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ABSTRACT

A simple analytic- treatment based upon the moments of the relativistic two-

dimensional Fokker-Planck equation combined with resonant quasilinear diffusion is

used to describe steady-state RF current drive by waves. For RF diffusion parallel to

the magnetic field (as in lower-hybrid current drive) it is shown that current carried by

high parallel momenta must have an associated high averaged perpendicular energy.

The model is also applied to unidirectional perpendicular RF diffusion which is relevant

to electron cyclotron current drive.
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I. INTRODUCTION

Recent current drive experiments on large tokamak plasmasI" have demonstrated

the maintenance of considerable currents by the RF in the absence of the ohmic electric

field. An important feature of these experiments is that the excited RF spectra have

velocities that are resonant with very energetic electrons, twenty to a twq hundred

times the thermal energy of the bulk plasma which is about 1 keV in both experiments.

Both experiments show that the RF generated current is carried by electrons effectively

in the 50-100 keV range and is characterized by a perpendicular temperature which is of

the same order in energy3,4 . Apart from recent numerical work 5 the large perpendicular

temperature, with relativistic effects taken fully into account, cannot be understood

or successfully predicted by previous available numerical or theoretical work.

In this paper an analytic treament based on the method of moments is presented.

In Sec. II the relativistic Fokker-Planck equation for energetic electrons colliding with

a thermal background of electrons and ions is derived as the Landau limit of the

relativistic Balescu-Lenard collision operator. In Sec. III the energy, velocity, and

momentum moments of the relativistic Fokker-Planck equation are derived in the

presence of RF diffusion. Since our main interest is in determining the average parallel

and perpendicular momenta of the current carrying electrons in steady-state the

simplest possible momentum distribution which conveys this information is employed,

namely a displaced delta function in both momenta parallel and perpendicular to

the externally applied magnetic field. This procedure provides us with the evolution

equation of the average energy, velocity, and current of the current carrying electrons.

In Sec. IV, the evolution equations are solved for the steady state with parallel diffusion

(as relevant to lower-hybrid, LH, current drive). This gives us the relations among

the power dissipated, average energy, and current carried by the energetic electrons.

The figure of merit as well as the average perpendicular energy are then readily

calculated. In Sec. V the model is applied to a steady state current drive situation

with perpendicular RF diffusion which is relevant when electron cyclotron waves are

used. Finally, in Sec. VI the difference of the analysis and results presented here and

previous work is discussed.
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II. THE RELATIVISTIC FOKKER-PLANCK EQUATION

For the collisional model we use the Landau limit of the relativistic Balescu-Lenard

collision operator 6 7 . The collisional flux in momentum space is given by (see Appendix

A)

Sap = -2qqonp J d p, f d k6(k v - k. o)j (
[1( i:)2]2()

L( - )fa(a)f()

where the labels a and P refer to the test and the field species respectively, and the

vector 3 is the relativistic beta: 3 = = 2- with m, -y, V and ' being the rest mass,

the relativistic gamma: -y = (1 + p2 /m 2c2)1/2, velocity and momentum, respectively.

Furthermore q is the charge and ng the density of the field species. It can be shown8

that for non-relativistic field species the collisional flux Sa3p reduces to,

Sa3 =Ta _(a a Pa -,8(2

Sa = d5ppap - fi(p)f.(M (2)

where the tensor F0 is defined as

Vp V2o - (Va - Vp)(Va - =2 A(
F0 A3Ao P Ajt Aar |Va - V| (3)

|Va -vp1| V Voa

with

Aap = 27rq 2 lq np. (4)

in Aap is the Coulomb logarithm which corresponds to a relativistic particle (a) colliding

with a non-relativistic one (#).

The collisional flux given by Eq.(2) can also be written in the following form,

- fa
Sp= + apf, (5)

where the collisional diffusion tensor Da# and frictional force vector &p are defined

by,
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Daii = J d'p =7.,o, Fa = -f d'pof VP, - p (6)

with V- is the gradient operator .

As long as one considers fast test particles interacting with a thermal background

of field particles the magnitude of the relative velocity |Ia - 1 can be expanded

around va = IVaI:

aV, 1 a-v,
av-a 2 a V. a (7)

where we dropped terms of order (v,/va)3 and higher. Introducing the notation <>
for averaging over the field particle distribution (< ... >= f d3p#(... )fp and assuming

that the thermal background does not carry a current (i.e. < ip >= 0) yields for the

diffusion tensor25,0:

_ _ 
2Vc 1 a2  a 2V 1i- -+ < VP >- - (8)Aap -aR,0 2 8ia0aa L I '

and for the friction tensor Na#

Mf-- = a -Va + < V pO > :  (9)
a Va No. 2 Oavaa)

where the identify V, p -;op, valid for nonrelativistic field particles,

has been used.

After some algebra Eqs. (8) and (9) become,

Dat _ V~ V <7 > 7v' 3VVat Z a G-(10)
AaP a a

and

-0Va

Expressing now the velocities of the test particles in terms of their momenta in Eqs.

(10) and (11) yields for the collisional flux Sa,
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< M~f 2 V2 2 nv >

M(, -Ya } 2(12)

(2 >2< mBfa >
a 2 P P a -~-- TPal

Pa )Ppa a mo I

This formula for the collfisional flux Sp coincides with the one derived (by very

different means) by Mosher 9 in the limit < V2 > -+ 0. In Appendix B the cylindrical
5form of Eq. (12) is also derived; this form is very useful for computational purposes

JIl. MOMENTS OF THE FOKKER-PLANCK EQUATION COMBINED

WITH RF DIFFUSION

The continuity equation in momentum space, if only collisions are present, is

simply,

+a ,=(13)

where the collisional flux S,,# is given by Eq. (12).

The kinetic energy of the relativistic test particle a is mac2('_a-1). Multiplying

Eq. (13) by this energy and integrating over 'a yields,

Sd3p mac2(a -1) = d< mac 2'fa

- 2mAf d Pa 2 pa fa
ap va paP ma

(14)

where i refers to the collisional rate of change and <>, denotes the averaging overdt

the test particle distribution function fa. After partially integrating, the last equation

yields,

de < Mac 2 '- >a= - 2mAaf d3 a a - 2 2(15a)
dt a P Pa>a mo C2

Since the field particles are treated non-relativistically, this simplifies to
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-< Mac ^fa > a= 2m(,,A(,p -a (-(15b)
dt pmO pa

Multiplying now the continuity equation by Pa and integrating over -a one obtains the

momentum conservation equation

Sd3Pa , = < Pa >.= f d3pa Sa/ (16)

Performing the integration finally yields

< dt < >,= - 2mA/3(2 -Yj>*a +± I), (17)

The momentum conservation equation does not coincide with the velocity conservation

equation if relativistic effects are taken into consideration. The velocity conservation

equation, on the other hand, is related to the electric current conservation, and it

will be a useful equation to have if current is to be externally driven. Taking the

velocity moment of Eq.(13) yields, after partially integrating once and using the identity

f , P a, d 3P <a >a-f dpIfI Sa/3 (18)
'Ym t dt 'lam

Evaluating the integral gives,

< a>a= E 2Aap d 1 + (19)
dt l C ma (

or since we approximate Z by zero,

a( 1 m a )\ (20)
dt 0 Pa 1m

Equations (15b), (17) and (20) express the collisional energy, momentum, and velocity

relaxation of a relativistic test species interacting with a thermal bath. In our particular

case the thermal bath consists of thermal electrons and thermal ions of densities ne

and ni respectively. To the extent that the energetic species (namely the relativisticly
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treated electron) is a minority species, i.e. n,, < n, where the prime refers to the

minority species, quasineutrality implies

qene + qinj = 0 (21)

or

n' = Zini (22)

where Zi is the ionic charge number. Therefore in our particular case Eqs. (15), (17)

and (20) take the form,

< ' >= -VC( ) (23)
dt ( 2 _1)1/2

de (aZi +1+y2-
dt < 7> (,y2 - 1)3/2 (4

and

de aZi+l + 1/ 2
Wt- < >= -/( 3 (25)

d (2 1)3/2

where we have suppressed the energetic electron index, and v, and a are defined as

follows,

47re 4ne In Ae, in Ai(
M203=' af= (26)

mCa In A,,,

In deriving Eqs. (23), (24) and (25) we have ignored terms of order (m,/mi). The

Coulomb logarithms are given by,9

n[Demec2  2 D></3e>2 2In A,,, = In ,DMc <'>< >1 In A,,i = In eml<-y><g>2[
. 2(< 7 > +1)1/ 2 e2 2Zje2

(27)

where XDe is the electron-Debye length. For moderately relativistic electrons and

Zi : 1 they are approximately equal.

In the presence of an externally imposed driving mechanism (RF waves in

particular) the evolution equations (23) to (25) take the form,

7



and

d Zi-+.+ Y

-< , >=-( , 3)+Ad (30)

dt< b > { (2- 1)3/2 -yO) + A (30)

where we set a = 1. The quantities Pd, Fd and Ad are defined as the driven RF

power (Pd) and the macroscopic manifestation of the associated force and acceleration

(F', Ad) in the ensuing wave-particle interactions. They are normalized to vemc2 , Vumc

and vec respectively. The time t here is normalized to v-. The simplest evaluation of

Eqs. (28)-(30) is for an effective distribution function f(pl,pI) given by,

f(pI, Pi) = (Pii - -ri) (31)

where pl1 and pt correspond to "average", effective values of the parallel and

perpendicular momenta; the average perpendicular momentum vector is randomly

oriented on the plane perpendicular to the magnetic field. The distribution function

f(pj, pI) depends implicitly on time through the time dependence of P1 and P The

average value pl is generally related to the location of the spectrum and, in a sense,

provides an estimate of the average momentum of the resonant electrons if the resonant

region is centered around p11o = P1. On the other hand, the average value pL is related

to the average perpendicular kinetic energy these electons are carrying (see Sec. IV).

Using the distribution function of Eq. (31) in Eqs. (28)-(30) we obtain

d-y 7 + P (32)
dt (y2 - 1)1/2

d Zi+l+ 2  (
(t#) = - 12 7 Fo (33)
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dO Zi + 1 + i/ -- -
dt (y2 - 1)3/2 (34)

where the quantities P0, Fo, Ao, -y and 3 refer to the RF quantities Pd, Ed, Ad, -y and

0 respectively, for the distribution function in Eq. (26) that is they are functions of

p1 and p1 . Consistency of these three equations, namely Eq.(33) being derivable from

Eqs.(32) and (34) implies that,

-. iFo -. PoAo = -- - (35)

IV. STEADY STATE CURRENT DRIVE WITH PARALLEL RF DIFFUSION

In the presence of a unidirectional RF spectrum acting along the magnetic field

direction (e.g. a lower-hybrid wave spectrum), only the parallel components of Ao
and F0 are present. Furthermore, the macroscopic manifestations of the well known

relationship' 0 between the densities of power dissipated (normalized to nvemc2) and

force dissipated (normalized to nvymc), namely,

P = Fo - (36)

implies that, in this case,

Fo =A (37)

Solution of Eqs. (32), (33), utilizing Eq. (37) yields,

PA = 7(38)
(72 -1)1/2

2g =/ (39)
-(zi + -Y + i)]

The first equation provides the relationship between the normalized RF driven power

density and the average kinetic energy c (in normalized units e = y -1) of the energetic

electrons. The second equation, on the other hand, provides the (normalized) current

density these electrons are carrying as a function of their average kinetic energy.

From Eqs. (38) and (39) we obtain
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Oil (E + 1)2 _ 1
- = g(E, Zi) (40)

P0  (E + 1)3/ 2 (e + 2 + Z,)1/ 2

In unnormalized form this gives

- = 9(E, Z;) (41)
Pd mcV(

Thus the figure of merit is found to be

I - 31.2 g(E, Z) (42)
TP) la A Rmnn20

where Rm is the major radius of the tokamak in meters and n 20 is the plasma density

in units of 10 20 /m 3 . In the nonrelativistic limit, e < 1, g - E and the figure of

merit increases for current carried by more energetic electrons. In the ultrarelativistic

limit, E > 1, g -+ 1 and Eq.(42) gives an upper bound on the figure of merit. Recent

experiments on PLT and Alcator C can be considered to be effectively in the range

e P 0.1 - 0.2. Considerable improvement in the figure of merit is therefore possible by

RF current drive with more energetic electrons. This should be possible with the use

of the fast wave in the lower-hybrid range of frequencies 12 . The limit will most likely

be dictated by how well energetic electrons can be confined in the plasma.

Finally, taking into account Eq. (39) and the identity 72 = 1+q +q'I, with q1 and

q 1 being the normalized (to me) parallel and perpendicular momentum respectively

(note that q11 = -1Gj), yields for Zi = 1,

q q' + (qL + 16q2L + 16)1/2 1/2

q11 = - 2 .(43)

For a given q11 (or Pfo/Pth) this equation will provide the value of q1 and therefore y can

be determined; knowing qI and y one readily obtains the corresponding value of vI/Vth

from vI/Vth = PI(YPth) = qI/( gth) (with 3th = vth/c) and, subsequently, the value

of V2 /(2V2h) which is denoted by "T 1 "/TB (TB = mevth). The latter is plotted vs.

PI1o/Pth in Fig. 1 and provides an estimate of what mean square perpendicular velocity

one can expect for various locations of the resonant region (PIo/Pth). This estimate,

which in the nonrelativistic limit is the measure of the perpendicular temperature, is
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in very good agreement with the numerical results of a two-dimensional Fokker-Planck

code, as reported elsewhere5

The figure of merit normalized to bulk (B) thermal quantities (J in units of enevth

and Pd in units of nemev. v, with v = v,/03 ) is given by (J/Pd)I = (Pll/Po)/f3 and

is plotted versus the average kinetic energy in KeV of the current carrying electrons,

mc2E, in Fig. 2. The relativisticly normalized figure of merit, Eq. (39), 01/Po, on the

other hand, is plotted versus E in Fig. 3 for various values of Zi.

V. STEADY STATE OPERATION WITH PERPENDICULAR RF DIFFUSION

In the presence of an RF spectrum acting unidirectionally but in the direction

perpendicular to the magnetic field (e.g., as in electron cyclotron current drive) one

has from Eq. (36),

_P 0FO_ = (44)

In the steady state (32) and (33), utilizing Eq. (44) yield,

2 1/2 (5
-(Zj + -Y + 1)1

as well as Eq. (38).

The finite value of # 1 will induce a finite P11 or, in other words, the imposed

electron cyclotron heating will drive a current in the parallel direction. Equation (45)

and the identity p2 = p2 +2 = _ 1/_y2 readily yield,

= Zi+ 1 1/20 (46)

Comparing this result with the one of Eq. (37) yields,

()= ( 1)1/2(1) (47)

and similary for the normalized figure of merit,
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-- (48)(I~i) =(zi + 1)1'2(31) (48
0PI) l PO

where the external subscripts I_,| refer to the perpendicular and parallel RF diffusion

respectively.

VI. SUMMARY AND DISCUSSION

Based upon the 2D relativistic Fokker-Planck equation with parallel quasilinear

diffusion due to RF fields we have formulated a set of moment equations that give a

global description of steady-state current drive. The steady-state regime we describe

is the one in which current generation is achieved with strong quasilinear diffusion on

a time scale which is short compared to the heating of the bulk distribution function.

Thus the temperature evolution of the bulk distribution function was ignored and

the relativistic Fokker-Planck equation was simplified to describe electron collisions

for p > Pth, including in particular the high energy tail electrons interacting with

the applied RF fields. The set of moment equations that we use for describing the

steady state of current drive include the global effects of the RF fields. Characterizing

the distribution function of the current carrying electrons in steady state by an

effective parallel momentum and an effective perpendicular momentum and imposing

the relationshiop between force density and power density dissipated, the moment

equations in steady state give the figure of merit as a function of the effective

energy of these electrons as well as a constraining relation between the parallel and

perpendicular effective momenta. This constraining relation shows that current drive

produced with electrons effectiely at high parallel momenta (i.e. with RF spectra at

high phase velocities) must also have high perpendicular momenta. This is consistent

with observations in recent, intense current drive experiments with lower-hybrid waves.

A comparison of our analytical results with results from a numerical integration of

the relativistic'2D equations, for parameters of Alcator C current drive experiments,

has been reported elsewhere. 13 The enhanced perpendicular temperatures are very well

predicted by our moment equations constraint.

Previous work14 on relativistic current drive has only focused towards the figure of

merit and was based on an ad-hoc physical model suitable only for the weak RF regime.
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In Ref. 14 the calculation of RF current generation is based upon a physical model

in which the "RF kicks" of electrons in momentum space are accumulated in a time-

asymptotic fashion. This model is combined with the energy and momentum moments

of only the collisional part of the relativistic Fokker-Planck equation. Therefore, the

slowing down equation for energy and momentum are the same as our Eqs. (32) and

(33) with the RF terms (Po, Po, AO) set to zero. In the nonrelativistic limit the results

of that model have been confirmed from an approximate solution of the Fokker-Planck

equation only in the weak RF regime.15 . Indeed, in that regime it may be justifiable

to ignore the effect of the RF diffusion on the slowing down equation. However, for

moderate or strong RF diffusion the slowing down equation for energy and momentum

must account for the presence of the RF fields, as is done in the present paper.

Furthermore the present analysis is not based on any ad-hoc physical model (as the

time-asymptotic accumulation of "RF kicks of Ref. 14) but instead utilizes the energy

and momentum slowing down equations including the effects of the RF.

In Fig. 4 the normalized figure of merit is plotted as a function of the normalized

momentum of the current carrying electrons for Zi = 1 and q q11; the curves shown

are based upon Eqs. (40) and (48) [note that for q ~ q11 one has E ~ (1 + q')I/2 - 1]

and are to be compared with Fig. 1 in Ref. 14. For example, at q1 = 5 the analysis of

the present paper gives for the figure of merit a value of about .85 and .45 for parallel

and perpendicular diffusion, respectively, as opposed to .75 and .25 in Ref. 14. [Note

that v in Ref. 14 is twice the one we use, Eq. (26).] Therefore the prediction of the

present analyses are more optimistic for both the parallel and perpendicular diffusion,

especially for the perpendicular diffusion. For values of q11 < 2 the perpendicular

diffusion is slightly more efficient in driving current parallel to the magnetic field than

the parallel one. This is also shown in Fig. 2. In Ref. 14 the perpendicular diffusion

is less efficient than the parallel one for all values at q11. However the qi -+ oo limit is

the same for both analyses, namely 1 and 0 for parallel and perpendicular diffusion

respectively. The asymptotic behavior of the figure of merit for large C (and so q11) is

also shown in Fig. 3 for various values of Z;.
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APPENDIX A-THE LANDAU FORM OF THE COLLISIONAL FLUX

The relativistic generalization of the Balescu-Lenard collisional flux of the test

species a interacting with a field species labeled by P is: 6- 7:

S.0= 2qaqon, d kb(k -,, - k -#4) . \;- Zk,.-B|
(k. i-a)4  

(Al)

apa p

where q, n, ', V and f(p) refer to the charge, density, momentum, velocity and

momentum space distribution function of the particles respectively (a or P-species).

The tensor ZZ(k, w = k - -,) is the dispersion tensor defined as

L = + (A2)
IEL IET - kC

where the scalars EL and ET are the longitudinal and transpose dielectric functions

(parts of the dielectric tensor 2), respectively

k -. I'-
EL = TT =- LL (A3)

with the projectors 7L and 7T defined in terms of the unit dyadic 7 and the wave

vectors k as

IL = T , 7T = - (A4)

When the shielding is absent EL = ET = 1 and the colllisional flux in Eq. (1) is reduced

to the one for the Lorentz gas

. 2I 3 
3 ( k kk (1 - I'.0I)2

Sao = 2q n f p( dp kb(k - a - k 0)

8P-a 5p-
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APPENDIX B-THE FOKKER-PLANCK EQUATION IN CYLINDRICAL

COORDINATES

In the presence of a unidirectional RF wave and especially for a LHl-wave acting

parallelly to the magnetic field (unit vectors parallel and perpendicular to the magnetic

field denoted by -l and -I respectively), the diffusion of the fast electrons (species a)

is characterized by a flux S,,,T given by,

SaT = (Z ao + DQLf'119j) - + ai fa (B1)
/3 Pa /3

-.

where DQL is the quasilinear diffusion coefficient, and Da/p, Fap are given by Eqs.

(10)-(11). One has in cylindrical coordinates,

SaT 11 = -Dli afa - Dx afa - Filfc (B2)ap11  apa,1

and

Sa,T =~Dx --FD -Ffa (B3)ap'1j apD I

where the diffusion coefficients D11, DX, D 1 and the friction coefficients F1 and F1

are,

D11 = ell -Dco -e + DQL (B4)

DX= Ee.Dl *e- = Zej. 15C8 'el (B5)

F EI-11apFI=Ze-a-3 (B7)

Applying now Eqs. (10-11) and taking into account that the field species are the

thermal electrons and ions yields,

Fl 2 22 12
2< m ve > 2 2< m ve > 2]Dp/2A= [ 2 P + 2p 2 P + DQL (B8)
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Dx/2A _12 < eve ) L (B9)

U <M 2 2\ 2V2 >

222p 2  (B-o

DF/2A = = - 2 72 < ee B0

2 2

F1 /2A= p F 2A= p (B11)

with,

2A = 47re 4nem, In r"' (B12)

and

(Zi + 1)/2 (B13)

Subsequently, normalizing the time t --+ tve, the momenta p -+ p/me < V2 > (<
v2 >= v2 ), all the diffusion coefficients D -+ D/Vm2 K vf > and the friction

coefficients F -+ F/vem, < v > yields,

D = P2 + p2p2] + DQL (B14)

Dx!=- - P I (B15)

D_ = -2 )p 2+ -2p 2 (B16)
p 2p2Ir 2 I

7 21

F = p , F1 = (B17)

where all the quantities involved are the normalized ones. The normalized fluxes are

given by the same, formally, Eqs. (B2-B3) and the normalized continuity equation for

the fast electron distribution f is

- - - a (p1 S1 ) (B18)
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Transforming Eq. (B18) partially into (p,p) coordinates with y = tan- I and
P11

p = (pl + p)1/2 yields,

af i (Y3af+Y If + a - (1 - p2) 11+ a DQaf )B19)

It is easy to show that, with DQL = 0, a distribution of the form exp (-p) is a

steady state solution of Eq. (B19) as expected; in the nonrelativistic limit this solution

goes to the Maxwellian distribution exp(-P).
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FIGURE CAPTIONS

Figure 1. Effective perpendicular temperature, "T1 ", (normalized to the bulk temperature

TB), defined from (v2 0/2v 2) = ("Tj"/TB) with mev2 = TB, is plotted as a

function of the effective parallel momentum p1j0 (normalized to the bulk thermal

momentum mevth). Here Zi = 1 is assumed.

Figure 2. The thermally normalized (to nevth/nmv ) figures of merit (J/pd)B for parallel

(II) and perpendicular (I) RF diffusion are plotted as functions of the energy

in keV carried by the energetic electrons. Here Zi = 1 is assumed. The dashed

curves correspond to the nonrelativistic limit.

Figure 3. The relativisticly normalized figure of merit p1 /Po for parallel RF diffusion is

plotted as a function of the normalized kinetic energy e = - - 1 carried by the

energetic electrons. Here Zi = 1, 2, 4 for the a, b, c-labeled curves, respectively.

Figure 4. The relativistically normalized (to nec/nmc2 v) figures of merit (J/Pd)R for parallel

(11) and perpendicular (I) RF diffusion are plotted as functions of the average

normalized momentum of energetic electrons q(= p/mc). Here q = gj and Zi=1

are assumed. The dashed curves correspond to the nonrelativistic limit.
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