-dimensional parameter

space from the Compton and marginally Compton regions. Moreover, the

dashed curve y=70oiti/-x(l-/l Ex), shown in Figs. 9(a) and 9(b), separates

the Compton and marginally Compton regions. Thus, we adopt the condition

y > 25Yr/v1 -x (l1-) ,

22
where y=&2 i and x=l/yb, as the numerically-deduced validity condition

for the cold-beam Compton approximation. If a system satisfies this

condition, the Compton approximation, at maximum growth of the upshifted

peak, will be valid [for both Re(6) and Im((i)] to within an accuracy

of approximately 10%. This validity criterion- can be expressed in the

equivalent form

0 bb (1+ 64)

c

Details of the above analysis are given in the Appendix A.

2
It is interesting to note that for fixed 6j 2 , the Compton approxi-

mation becomes valid both in the limit of large yb, and in the limit that

Yb approaches unity. The latter results follow directly from Eq. (62),

since k must be greater than 1/2 for growth to occur.

VII. THE RAMAN APPROXIMATION

In this paper, the term Raman is used todesignate any system for

which the Compton approximation is not valid. In a more restricted

sense, a system is considered to satisfy the Raman approximation if its
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upshifted growth peak is due to a coupling of the negative-energy

longitudinal wave and the left-hand polarized radiation field through

the presence of the wiggler field. In such a case ( e=&_, G-

and r-tj at the maximum growth peak. In the following, we apply this

approximation to the FDR [Eq. (28)].

The cold-beam Raman approximation, corresponding to that derived by

Kwan et al6 ,7 for the fluid case, is the following. We express the FDR

in the form

["-X9][- -] R(&,k) , (65)

and make the approximation R(&,k)=R(G _,i)~R, where

R = G) 2 (2k-l)/4 . (66)
c p-

It is also assumed that

[6-C ] [W -&]= -2L, (67)

where L=GP/yb. Solving the resulting quadratic equation, we obtain the

solution

6-& = [-P+i(2R/L-U2)1/2] , (68)

for the unstable branch. Here P = (&-6) is the frequency mismatch.

We refer to Eq. (68) as the Raman approximation (RA).

A validity condition for the Raman approximation [Eq. (68)] is

obtained by following the procedure of Kroll and McMullin?
4



For the case of maximum growth (U=0), Eq. (68) reduces to

I ;_) 1/2

At the growth maximum for a Raman system, it follows that

b - L

Consistency of Eqs. (67), (69), and (70) requires that

1/2L(_ << L)

31

(69)

(70)

(71)



32

VIII. NUMERICAL ANALYSIS OF COMPTON AND RAMAN SYSTEMS

In this section we present detailed numerical solutions to the FDR

[Eq. (28)] and the CDR [Eq. (33)] for three choices of cold-beam parameters,

in order to illustrate several of the analytic results and stability

properties described in the preceding sections. One of the systems is

classified as Compton and two of the systems as Raman.

We also present numerical plots of the frequency mismatches

1l _ - u1t ' bI and 16-4+ as functions of k over the

range of the (upshifted) peaks. Assumptions concerning the magnitudes

of these mismatches are the basis of such approximations as Eqs. (33),

(61), and (68). An interesting property of the results is that, in some

cases, the relative values of the mismatches may vary significantly

over the range of the peak. Thus, an approximation which predicts

the maximum growth rate accurately may not necessarily give the correct

detailed shape for Im(Q) versus k.

A. Example 1 (yo=2 .0, G -0.01, )c =0.5) - Compton System

In Figs. 10(a) and 10(b), we present numerical solutions to the CDR

and FDR for the downshifted and upshifted growth rate curves, respectively,

for a typical system classified as Compton according to the terminology

in Sec. VI. The system parameters are y0-
2 .0, t =0.01, and G =0.5. It is

2 ^2
located outside of the range of Fig. 9(b)withl/Yb0.5 and wC/w p=25. Referring

to Figs. 10(a) and 10(b), it is evident that the respective upper and

lower bounds on the FDR growth region [kub and itb given by Eq. (48)]

are very good approximations to the boundaries of the FDR growth region.

Moreover, the respective upper and lower bounds on the gap between

the FDR peaks [ikb and Qb as given in Eq. (49)] are found to provide

good approximations to the respective maxima of the peaks. (Recall
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that kb and k' are obtained by setting the frequency of the negative-

energy longitudinal oscillations equal to the frequency of the forward-scattered

radiation field.) A prominent feature of the FDR upshifted growth curve

is the tail extending from the growth rate maximum in the direction

of increasing k. This feature will be discussed later in Sec. IX.

From Figs. 10(a) and 10(b), in agreement with the discussion in Sec. VI,

the CDR growth rate curve provides an adequate approximation to that of the

FDR only over the interval of k extending from the downshifted peak to

somewhat beyond the maximum of the upshifted peak. In accordance with

the discussion in Sec. V, the CDR exhibits growth over the entire

region extending from k-0 to the FDR downshifted peak, and Im(l) for the

CDR approaches the asymptote a c - 0.005 as k approaches infinity.

Plots of Re(s) versus k for the CDR and FDR in the downshifted

growth intervals of i are shown in Fig. 11(a). Note that both the FDR

and CDR exhibit positive and negative group velocities over the interval

of the downshifted peak. We also note that below k0.5, the real frequency

Re(G) for the CDR exceeds 1 b' in agreement with Eq. (58), which gives

the solution for G that solves the CDR for small values of k.

Figure 11(b) shows plots of ReQ) versus k for the CDR and FDR

in the upshifted growth regions. It follows that Re() < 8b for

both the CDR and FDR in these regions. However, the difference between I b

and Re ro) (for both the FDR and CDR) becomes very small as k increases

from its value at the FDR peak towards the upper boundary of the FDR

growth curve. The above behavior for the FDR conforms with the discussion

in Sec. III. Consider Fig. 1(b) in circumstances where the LHS parabola

shifts to the left (with increasing k) in order to relink with the RHS

curve in the interval 0 < W < w_. The minimum of the LHS parabola lies

below w = kb. If the slope of the RHS curve below this minimum is
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approximately zero, then the parabola minimum can approach close to the

RHS curve at values of k which are much smaller than k= kub, where the

relinking finally takes place. At such values of k we have Re(w) k b'

These values of k constitute the tail region which follows the FDR

upshifted maximum in Fig. 10(b).

In Fig. 12, we plot the frequency mismatches for this system as

functions of k, over the interval of the FDR upshifted peak. Consider

the plot of the mismatch G-kobi versus k. A validity condition

[Eq. (34)] for the CDR is |i-O b. For values of k at the onset

and maximum of the FDR growth curve, Ird-ibl is about four times p/yb'

However, I|d-k6bI decreases very rapidly with increasing k, and the CDR

is not valid over most of the FDR growth region. The behavior in Fig. 12

conforms closely to the relative behavior of the FDR and CDR growth curves

shown in Fig. 10(b). Further properties of Fig. 12 will be considered

in Sec. IX.

B. Example 2 (Y 0-2.0, G - , Gc-0.5) - Raman System

We increase the value & of Example 1 from 0.01 to rO.4 to obtain a

system with parameters y0-2.0, G -0.6324... and !c=0.5. This system is

2 .A 2
located at the point 1/y = 0.5 and w /wp = 0.395 in Fig. 9(b). Figure

13 shows both the CDR and FDR growth rate curves Im(w) versus k, for this

system. The classification of the system is clearly Raman according to the

terminology in Secs. VI and VII. The downshifted and upshifted peaks are

combined into a single peak, and the upper and lower bounds on the gap

[ku'b and k b of Eq. (49)] do not appear since the sufficiency condition
9ub

Sp > Yb~b/2 [Eq. (50)] for no gap is also satisfied. [It follows that

the equation W (k)-i&(k) cannot be satisfied for this system.] We

see that k and ku [Eq. (48)] provide a useful estimate of the k
kb ub
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interval for which there is growth, but not a good approximation for its

boundaries.

Figure 14 shows a plot of Re(() versus i in the FDR and CDR growth

intervals. Near 0=, Re(I)>kB b for the CDR. Boththe CDR and FDR solutions

approach the curve e!=keb as k increases, but do not approach it rapidly,

as they do in the Compton Example 1. Neither the CDR nor FDR curves

show a region of negative group velocity below 1=, as they do in Example 1

[Fig. 11(b)].

Frequency mismatches for the FDR are shown in Fig. 15. Clearly the

CDR validity condition, I- " (bl p b, is satisfied nowhere within

the interval of the FDR growth curve. The strong inequality in Eq. (71),

for the validity of the approximation in Eq. (69) to the Raman dispersion

relation (68),is satisfied marginally by this system [with 0.534 << 1.79].

For 1=.8 (approximately the FDR peak maximum), the mismatches are |a-ig~

oG_j = 0.36|61o-ul. Thus, the assumptions in the Raman approximation

[Eq. (68)] to the dispersion relation are qarginally satisfied.

However, at the right boundary of the FDR peak, Ia-Gu = -, and

the assumptions of the derivation are clearly invalid. This behavior is

reflected in the accuracy of the Raman approximation (RA) growth rate

curve [Eq. (68)] shown in Fig. 13. The RA gives a marginally accurate

estimate of the FDR maximum growth rate (an error of 13%), but the detailed

RA growth curve is not a good approximation to the FDR growth curve at

larger values of i.

C. Example 3 (y0=,_ G =11.0, c-0.03) - Raman System

An example of a Raman system at relatively high Yb is given by the

choice of parameters y0=l0, o p=1.0, and jc=0.03. Apart from the cold-beam

approximation, these parameters are similar to those given for an Astron beam

6 2 ^2
by Kwan et al. This system is located at the point 1/y =0.0109 and W /w =0.0009 in

b cep
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Figs. 9(a) and 9(b). Figure 16 shows both the FDR and CDR growth rate

curves in the neighborhood of the upshifted peak. (The downshifted

peak is not shown.) As is typical for Raman systems, the upper bound kub

on the growth region provides a useful (but approximate) estimate of the

upper boundary of the unstable k -range. Moreover, k' provides a goodub

approximation to the location of the maximum growth rate. Plots of

Re(G) versus k in the upshifted growth region are not included. For

the scales of k and Re((!) involved, such plots are indistinguishable

from Re()=kb'

Frequency mismatches are shown in Fig. 17, where G is computed from

the FDR in Eq. (28). As expected, the validity condition 1)-ikbl > pb

for the CDR is not satisfied in the interval of the upshifted peak. This

system obeys the strong inequality in Eq. (71) (with 0.093 << 0.42),

and the Raman approximation in Eq. (68) is a good approximation to the

dispersion relation. In contrast with Example 2, the assumptions in the

Raman approximation are satisfied (at least marginally) over the entire

interval of the FDR growth curve [with j&-. ~- -_I 0.211W-u J at

the peak maximum and |c-Wi ~ 0.35Iw- uI at upper boundary]. The RA

growth curve in Fig. 16 is seen to provide a good approximation to that of

the FDR, except for a small shift to the left.
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IX. PROPERTIES OF THE TAIL REGION

A. Coupled Longitudinal Oscillations

The FDR growth rate curve in Example 1 of the previous section shows

a tail extending from the upshifted growth rate maximum [Fig. 10(b)]

in the direction of increasing k. Our numerical analysis has

shown that such a tail occurs for all systems classified as Compton or

marginally Compton according to the criteria developed in Sec. VI.

The underlying reason for such a tail can be seen by analyzing the plots

of frequency mismatches versus k [e.g., in Fig. 12].

Consider the numerical results in Fig. 12, which shows the frequency

mismatches for Example 1 (y0-
2 .0, @,=0.01, !c=0.5) in Sec. VII (a

Compton system). Three of the mismatches illustrated in Fig. 12 are

G-G_|, s-e2 and IG -&uj, where G_( [(k-1)2 + o 2]l/2 is the frequency

of the left-hand circularly-polarized radiation field, 6 (k) = kb - p b

is the frequency of the negative-energy longitudinal oscillation, and Gu (k) =
Au

ki b + Wp/yb is the frequency of the positive energy longitudinal oscillation.

At the maximum of the FDR growth curve (k3.4), the differences in the

values of these three mismatches are small. However, with increasing k,

the mismatch jk-G_| grows in magnitude while j&-6G| and lo-iu

decrease toward the value &p/Yb (as a result of the mismatch ci-isbi

becoming very small). Thus, in the tail region, jG-&_| becomes almost two

orders of magnitude larger than j-G-c 1 and l 4-&u 1. The mismatch i -6+ '

not shown in Fig. 12, is approximately 2.0, which is much greater than

the mismatches shown in Fig. 12.

The above behavior of the frequency mismatches indicates that the

tail in the growth rate curve is produced by a coupling of the two longi-

tudinal modes by the wiggler field and the radiation fields. Although
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the uncoupled dispersion relations for these modes do not have a common

1(kL), the frequencies in the tail region are very close to the natural

frequencies of both longitudinal oscillations.

If the tails are due to such a coupling, an approximate dispersion

relation, valid in the tail region can be derived as follows. We express

the FDR [Eq. (28)] in the approximate form

(-)(-) ) = ) RHS(rjfb,) , (72)

where RHS(l,k) is defined below Eq. (38) and 1 in the expression for

RHS is replaced by kSb. We refer to Eq. (721 as the longitudinal-longitudinal

(LL) approximation to the FDR. From it we obtain the following analytic

expression for the growth rate

62 2+^k2 2+k-22 1/2

Im(&) 3 ( c(14- +k 2 2 2 ,(73)

p b

or Im(&)=O, if the right-hand side of Eq. (73) is pure imaginary. The

quantity Im() approaches infinity as fc approaches (L1 from below or

L2 from above, where

kLL1 ' - 1 { (l-(l+2 )/y] 11/2  (74)

kL2
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A plot of Im(O) versus k for the LL approximation [Eq. (73)] is

included in Fig. 10(b) for Example 1. In Fig. 17, we show the FDR

upshifted peak and the LL approximation for a system with Y0=50, Ip=0.006

and Ic =0.015.8 From Figs. 10(b) and 18, the LL approximation provides

an excellent approximation in the tail regions of both systems.

In Sec. II, we derived Eqs. (35) - (37) for the field energy

ratios EL/E_, EL/E+ and E+/E_. Here, E L, E_, and E+ are, respectively,

the energy densities of the longitudinal waves and the left- and right-

hand circularly-polarized radiation fields. We consider the behavior

of these ratios as k varies from the region of maximum growth to the tail

region. Plots of these ratios as functions of k, over the interval of the

upshifted growth region, are shown in Fig. 19 for the parameters used in

Example 1 of Sec. VIII.

We note that most of the energy resides in the left-hand circularly-

polarized radiation field. However, as k increases from the left boundary

of the upshifted growth curve to the edge of the tail region in Fig. 10(b),

the ratio EL/E_ increases over two orders-of-magnitude from the (very small)

value E L/E_ = 3.6 x 10~ to the (small) value EL/E_ = 1.4 x 101.

An estimate of the ratio E L/E_ at the edge of the tail region is

obtained by setting 6-=kSb, in Eq. (36). We obtain

b 2 (1+b +2 k+ / 
2 2 

(75)

The factor 2/(...) in Eq. (75) is of order unity since k>l at the edge

of the tail region. Referring to Fig. 1(b), and noting that kab is to

the left of &_ at the edge of the tail region, we find that the final

ratio in Eq. (75) is also of order unity. We therefore conclude that
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EL /E_ is of order 2 at the edge of the tail region and consequently canL c

be quite small. For a high-gamma system such as that in Fig. 18,

Eq. (75) simplifies to give

2 2 2
EL2c 0 ~ 2 _____

( L2 2 YOc 2 ( 76)

A~ (+ b c bY 04 b

We conclude that although the detailed structure of the tail region

is associated with coupled longitudinal oscillations, the major portion

of the field energy associated with this region resides in the radiation

field. However, the ratio E L/E_ can be expected to increase significantly

as k varies from the left side of the upshifted peak to the edge of the

tail region.

B. Conditions for Existence of a Tail Region for Large-Gamma Systems

Two conditions are required for a tail region to exist as in Fig. 10(b).

First, for an interval k within the growth region, it is necessary that

Iw4-kObI <<«jpy (77)

in order that - and |G-Coul have approximately the same value. Second,

it is required that

&-rdu < (78)

in order that the coupling is primarily between the longitudinal modes.

Note that the inequalities in Eqs. (34) and (77) are not contradictory,

since they apply to different i-regions of the upshifted FDR growth curve.
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Recalling the discussion in Sec. III, and considering Fig. 1(b)

for the case where k corresponds to the upper boundary of the upshifted

peak, it follows that the LHS parabola, shifting to the left, is tangent

to the RHS curve for 0 < (I < a. The double real root G of the FDR

corresponding to this tangency is the frequency at the upper boundary

of the growth curve. To satisfy the condition in Eq. (77), we require

that the magnitude of the common slope of the LHS and RHS curves at the

point of tangency be much less than 261p/b, since the magnitude of the

slope of the parabola is 2i&-ks b . If we approximate the slope of the

RHS curve at this tangency by the value at kub [the upper bound on the growth

region defined in Eq. (48)], then the condition in Eq. (77) is replaced by

' RHS( o , < Cub (9
36) ub G)=kub ab Y

If Eq. (79) holds (assuring a small slope), then Eq. (78) can be

approximated by substituting kC-kub and G-=kub0b, which gives

pb < 1 . (80)
T - ub) ubab1

It is not difficult to apply the inequalities in Eqs. (79) and (80)

to most high-gamma systems. We differentiate RHS, using Eq. (38).

For systems satisfying

2 22yb> l+ 6) (81)

the inequality in Eq. (79) then reduces to
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2
YOYb (YO-yb)% 2 < 1 . (82)

(Y 0+b) [4Y 0 -b)+1+G @2

Making use of Eqs. (81), (42), and (48), the inequality in Eq. (80)

becomes

Gp << YO .(83)

Since large-gamma systems are assumed, Eq. (83) is similar to Eq. (81).

In addition, it is assumed that

pyo2 (84)470 0 b) >> 1 + G .(84

This condition would be violated by a high-gamma system only for extremely

low wiggler field [Eq. (32)]. If the inequality in Eq. (84) holds, then

with the aid of Eq. (32) we simplify the inequality in Eq. (82) to give

Gi)
- << (85)

3A2

Y01c

as the condition for the existence of a tail region in a high-gamma

system.

Consider the condition in Eq. (62) for the validity of the Compton

approximation at the maximum of the upshifted growth curve. For high-

A 2
gamma systems, %=l and kc2y at this maximum. Then the inequality

in Eq. (62) reduces to

2 G
1 << (86)

3A2
Yb'c

Comparing Eqs. (85) and (86), we conclude that all cold-beam high-gamma
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Compton systems have a tail region produced by coupled longitudinal

oscillations.

X. CONCLUSIONS

In this paper, we have given rigorous derivations of properties

of the cold-fluid full-dispersion relation (FDR) in Eq. (28). Such

properties include the upper and lower bounds on the unstable growth

region in i-space as given by Eq. (48), and on the gap between the

downshifted and upshifted peaks as given by Eqs. (50). From these bounds,

we have derived sufficient conditions that a cold beam be stable for all

values of kC and that the downshifted and upshifted peaks merge together.

We have also verified that the cold-fluid FDR [Eq. (28)] as well as the

cold-fluid CDR [Eq. (33)] have at most one unstable branch with Im(w^) > 0 for

any value of k.

The full Compton dispersion relation (CDR) in Eq. (33) has been derived

by making the single additional assumption that the electrostatic pertur-

bations may be neglected (60=0). We have shown that the detailed growth

curves obtained from the cold-fluid CDR differ substantially from those

obtained from the cold-fluid FDR except possibly at maximum growth and in

the region between the growth peaks. Equation (64) is the (numerically-deduced)

condition for the Compton approximation to be valid to within 10%

at the maximum growth rate of the upshifted peak for cold-beam systems.

Results of detailed numerical analysis of the dispersion relations

are presented in Sec. VIII. This analysis shows that the relative values

of frequency mismatches may vary significantly over the interval of the

upshifted FDR peak. Thus, approximations which adequately predict

the maximum growth rate do not necessarily give an adequate description

of the detailed shape of the peak. As k increases over the region of
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the upshifted peak, I(-6_1 increases and 1-k0bI decreases. The decrease

of the latter causes both IG-6.[ and !GL-6 ul to approach the value C1p/Yb'

For Compton systems, the result is a change in the appropriate approxima-

tion to the FDR [Eq. (28)] from the CDR [Eq. (33)] in the maximum

growth region, to the LL-approximation [Eq. (73)] for k in the tail region.

The Raman approximation [Eq. (68)] also becomes invalid if jro-6_1 and 16-1u1

are approximately equal before the growth rate has decreased to zero with

increasing k.

An interesting property of the upshifted FDR growth curves for Compton

systems is the tail which extends from maximum growth in the direction

of increasing 1. In Sec. IX, we showed that the mechanism producing

this tail is associated with a coupling of the positive- and negative-

energy longitudinal oscillations by the wiggler and radiation fields.

In most cases, the dominant field energy associated with this instability

is concentrated in the radiation field.

We conclude with some important remarks concerning thermal effects.

The above result that the CDR [Eq. (33)] can never adequately approximate

the detailed shape of the FDR growth curves [Eq. (28)] holds in the cold-

fluid approximation. It is not a general result applicable to systems

with finite temperature described by either Vlasov or warm-fluid versions

of the FDR or CDR. We also note that the tail regions for Compton systems

decrease in size when finite-temperature effects are included. The

important influence of thermal effects will be presented in a subsequent

paper.
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APPENDIX A: VALIDITY OF THE COMPTON APPROXIMATION

In deriving the criterion presented in Eq. (64) and Fig. 9 for

validity of the Compton approximation, we have solved numerically the full

dispersion relation (28) and the Compton dispersion relation (33) in the

region of maximum growth for the upshifted peak for a wide range of system

parameters. Detailed comparisons of growth rate and real frequency have

been made for system parameters covering more than seventy-five points in

the parameter space (x,y), where

1 =1 A2

Yb YO

^2 (A.1)

c
y=-

pP

Rather than tabulating here these extensive numerical results, we summarize

stability properties for several points (x*,y*) located exactly on the

curve

y= 25/xA _1-x* (1 - /-x*) . (A.2)

Table I shows a comparison of numerical results for x* covering the range

from 0.005 to 0.992 and y* from 0.0044 to 5.530. The values of Imn, Rew

and k listed in Table I are calculated from the full dispersion relation

(28). The corresponding percentage errors in 1mW and Rew incurred by

using the Compton dispersion relation (33) are also shown. Table I

illustrates that the inequality in Eq. (64) is indeed a good criterion for

the Compton dispersion relation (33) to be marginally valid (within 10%

error).
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Finally, for completeness, Table II shows a similar comparison of

stability results from Eqs. (28) and (33) for values of (x,y) just above

the dashed curve in Fig. 9, i.e., for (x,y) satisfying

y > 70x/l -x (1 - / -x ). (A.3)

It is evident from Table II that the error incurred by using the Compton

dispersion relation (33) is indeed less than 5% when the inequality in

Eq. (A.3) is satisfied.
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FIGURE CAPTIONS

Fig. 1 Schematic plots of LHS versus RHS for the FDR [Eqs. (28) and (38)]

for k in the intervals: (a) 0 < k < 1/2, and (b) k > 1/2.

Fig. 2 Schematic plot of LHS versus RHS for the FDR [Eqs. (28) and (38)]

for k in the interval between the upshifted and downshifted peaks.

Fig. 3 Schematic plots of the FDR (solid line) and the CDR (broken line)

growth rate curves [Eqs. (28) and (33)] for the cases corresponding

to: (a) a single growth rate maximum, and (b) two distinct

downshifted and upshifted peaks.

Fig. 4 The region in (G2pyb) space above the curve satisfies the

sufficiency condition [Eq. (50)] for overlap of the downshifted

and upshifted growth regions in ^k-space.

Fig. 5 Plot showing the sufficient condition for the stability of a cold

beam [Eq. (53)]. For a specified (Yb' O), the system is stable for

all G2 exceeding [ 2]MIN defined in Eq. (53).

Fig. 6 Plots of growth rate Im(G3) versus i obtained numerically from

the FDR [Eq. (28)] for several values of 62 and for fixed y0=1.3p

and Yb-1'1'

Fig. 7 Schematic plots of LHS versus RHS for the CDR [Eqs. (33) and (54)]

for i in the intervals: (a) 0 < i < (1+Z )/2, and (b) k > (1+ P)/2.

Fig. 8 Schematic plot of LHS versus RHS for the CDR [Eqs. (33) and (54)]

for values of k between the downshifted and upshifted growth rate

curves.

Fig. 9 Plot showing the Raman and Compton regions of the parameter space

y=! /G( versus x-1/y for: (a) large yb, and (b) the full range

of Yb. The CDR [Eq. (33)] is valid to within 10% at the (upshifted)

growth rate maximum provided y=l 2 /Gp is above the solid curvec p

y-25rx,/--(l-vT1-)- The CDR [Eq. (33)] is valid to within 5%



51

2
at the upshifted growth rate maximum provided y=G c p is above

the dashed curve y70FT(1lix).

Fig. 10 Plots of growth rate Im(&) versus k for (a) the downshifted

2
peak and (b) the upshifted peak in Example 1. Here y 0.2, y b= 2,

6 =0.01, and & -0.5. The FDR and CDR curves refer to Eqs. (28)
p

and (33), respectively.

Fig. 11 Plots of Re(&) versus k for (a) the downshifted and (b) the upshifted

growth regions in Example 1. System parameters are identical

to Fig. 10.

Fig. 12 Plots of the frequency mismatches I&4-8bI I6-t, o- and

Ito-ou versus i over the interval of the upshifted growth curve

in Example 1. Here, parameters are identical to Figs. 10

and 11, and the complex & solves the FDR in Eq. (28).

Fig. 13 Plots of growth rate Im(&) versus i for a cold-beam system

with y0=2, b =0.4, c=0.5, and y =2. The FDR, CDR, and RA

curves refer to Eqs. (28), (33), and (68), respectively. Only a

single growth rate maximum is present.

Fig. 14 Plots of Re(C)) versus k for system parameters identical to Fig. 13.

Fig. 15 Plots of the frequency mismatches &-iC bl' I"G+ -

I6-q | and |6-Cul versus k for system parameters identical

to Figs. 13 and 14. Here, the complex ( solves the FDR in Eq. (28).

Fig. 16 Plots of growth rate Im(&) versus k for the upshifted peak in

Example 3. Here, YO p0 , cp=l, & =0.03, and Yb=9.
5 7 8 . The

FDR, CDR, and RA curves refer to Eqs. (28), (33), and (68),

respectively.

Fig. 17 Plots of the frequency mismatches Iw-iaCb +Il-i

and ulc versus k for system parameters identical to Fig. 16.

Here, the complex & solves the FDR in Eq. (28).
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Fig. 18 Plot of the FDR growth rate Im(G) versus i obtained from Eq. (28)

for the upshifted peak, assuming a cold-beam system with parameters

YO = 50, sp = 0.006, OC = 0.015, and yb = 40. The LL approximation

[Eq. (73)] in the tall region is also shown.

Fig. 19 Plot of the energy ratios E+/E-, E L/E_ and E L/E+ versus i over

the interval of the upshifted peak for Example 1 analyzed in

Figs. 10 - 12.
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