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ABSTRACT
? .

The structure of the high-energy clectron tail in a current-carrying, magnetized plasma column is deter-
mined self-consistently with the pldsma wave turbulence it gencrates. The theory applics to cases when runaway
confinement is good and radial scattering of the runaways can be neglected. The unstable spectra consist of
absolutely unstable, parallel propagating plasfna oscillations at w = wp, and convectively unstable magnetized
plasma waves propagating ncarly perpendicular, with w = w,k/k <« wpe. Fnhanced dynamic friction

resulting from the magnetized plasma waves increases with parallel momentum, and cuts off the distribution
function at high energics. The convective nature of the modes gives a radial structure to the cutoff, with the
highest energies concentrated in the center. Below the cutoff, the distribution function has a small positive
slope. Equilibrium is maintained by the plasma oscillations which produce the back diffusion flux necessary
to offset the electric field acceleration. Five separate asymptotic regions for the tail distribution function are
" identified and the calculation is carried out to give an explicit solution. Once obtained, the solution is expressed

in Lagrangian form to determine the flow paths of particles in momentum space. This clarifics the nature of the
steady state.
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When a weak clectric ficld is applicd to a plasma, the clectron distribution develops a drift, a slight distor-
tion and at energics above thermal, a runaway clectron tail. In the classical runaway theory, ! the high cnergy
tail extends to infinite momentum (or, rather, grows indcfinitely with time) and if included would produce
a divergence in the computed conductivity. The Spitzer-Harm? conductivity results by ignoring this part of
the current. It works quite well when the runaway confinement is poor, as when large radial cxcursions of
the magnetic ficld lines occur,” or orbit shifts are large." However, there are many pfaclicul cascs when the
runaways arc well confined 3 and they can then contribute significantly to the plasma current, as well as the
radiation and cnergy loss processes of the plasma. For such circumstances we have proposcd that a high-cnergy
clectron tail can be maintained in steady-state by thé sclf-consistent turbulence that it generates.® This paper is a
detailed exposition of these ideas.

Recent experiments in plasma current generation by externally excited. unidirectional waves in the lower-
hybrid frequency regime have shown that a stcady-state, high-cnergy clectron tail can be maintained by these
waves. In a varicty of these experiments a weak dc clectric ficld is also present and the maintenance of a steady-
state current in the presence of both a weak dc clectric ﬁcld and high-frequency wave ficlds is of great interest.
Here we shall not consider cxtcmaily applied high-frequency fields.

We consider an infinitcly long, radially finite plasma column immersed in axial magnetic and clectric

‘ﬁclds. A steady state for the high energy electrons in this situation can be obtained in roughly two different
ways. Runaway production can be balanced by some radial loss mechanism. Experiments arc often interpreted
with an empirical version of this steady state.> Alternatively, turbulence resulting from the high encrgy tail
could cnhance the dynamic friction on the electrons and prohibit the runaway process, even in the absence of
radial loss.% The waves that interact with the runaways do not produce significant radial diffusion, so that with
well formed magnetic surfaces it is unlikely that the radial loss of runaways determines the steady state. We will
assume that the surfaces are well formed. In addition, we assume that the plasma waves convecting radially do
not reflect from the edge and causc an absolute instability. These are the principal assumptions of the analysis to
be presented in this paper. From them, we develop a self-consistent solution to the kinetic cquations for the tail
clectrons and the waves.

We find that the friction and diffusion forces produced by the turbulent wave spectrum permit the particle
distribution function to attain a steady state. Elcctron runaway to infinitc momentum occurs only on the column
axis while at other radii, the distribution is cut off by the friction from the unstable waves, This, in fact, makes
the designation "runaway" somewhat inappropriate. The prescnt paper is devoted to a detailed derivation of
the structure of the high energy distribution function and associated turbulent wave spectra. These, as well as

other details, are given in the Ph.DD. thesis of one of the authors (M.S.T.)




Another modef®, in which radial convection of the magnetized plasma waves is ignored, and the plasma is

taken to be infinite and ho_mogcncbus has been studicd in co_hsidcrablc detail®1®, The original work® described

relaxation oscillations of the runaway current and turbulent spectra and attempted to explain an observation

of such a phcnomcnon in tokamaks“ A more recent study'® v in which the quasilinear kmcuc cquauons were
solved numerically, did not find relaxation oscxllauons and atiributed the results of Ref. [8] to the stiffness of
the appmximafc 'rhomcm cquations used therein. Tt must be emphasized. however. that the mvodcs in qincstion
are, in fact, convective (with ai_ radial grdup velocity on the order of the electron thermal speed), and it is
difficult, if not imppsﬁibie, to ignore this fact in describing reéliﬁtic ruriaway phenomenon. Even if one argues
that reflections of the rays from the plasma cdgc. toa dcgrec'as yet unknown, enhance the spectrum over that
computed in our model, the mhomogcneuy wm enter the problem in a cntlcal way, creating a very complcx ray

trajectory pattern. The model of Refs. [9. 10] has ﬂ‘IIS mhcrcnt limitation.

" The phenomenon of clectron runaway was first pointed out by Giovanclli, !2 who obscrved that since

the dynamic friction due to Coulomb collisions decreased at high velocity like v—2, for any clectric field

there would always be some velocity bevond which collisions could not restrain electrons from accelerating

indefinitely. Denoting the friction force, F' = muaA{vc/v)?, with v = \/Te/m, andv = 4mne’(2 + Z;) In A/m2v3

this critical "runaway” velocity is v, = v.\/E,/E, where E, = rrun, /e is the clectric field at which thermal
particles runaway.

An actual calculation of the runaway rate requires a determination of the electron distribution function.

This siarted with Spitzer and Harm.2 They ana]yied the Fokker-Planck equation for clectrons in a homogeneous,

: unmagnelized_pla5mg‘3
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where 7 is the idcht.ity tensor and thc ions have a Maxwellian dis&ibuﬁon. This equation was analyzed in the
sicady state, neglecting the slow joule hcatirig of the clectrons. Their broccdurc was to expand the distribution
function in a power serics in the clectric ficld and then 10 solve .mé.rcsﬁlting cquations order by order using
bspherical harmonics. This lcd to the classical (paralicl) resistivity , ney = 1.8 X 10—87-3/21n A (sec.)
This solution is valid for velocities v/ve < (E;/E)!/%, and so 10 be meaningful E/E, must be small, (the
limit B(E, > 1 was shadicd by Kovryznik'). For vélociu’cs 'fnhm'c this. their representation of the solution is

inappropriate and a different expansion procedure has (o be used.!='? The primary concern was to determine




the flux of clectrons into the ruhaway region, the so-called "runaway rate”. Upon expanding cquation (1) for

v 3> v, in the steady state, there results the following lincar equation,!

3. 1_“2 112y 2 1 ,
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where E' is normalized to the runaway ficld, u is normalized to the thermal velocity and p is the cosine of the
angle between Lﬁc clectric ficld and the velocity of Lh_c particle, subscripts denoting derivatives. ‘This is the basic
cquation of the classical runaway problem. _

The first attcmpt to calculate th_c flux was made by Dreicer.!® For v << v,. he assumed that the distribution
function was determined predominantly by collisiuns and hence was isotropic. Equation (2) was expanded in
spherical harmonics as in the Spitzer-Harm problem. ‘The rate at which the particles scattered across v = v,
was used to determinc the run:iway rate numcrichlly.

Gurcviclln'6 rcalized that this picture of velocity space was too simplified, that, in fact, as onc approached
v ~ v, the distribution function was no longer isotropic but would be localized around the clectric field
direction. He expanded the distribution function ncar v ~ v, and u 3> 1, using the form f = exp{¢o(u) +
@i (u)(1 —p)+ ¢o(u)(1—pu)?+- - -}. This was substituted into Eq. (2) which was then solved order by order in
the electric field. However, the match to the distribution function near v ~ v, was not performed correctly and
an assumption that ¢; == 0 to the lowest order led to a singularity in the distribution function when v — v,. In
spite of this, the exponential dependence of the runaway rate upon (E,/E) was correctly determined; only the
premultiplicative term was incorrect.

Lebedev!? used a similar approach-to Gurevich. He found, however, that there was an internal boundary
layer (since the cocfficient of 8f /8u vanished at 4 = 1, v = v,) at v = v,, and he also did not set ¢; = 0
to leading order. However, he did set ¢ = 0 to lcading order. This led to an error in matching to the bulk
electron distribution function but did not produce a singularity in the distribution function for v > v,. Thus he

was able to compute the runaway flux with rcasonable accuracy and obtained

S, = 0.36nu(v,)(%)l“ exp[:g' —- \/2—373_] (3) |

The most rigorous solution to equation (2) was performed by Kruskal and Bernstein.! They made no ad
hoc assumptions about the distribution function, but found it necessary to introduce five distinct regions for the
distribution function. The solutions were matched asymptotically at the transition between the various regions.

Their expression for the flux is given by




Sk = knu(vr)(%')m exp[-g: ~ VEEJE) ()

The constant k is of order one, but not known precisely because the differential cquations in two of the regions
were unsolved. The details of the Kruskal-Bernstein solution are summarized in a recent paper by Cohcn.'18
who also included impurity ions in the Fokker-Planck equation.

A numecrical analysis of the Fokker-Planck equation (1) was performed by Kulsrud et al.'® They found
good agrecment with the results of Kruskal-Bernstein if k = 0.35 in Eq. (4). Comparing the runaway flux with
the experimental observations of Von Gocler et al.,2? they found that the ‘thcorctically predicted runaway rates
were generally larger than the experimental values.

Finally, Connor and Hastie?' included relativistic effects and impurity ions in the Fokker-Planck equation.
They used an asymptotic matching procedure identical to that of Kruskal-Bernstein. The main result intro-
duced by the inclusion of relativistic cffects was that if the clectric field was sufficiently small so that v, =
¢ (¢ = speed of light), then there would be no runaways produced, because for relativistic velocities the
dynamic friction no longer decreases with momentum. For this effect to come into play, one requires @ =
(E/Ep)(mc®/T) > 1, where Ep = E, /(2 + Z;) is the so—called Dreicer ficld. The critical (runaway) momen-
wm is (p,/mc) = (@ — 1}*/? fora > 1 this reduces to the nonreiativistic resuit quoted earlier.

A recent review of the runaway problem and experiments in tokamak plasmas has been given by Knoepfel
and Spong.22 '

For future use, we compute here some of the parameters from the classical collisional solution. Since the

tail in gencral extends to large velocities, a ful!y relativistic treatment will be used. To proceed, we first define

the following perpendicular moments

Jilp) = / 2xp  dp) f(py, p1), (5)

. (p0fit) = [ 2rp¢dp¢(%)f(m, pL), ©)

where (py, p. ) are the parallel and perpendicular momentum, respectively, to the direction of E || Bo. The
time rate of change of the density of tail clectrons is obtained by integrating the time dependent Fokker-Planck
cqﬁation over all p, (which annihilates the collision operator when p, < py is satisfied) and over py from
(—o00, 00). This leads to Onr /8t = eEfj(o0). since fj(—oo0) = 0. Since fj(oo) is obtained from the solution

of the kinetic cquation, the runaway rate follows. On the other hand, since fy(py) is approximately flat beyond




the runaway momentum, we can definc a density, nr, such that (o) = fj(p,) = f = ny/p. where p, is the
thermal momentum, Then

7 =on(5) ool - v o

E
where we used the results of Kruskal-Bernstein together with the constant determined by Kulsrud ct al.'?

Note that ng- is not the density of runaway clectrons. Determining the density would require knowing the

distribution function length.
Another parameter we shall require is the perpendicular temperature. Once fj is found, it can be obtained

from Eg. (6). In the collisional problem. using the approximatcely correct formulas of Lebedev, we find that the

perpendicular temperature at the runaway momentum is

T r ° Er 2/3 .
-i{-;-=2'/3(f) . (8)




In order to produce a stcadi state, Pearson®? and Bateman?? included collective cffects. They both added
a dynamic friction term duc to the Cherenhov cmission of waves®® into the classical cquation (2). Neither
found substantial alterations of thc runaway rate. 'This is the expected result since in a thermal equilibrium
(Maxwellian) plasma, the dynamic friction form the waves is smaller than that from collisions by the factor
In(vy /ve) In )\ "An additional diﬁ”nc_uliy of this calcuation for a stationary. infinitc, homogencous plasma is thbat
the spectral energy density of the waves diverges as marginal stability is approached. This situation arises for
v > v, where the distribution function, Jj is flat and 1.andau damping vanishes.

In the analysis presented in this paper. the 'parallcl disiributiun function f(py) takes the form shown (with
an enlarged positive slope) in Fig. 1. along with the bulk distribution function, for P < pr. to which it matches.
The height of the tail in this notation is j; = nr/p.. We will use the results of classical theory for ny. This
does not mean that the analysis hinges on the validity of the classical theory. Rather, the rail distribution
function will match to any bulk function which is flat at py = p, and Gaussian in the perpendicular directions,
properties which are fairly universal consequences of the kinctic equation in the vicinity of p ~ pr. Our
results are written in terms of ny-/n, which in this analysis may take on any (small) valuc. Wave cffects become
important for p; > p, where the flattencd tail permits instabilities to develop. The unstable plasma wave
spectrum splits into two distinct parts. as shown in Fig. 2, and described in detail in Scc. I1. For simplicity, we
treat the strong magnetic ficid limit, £2. > wy. in which the piasma wave frequency 1s w = wyck /K. k being

the wave vector componcent along the magnetic ficld. We refer to that part of the spectrum withk; ~ 0 and

W = wpe as the "wy, modes”. These waves are driven by a positive slope in fj. They have vanishing radial

group velocity and when excited are absolutely unstable. In the steady state, their saturation level is determined
by marginal stability. The second part of the spectrum, characterized by k£, > ky, and hence w < Wy, is
referred to as the "wpe cos @ modes”. They are -driven unstable by the anisotropy of the distribution function in
the parallel direction through the wave-particle interaction at the first gyroresonance.28:28 These modes have a
large radial group velocity and are saturated by convection out of the unstable region.

The waves contribute additions to the diffusion tensor of the particle kinetic équation according to the well
known quasi-linear operator.2® When the kinetic equation (collisions plus waves) is integrated over Py one
obtains an equation of the form’

o —F) = - Digfy (9
where Dy contains contributions from both spectra, while only the w,. cosd modes contribute to Fjj. This
effective dynamical friction results from the pitch axle scattering in the quasilincar response at the first

gyroresonance which appears like a friction when projected on »Lhe parallel axis. The origin and physical
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mechanism of the friction term in discussed in Sec. 11 and Appendix 1. Its relation to the overall solution is
clarificd in Sec. V, with the derivation of the flow pattern in momentum space which characterizes the stcady
state.
‘The cffect of the enhanced plasma wave spectrum on the self-consistent particle distribution function in
Fig. 1 can be understood in the following way. First, for comparison. consider the bulk clectrons with py < p,.
For these, the collisional dynamic friction exceeds the clectric field acceleration, héncc an individual (test)
clectron would tend to slow down. In order to heave a steady state, this deceleration must be balanced by an
outward vcloﬁity space diffusion flux as is produced by a negative slope in the distribution function, this picture
remains qualitatively correct out to the runaway momentum p,. Beyond the runaway momentum, the electric
ficld dominates the collisional dynamic friction and an individual electron tends to be accelerated. In the colli-
sional thcory there is nothing to balancé thi; tendency and clectron mhaway occurs. There is no stcady state.
With the waves present, it is still true that eE' > Fj; for some distance beyond p,. The only way the maintain an
cquilibrium is, then, to balance the clectric ficld acceleration by a back diffusion flux. This is preciscly where the
wy, modes come into play, maintaining the tail with a small but finite positive slope. This positive slope persists
up to a sufficiently large momentum where the effective dynamic friction from the Wpe co8 6 modes exceeds eE
and cuts off the distribution function. |
One can see that this steady state can be reached by the evolution of an initial (non-stationary) distribution
with a flat tail. First, particles accelcrating through the runaway region pile up at the cutoff point. A positive
slope then develops there.?® The wy modes are then excited and flatten f by the backward diffusion of
particles, until the small residual slope of the steady state is achieved at marginal stability. |
These are the results obtained by examining the distribution function at a fixed radius. However, because
the effective dynamic friction is produced by the convectively unstable wy,. cos § modes, we would expect that
the distribution function would develop a radial structure. This is indeed the case, as is shown in Fig. 3, which is
aplotof fj in py, r space. The parallel distribution function is flat in the shaded region and zero outside.
To complete the picture, it is necessary to determine the perpendicular momentum space structure of the

distribution function. Actually, fj(py) can be found® without knowing this, but then the origin of the dynamic

friction and the precise nature of the steady state are unclear. In particular, the balance of friction and diffusion

just described only applied globally in the consideration of fj(py). When the full distribution function in the
p., py plane is considered locally, the steady state picture must entail a divergence~free flow in momentum
space.

To calculate the full f(py, p, ). it is necessary to identify ficld separate asymptotic regions for the kinetic

cquation of the tail clectrons. This is done in Scc. 1. We continuc the scheme of Kruskal and Bernstein, num-

9




bering the tail regions V-X, so that we match to region 1V of the classical solution. In Sec. 1V, the procedure for
obtaining f asympiotically is described and carricd out explicitly to determine T 1. To clarify the nature of the
steady state, we revert to a Lagrangian description and calculate the clectron flow lines in momentum space in
Scc. V. The flow lines close on thcinsclvcs to form vortices as shown in Fig. 4. Finally, in Sec. VI we describe an

application of the results to recent experiments in’lower-hybrid current drive.

10




II. LINFAR S'I'Allll,l'l\:' ANALYSIS

We outline here the stability propertics of the clectrostatic waves which resonate with the runaway
clectrons. To be consistent with the energics obtained by the runaways. it will be necessary to obtain relativisti-
cally correct growth rates. We do this by identifying a simple transformation rule to convert the usual diclectric
function into a relativistic one.

‘The transformation is obtaincd by writing down the linearized Viasov cquation for the one particle dis-
tribution function 7 (p, r, t) in relativistic form.*! for clectrostatic perturbations,

"f+m arf—-— xﬂb—p g‘r";ﬁ =0, (10)
where %) = gBy/mec. g is the signed charge, m is the non-relativistic mass, By is the applicd magnetic ficld, ¢
is the speed of light, p the mom‘cntum.a, ,7, Jo are the perturbed potential, distribution function and the steady
state distribution function respectively, and 42 = 1 4 p?/m2c2. Equation (10) can be obtained from the non-

relativistic Vlasov cquation by

v— %, (11)
- 22, 12)
S

/ d’v — / dp, (16)
where ¢ in (15) is the azimuthal angle.

It is clear that the procedure of obtaining the clectrostatic diclectric function commutes with the operations

(11) to (16) so that they may be applicd directly to the usual non-relativistic diclectric function.?? The real and

imaginary parts arc thus given by
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e,(w,k)_1+2( ) / d’p [Jf,(k*p*)(w_g:){'_ o8 )], oan

an

k,
B oS A

an

where the sums arc over species (s) and harmom_cs (n) of €Q,. J, is the Bessel function, and .Lf,") =
mk3/8py + (nS2em}/p) 10/p, .

The relevant waves have very high phasc velocitics, w/ky > v, so that thermal corrections to the diclectric
function are ncgligible. The density of tail clectrons is assumed to be sufficiently small, ny/n < 1, so that they

will not affect the frequency of oscillation but only the growth rate. In this limit, Eq. (17) reduces to

: 2 2
¢=1_“_'_Pi_‘ﬂ°5{cl'_.__‘_"£&_ﬁ (19)
r w? w? k2 (w2 —Q2) k2’

Whenw? < Q2, the real part of the frequency, given by €, = 0, is

' k2
m;
W2 wm(l +2 kg), (20)
and finally, for lc%/lc2 » m/m,,
W= wpclzlp | (21)

which is the limit we utilize. Unstable lower hybrid waves with Ir.ﬁ/lc2 < m,/m; can be excited at high plasma
densities when the runaway tail is very long. H_owever, in such cases, the total runaway number is extremely
small and their effects on bulk plasma propcrties; radiation, etc., are minor.

The waves considered can be destabilized in two different ways. For modes driven by then = 0 or
Landau resonance, w = kjp;/m-~, the growth rate, in the absence of collisional damping, is

wi (nu )’ %
-J =7 Ty— g'n- .
H pymmro /i

Note that the growth rate is maximized at the largest frequency of oscillation or when k= 0. Since the radial

(22)

group velocity vanishes as k; — 0, we expect an absolute instability with w = wpe Whenever fj has a positive
slope. We refer to such modes as "p modes”.

For the gyroresonance driven modes, at w — kypy/my — nQe/y = 0, we take the limit p? < pf,
ki p, /mQ, € 1, and yw < 2, which can be verified a posteriori. The n = -1 resonances are then

dominant and we have
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where 12' ~1+4p Jm22. T, and fj are defined in Fqs. (5) and (6). and the sccond term in (23) results from

an integration by parts. The parallel derivative term will turn out to be small, so we neglect it for the moment (it
has an additional destabilizing influcnce for the modes we consider). Assuming negligible 1.andau damping for
the mode considered, instability will occur if fj(mQ/ky) > Si(—mS/ky). With the tremendous anisotropy in

the parallel distribution function, this condition is strongly satisfied, and (23) becomes

Wi Twi k_,_m'yﬂ, (mﬂ,)
bt il ) SR (24)

These waves have large radial group velocities v, ; ~ v, and the convection time across the plasma column,

L/v, . is quite short. Provided the coherent reflections from the edge are small, the instability is convective

with a growth factor of

2
wl «x Wik, mQ
= = = -L-E =ymQ, ( ‘) 25
k= v, 4 MK i ky (25)

The growth facior is large when ki /iy > 1. The maximum &, is determined by the minimum phase veiocity
a;t which Landau damping is negligible, i.e., the runaway velocity. Thus, k, = wp./vgr and A increases with
decreasing k. Since ky = mS2./py, for constant jj, the growth rate increases with momentum. The dominant
convective modes thus have w, = wycky/k,; < wy, and we refer to these as the "wy,. cosd modes ". The
resulting enhanced wave spectrum, for distributions of the runaway type, are summarized in Fig. 2.

To clarify the mechanisms by which these instabilities are produced, and, more important, to facilitate the
discussion of their effect on the distribution function, we briefly examine the quasilinear response at the two
resonances. Using the conservation of cnergy and momentum between the resonant particles and the unstable
waves, one can obtain the particle diffusion paths.2® The details can be found in Appendix ITA. For the n = 0

interaction (w == wp. spectrum), the well known result is that

P = constant. (26)

Thus, unstable waves at the Landau resonance diffuse a test particle along p, = constant trajectorics to
lower and higher values of p with cqual probability (see Fig. 5). However, with a local positive slope in the

distribution function there is a net scattering of particles to lower energics, thus tending to wipe out the positive

slope and provide a source of cnergy to amplify the waves. For the n = —1 gyrorcsonance driven waves (at
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w = wyky/k), the diffusion paths arc signiﬁcumlydiﬁ‘crcm. In the limit of k| >> ky, the diffusion paths are
given by

, mo\2
_ (p" — —kz—) + pﬁ_ == constant; (27)

that is, the particles diffusc along circles centered at the wave phasc velocity. Again a test particle gets scattered
with equal pmbabiiity in cither direction along the diffusion path, as shown in Figure 5. Since this scattering

decreases the particle’s total energy, the wave is amplified (provided a negligible number of particles exist at the

== -1 resonance). This accounts for the last term.in Eq. (23). Finally, the tendency to remove gradicnts -

along the diffusion path accounts for the first term in Eq. (23).
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I11. Kinetic Equations for the Tail Flectrons and the Unstable Waves

In this scction we will derive the limiting forms of the wave and particle kinctic cquations appropriéte to
the calculation of the runaway tail. The dominant scattering terms in the particle kinctic equation are those due
to collisions and to_thc n == 0, —1 quasilincar diffusion. These terms dominate in different parts of momentum
spacc and their ordering defines the five asympiotic regions of the tail distribution function.

To evaluate the kinetic cocfficients in the particle kinetic equation, we necd the spectral cnergy distribution
of the waves. For the wy. cos® modes, the spectral density can be obtained dircctly by integration of the
wave kinetic equation, since the modes are convectively unstable. The modes are assumed to be absorbed or
converted at thé plasma edge with negligible reﬂ'cction. The wy, instability, however, is absolute with a large
growth rate, and it is necessary to find its saturated state. Specifically, we take the saturated state of the wh,
modes to be determined by marginal stability with the growth balanced by some damping mechanism (i.e.,
collisions). This criterion spcciﬁcs the slope of the parallel distribution function. The diffusion cocfficient, Dy,
needed to maintain this known steady state is found from the particle (parallel) kinetic equation, and Dy, in
turn, determines the spectral density. This marginal stability analysis (including the smooth matching to the rest
of the distribution function) is described in the present section. The diffusion coefficient so obtained is then
used with the full kinetic equation to find the complete distribution function in Sec. IV.

The particle kinetic equation, including collisional, wave and particle discreteness effects is written33

s |
—3;'-’, | (28)

R+hgl=% L+‘§{ .
where Fy denotes the zero order forces. The effects of spatial diffusion are of order p2/a? < 1 compared to
velocity space diffusion and have been ighored. The first term on the right hand side is given by Eq. (1) (or
Eq. (2) at high energies); the second term contains the quasilinear terms (wave-particle, wave-wave, nonlinear
Landau damping); and J is the current due to particle discreteness (Cherenkov emission of waves). The validity
of the non-rlativistic form of Eq. (28) has been cstablished for both the stable and weakly unstable plasma
regimes. For the situation we consider, where a well developed unstable spectrum is present, the term due to
discreteness is negligible. Furthermore, the wave-particle terms in the quasilincar operator arc dominant, with
the n = 0 (w = kyp;/m~y) and the n = —1 (w = kypy/m~y + Q2./7) resonances being the most important

since k% p? « 1. Thus, in the steady state, the Kinctic cquation for the tail electrons reduces to

(;%{l =CiN+aN+C, (29)

where £ is the applicd electric field. the C's denote the collisional operators and the subscripts have the obvious
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meanings.

The term due to co]hsnons is given by the relativistic form 2! of Eq. (2), expanding forp, < P ) > Pe.

itis

| p-L"’l-{-Z é
p1Op, Py 2P2 Opy

___1_0‘7P_L1+Zc9f 071+Z¢9 p.f
PLOp, P|| 2p2 9py ‘ OPIIP oP..L

e o AP e P B 7’1&
0P||p 5Puf+5P|| f+P_L<9P.L r f)

cin = (- /

The qudsilincar operators arc obtained by applying the transformation(11)«(16) to the non. relativistic form,28

giving

1672%¢? / 3 S \ '8
CO + C-—l = E m2 Ic">0d k(wkd—:’;) -k—z-

n=0,—1
"\ mQl, * my v '
where 8y, is the total wave energy density,
2014 S

and

) N.m?\ &
£ = b+ (S )

The restriction k; > 0 on the intcgral reflects the positive sign of the phase velocity of the unstable waves.
Frequencies are taken positive in (31), with negative frequencics accounting for the factor of two which has

becn included. Expanding the Besscl function for k2 _ch « 1, and noting wyde /Gwy, = 2 for the plasma waves,
these become

k2 &y Fup
Colf) = 873 f d k) oi. (“"’ L —;—’W—')(a%)f, (32)
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coin=see [ il )~ (o]

et T (22D

While the full spectrum appears in cach of these operators, the dominant contributions to (32) and (33) come

from the wp, and‘the wye cos @ modes respectively.

Writing the operators in (31) in terms of the totai wave energy is a helpful simplification of the equations.
In this description, the cnergy in the non-resonant particles is included with the waves. Equation (30) describés
the resonant distributioﬁ function, the non-resonant distribution is unnecessary, and all the quasilinear conser-
vation theorems are satisficd (Appendix IIB).

We now consider the marginal stability problem to determine &y for the wp, modes. This utilizes the

equation for the parallel distribution function, obtained from Eq. (33) by the operation J27p,dp, . There

£ _ (2 LALWERAN 34
Op  \9py irf + 8o} "\ opy ¢ (39
where Fyr = Fc + F 4+ xdT, /dpy, and Dyr = Dcy + Do + xT,_ with

results

3.2 ’
VeiD.Y
Fo=2220, (35)
Pl
Say3 :
VeiD, Y
Do) = —=— (36)
pﬂ ?
k2 fupdky  Ripy ’
= 8x2¢? [ d¥g, g et _ IV
Dy = 8x% / d kskkza( . — ) (37)
. F = 822 2/d3k3 k?L k" 5 “’pe’ql k"p" + Q. . (38
» =ome K2 ama,\k  my ' ) )
KB fuwdy RP1
— Rar2p? 3 e N | pel — die
X = 8x% /d k@kk2 2mﬂ§5( p my + p ) (39)

Upon doing the ky integrals in (38) and (39), we find. for yw,cky/k < Q., that

X=— | (40)




Equation (34) can be integfated once. using the boundary condition corresponding to the condition that

there be no flux of particle across the surface py = pr: thatis,&fj/p; = 0 atpy = p,, gives

DuTg—jT: = (eE' — Fyr)fi. | ' (4_1)

Just beyond the runaway momentum, where the wpe co8 @ modes are stable, e£ > Fjr and Eq. (41)
implies that f has a positive slope. This is to be compared with the slope at marginal stability where collisional

damping balances the growth rate of the w,, modes,

| _lvar (42)

‘?PII MS W Pﬁ
For some distance beyond p, (where Frr =~ F is only slightly less than eE) the slope obtained from Eq. (41)
will be less than that from Eq. (42). In this region, region V, the w,, modes are stable and (41) determines fj. At
the point p = po, the two slopes arc cqual and for py > pp, and Eq.. (42) determines fj. This match between
the stable and marginally stable regions of fj is a smooth one,
Using the slope given by Eq. (42) in Eq. (41) gives the diffusion cocfficient from the w,. modes,

Do(Pn)——Dcu-i-ch— (CE Fe), (43)

where we have used fj =~ fc = fj(p), since the slope is so small. Putting Dy = 0 in (43) also determines py, .

which, since wpe/Le; 3> 1. is close to p,. Evidently there is a region of very rapid change, a boundary layer, near

Po, where Dy rises from zero to its asymptotic value

Do~ wfc””' Al g (44)

The boundary layer is denoted as region VI. The region where Eq. (44) applies is region VII.
At large momentum, py > p;, where the unstable w,. cos @ modes produce significant friction, the slope in

Ji again approaches zero, signifying the end of region VII. Here F' 3> F- and the analog of Eq. (43) is

Wpe pf .
Do(py) = —xT,_ + ﬂfc;;_'?(CE —F — x(dT_/dpy). (45)

Putting Dy = 0 in (45) gives py, the boundary to region VII. As before, this is accompanied by a boundary

layer, region VIII, bringing us to regions IX and X, where the w,, cos § modes are dominant. The cquation

eE = F + x(dT, /9p)) - (46)
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defines the line P = Pc, the boundary between regions 1X and X, where 9f)/8py = 0. For py > pc, the
slope is negative. The diﬁ“usion cocfficient is shown schematically in Fig. 6. In the Kruskal-Bernstein solution,
 region IV extends out to py ~ p,(1 + (E,/E))!/3. We have replaced their region IV by our regions V, VI, and
a small part of region VIl-a. Our region V corresponds to Kruskal-Bernstein's region IV, when p ~ p, < py.
Their rég'ion Vo> p{l + (E' /E))*/3) has been replaced with our regions VII-a - X.

To summarize, we writc our the leadmg order kinetic equations in the different regions. Referring to Egs.
(31), (37) and (38) these are:

Region V (p, < py < m)

af
eE— = CJ()), 47
B ) (47)
Region Vila (pp < oy < 1)
df -] 0
A 48
. <9P|| U)+<9H ‘9Pl )
Region VIIb (p; < py < p2)
f?i____( F)a _181,.0, 81,F 0
S Ipy D°+ ‘9P|| pLopL 2L 0Puf o2 ip, am_f

F &
+2p||p @ p.Lap f; (49)

Region IX, X (p2 < py)

O _O012F6, 16 2pl, Olppl 0
I Op2 "'PnaPu pLOpy <9P| Ii2™ pLopy
8 .
=pf ——p, —7, 50
+ 2p"FP¢ Op, pJ'OP_Lf (50)
where Dy is given by Eq. (44) in region VII. Equations (48) and (49) also apply in the boundary layers, regions
VI and VIII respectively, except that one must usc the more exact expressions (43) and (45) for Dy. -

The saturated level of the wpe fluctuations follows from Eq. (37) usihg Eq. (44). We find

1,
PL f

1 m?w, E
8,’:"=/d2lc_,_8,’:= ~ D 2 BT (51)

To verify that this level is consistent with the assumptions of quasilincar theory, we evaluate the autocorrelation
time, Tae 2 (Aky| Vo) — Vanl) ™' ~ (kyVpn)~' ~ wy.!, and the trapping time 7, ~ (€2 [mkt Ak i)/,

The ratio
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7ac\? E nr
= 1, 5
(Ttr) Er n w € ( 2)
is always small, as required.

The convective, wye cos @, modes are dcscribgd by the wave transport equation

Vo Vi8p— 2w8p = Py, (53)
) _
where ¥, is the group velocity, w; is the growth rate as given in Eq. (24), and Py is the emission due to particle

discreteness.3® Equation (53) describes the total energy in the mode at w = wycky/k and can be thought of |

as the integral over the band of frequencies centered on w = wpeky /k. This equation has been discussed in
some detail, 337 the latter paper emphasizing its limitations. The case we treat, with a steady state plasma and

neglecting plasma gradients, is straightforward and the-meaning of Bq (53) is unambiguous.

The emission resu'lting from discreteness is easily obtained by the test particle method. In the limit of weak

damping or growth. the emission concentrates in a narrow line. Integrating over frequency then gives the net

et ()

where we have included only the Cherenkov (wg = kyV)) emission term since (with k2 p & 1) it is larger

emission into the mode, which is,

than the emission at the gyroresonance. This description [i.e., Eq. (53)] does not have any divergences in a finite
system. In an infinite systcm 8 5 would diverge as marginal stability is approached from the stable side, since the

absorption vanishes.
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IV. ‘THE SOLUTION OF THE KINETIC FQUATIONS

In general, our procedure is to develop an expansion for cach region of the particle kinctic equation and
then match these together. asymptotically. If the detailed solution within the boundary layers (rcgions VI and
VI is rot needed, they can be replaced h_\f Jump conditions on the derivatives of f and this substantially
simplifics the matching procedure. In this way, we obtain £ in terms of known quantitics and the unknown
friction cocfficient, F, for the wy, cosd modes. “The last step is o calculaste F', making the solution sclf-
consistent.

When the wy,, modes are stabilized by collisional damping, as we assume here, the expansion can be
formally cast in terms of the small. parameter E/E,, (since Dy is a complicated function of E/E,) ~ just as
in the classical runaway theory.! While it is tempting to do this, generality is lost in the process and such a
calculation could not be rcadily modificd to include alternative saturation mechanisms. We prefer instead to
keep the expansion parameter implicit, carrying mﬁ the solution to lowest non-trivial order in cach region and
then matching. Since the solution in the largest region, VIL. is nearly constant in Py and expandable in series
form. one does not have the problem of calculating large exponents. The meticulous accuracy required in the
classical runaway problem is not nceded here,

The point of departure from the classical solution is in region IV very close to p, | and the region labeled
V by Kruskal and Bernstein is climinatcd. Furthermore, we treat region IV, a boundary layer, different from
Kruskal and Bernstein. Although this is an important point, it belongs with the classical solution. We discuss
it here only to the extent required to match the tail and classical solutions together. The runaway rate is
adequately determined by the distribution function at the end of region I1I and not significantly altered by this
match.

An outline of our procedure is as follows. The coefficient of the first parallel derivative, eE — Fc, vanishes
at p,. For this reason, the sccond parallcl derivative, although small, uiust be retained, making the kinetic
equation elliptic in region IV. This means that boundary data is required for a unique specification and hence

the solutions in both region 111 and region IV must be known. Specifically, the necessary conditions are

f(pr—r P_j_), f(p()_l p_L)» f(plb &) = o: a%f—(p"» 0) =0.
.

The functionf(p;~, p, ). in the space where regions 111 and 1V overlap, is known from the classical solution
in ITL. But with f{py, p, ) unknown until the entirc problem is solved, the solution in IV will contain one
undetermined constant (function of p ).Classically, region 1V extends to py = p (1 + (E/E,)'/?) > pn: we
have thus lubeled p, < py < py as region V.
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Region V terminates at py With the 6nsct of the w,, modes and the appearance of the coefficient Dy. ‘This
uceurs very close to p,, [sce l-q (43)): in fact, pp — pr < (E/E)'p,, which indicates a negligible change in f
from p, to py. ‘

Region VI, the boundary layer where Dy changes rapidly. is replaced here by simple jump conditions.
These are uBtaincd by integration ()f' the kinctic Eq. (29) across the layer from = py top = pt. 'l‘h.is

gives. to an accuracy of order (pf — pg™)/m < 1.

1o, p.) = floi o), (55)

Of (o p.) Of(py 1 pL)
[DO(P )+DrII(P )]—'3”7'— = Dyy(pg )T (56)

where the cffects of the n = —1 terms were neglected since they do not come into play until py > p;.
Application of Egs. (55) and (56) brings us to region VII. In region V11 the kinctic cquation is again clliptic

and hence we require f(pg, 2 ), flp5, pL), Sf(py,0)/8p, =0 f(p", oo0) = 0, for a unique specification.

Thus, before completing the solution in region VI, we have to determine flp7", p1). which is, agam unknown

. until the entire solution is found.

The boundary layer, VIIL is also replaced by jump conditions,

f(p;.l p..L) =f(p2—r p.L)! (57)
D P2 — 0i5) + Do) 22D, 8)

- which connect into region IX. The kinetic equauan, forpy > p, is parabolic (only the n = —1 quasilinear
terms) so the appropriate boundary conditions are f(p;*‘, P ). This changeover to a parabolic equation permits
the completion of the solution, since the jump conditions (56) and (58) are now sufficient to determine the
functions f(pg™, p, ) and f(p2,p ). .

We now turn to the evaluation of f region by region. We first give the calculation formally for the whole

distribution function and afterward carry out explicitly the determination of T _,_(p").
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The largest term in Eq. (48.49) is the D(.(p,,) term. Sccking an expansion for the distribution function in

inverse powers of Dy, this generates the following sequence,

0)
—-”a, "/( =0, (59)
2 p< ->=__Li 1 7).9 A0
'D( "_f( o (Du+2p"1-‘) _Lf( , | (60)

where D, = u,,-p?q'/p”, Fis dcﬁncd in Eq. (38), and terms in (60) involving parallel derivatives, of order
Dy 2. or p2_/p} have been discarded. The boundary conditions to be used with Eqgs. (59) and (60) are

e p.) = flog,pL), (81)
e pL) =0, (62)
%7 p1) = floz,p1), (63)
ey, p)=0. (64)
Integrating Eq. (59,60) we get
1pn, L) = floih,p1) + arlpy) / -D—og— | | (65)

P 4
M) = | Do(ﬂ){gz(PJ.)'i'CE' [~ [ 22 0 +wrfL }

and

{f(pz‘ 01)— flog m)}
q (P) = vy

d
gt h(p)
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Pz 0) v 0)
d - e} e g 1
w1 ={ [ [ [ a4 [k g o 4w x -t
g ) n + ,,+ dP/ Dy(p)
‘I'he matching at py and p, will be used to determine the unknown functions.
Region IX (o7 < py < pe)
To solve Eq. (50), we cxploit the disparity of scales in p,_and py. writing f in the factorized form
flpv, p1) = Ailp)fL(P1pL), | (69)

where fj is given by Eq. (§) and £, _satisfies the normalization condition

o
21r/c‘ dp,p, f, =1.

Since p, < py, the dominant term on the right hand side of Eq. (50) is the perpendicular diffusion term. This
creates a rapid spreading of f in the perpendicular direction, but does not affect fj, which is a slowly varying

function of p. The equation for f, thus becomes

of. 1 8
CEap“ 2P‘|F (P 3, P_Lo"'f'—f.L) ' (70)

In effect, Eq. (70) is the fast scale part of Eq. (50). Application of f dp, p, to Eq. (50) annihilates the fast
operator, leaving Eq. (41) for the slow variations. Combining the solutions to Egs. (41) and (70) gives the

distribution function in region IX,

=t . [ st (1)
f(nlt p.L) - 21rmT_L(p||) exp 2mT.L(pll) ]

Pl pF
T, () = T () + = (72)
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Region X (py > pe)

The sclf-consistent evaluation of f in this region is extremely awkward, involving a determination of the
py . py and r dependences of f together with Fi(r, py); we do not have the bencfit, as in other regions, of a
cunstam'f" to lowest order. We therefore restrict the discussion to a qualitative description of the cutoff.

T'o this end. we write Eq. (50) in the form

P
eE 8f 1 F
L-——-Lf, 73
| P o 2 ()

where £ = 1/pd/8py — 1/p,8/8p, is a pitch angle scattering operator. When F > eE and pﬁ_ 14 pﬁ. the
leading order solution to (73) has Lf =0 so that f is constant along the diffusion paths. With the boundary
data given on py = pe as f(p.,) = fi/2amT exp(—p? ,/2mT ) and the diffusion paths, pf + p? =
p? ,+ p2. this gives, for py > pe.

ok P (f—r)
f(pL,nn)f pr— °"p[2m7;_ ImT, ] | _ (74)

Integrating over p, results in fy(py) = fcexp[——(p" —p?)/2mT ). dcmonstrating a rapid exponential

decay.

Calculation of T (py). forp, < py < pe

Since f is approximately Gaussian in the perpendicular direction, we use the form f = (fj;/2amT)
exp[—p? /2mT, ] so that, by taking m_émems in the preceding formalism, the problem reduces to a series
of ordinary differential equations for T'; (py). The jump condition at p;, region VIII, results by taking the
perpendicular energy moment of Eq. (58), giving

o] 2mF 6 mF 8
Dy—T + — =2— —T? 75
o Bt .Lfi. w oA, (75)
Using the continuity of fj and T’ , which follows from Eq. (57), and the f from (41), this becomes
imF a1 i 4mF a1 1
)+ T.L = T.L ? (76)
P I o om

which is the desired jump condition on the derivatives of T, . Using Eq. (72) foraTi /8p. and Egs. (65), (66)
for T 7 [3py. after some algebra, we find
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T
il dp ] (77)

R T, (p) = 7'.L(P6F)[l +E vt Dulp)

We should now usc the jump conditﬁon at py to determine T‘J_(p(‘,*'). but because our region V is so small, we
shall assume that 7', (pgh) =~ T, (p/) with negligibly small error. Using the value of Dy(py) in Eq. (44). and

taking the relativistic, (pﬁ/m"c’) > 1 limit, we find

T, (p) =~ T.L(pr)[l, + ;(E) E“IT(;'E) ]» - (78)
Using By = 40k, n =~ 4 X 10", E = 0.01volts/cm, and T, = 0.8keV, we find that the two terms are of
cqual order, ' '
ny . 2.4
Ty (p2) = Ty (p)|1 + ———|, (79)
(1 4+ V5)2

where we used Eq. (8) for T, (p,). The heating, as is expected, is quite small in region VII (sce Fig. 7).

Evaluation of the Cutoff Momentum, p.

We require the spectral energy density of the wpe cosd modes. Since f = f. in the region of interest,
pr < py < p.. this can be obtained by a dircct integration of Eq. (53). We carry this out asymptotically for -
large growth factor, A\, >> 1, [see Eq. (25)}, which is the appropriate limit for finding the cutoff.

We thus consider a cylinder of radius a (Fig. 8) and look for the Green’s function solution to

(Y% V—2)G(r, /) =6(r—7), (80)

where r, v’ are the coordinates of the observation and source points respectively. The only waves which con-
tribute to the spectral energy density at r are those which when emitted at v’ propagate through the obscrvation
point at r. That means we can transform into a coordinate system where one of the axes is parallel to the line

joining (r, #') and the other coordinate is orthogonal to it (see Fig. 8); hence, Eq. (80) can be written

8
(vya-x—" - 2w,7)G(x, ¥) = §(z) — )bz, — 2, ). (81)

Now decomposing G into G(x, x) = g(zj,)&(z . — 7’| ) and substituting this into Eq. (81), integrating over

7, . and solving for the simple one dimensional Green's function, we get
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Glx ¥, V,,) = ;,‘;[expp(z, 2)H(z) — 2)b(z — 2, ), (82)

where p(z, ) = (2wi/V,) /] f ds is the distance between (z,2') and H. § denote the usual Heaviside unit step

and Dirac delta functions respectively. The spectral energy density is then obtained from

8= / d* P X)G(x, X, V,,). (83)

We treat the plasma as homogencous within the cylinder. The emission function is independent of the spatial
location. ‘The integral in (83) is just an integral m)cr the Green's function. To evaluate this, we transform
into a polar coordinate Systcm whcré 0,0, ¢ denote the angles of thc'obscrvalion point. source point and the
group velocity (Fig. 8). In that case we have 2y = rcosd. zj; = r'cos(¢p — ). z, = rsinf. and 2/, =

7' sin(¢ — @). In addition, using the law of cosines, -

p(z,7) = 2w,( + 72+ 27 cos 9}, - (84)

2w P 2w n 2w - : - ’
Bry ki = A do8y = -‘7"/0' d¢/n r'dr’./‘: d0'e"Hr cos @ — r’ cos(¢p — )] 6(r sin § — 7’ sin(p — #))
| ’ (85)
Performing the & integral first

) Pk 2% a e
ki = V,/o d{/()*"“"mla—a (86)

where & is the solution to the sin{¢ — 8f) = rsin /7. Note that the integral in (86) is maximized with ¢ ~ =,
which requires that ¢ =~ 0. The maximhm contribution to the spectral energy density comes from the waves
which propagate through the axis of the plasma as shown by the dashed conic region in Fig. 8. To do the
asymptotic evaluation, we solve sin(¢ — ) = r/r'sin¢ neary =~ rand ¢ =~ 0. We define g = v+ 6
and find that ¢ =~ 6/(1 4 r/¥). Substin_uing this into Eq. (86), retaining the dominant terms for 2«1, and

extending the integration limits on 6 gives

s =3¢ [0 (i iw))““’[ e(i-e )} e

The rémammg integrals can be carried out asymptotically with the dominant contribution in the # intcgral

coming from ' = a. This yiclds (for r % 0),
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Piay [2(a+7)

sk*‘" Wi g (88)

exp[%k(r + a)],
r
where A is given by Eq. (25), with L = r. ' A
The friction cocfficient can now be evaluated with Eq. (88). thc integral again being susceptible to
asymptotic methods on account of the exponent. We find that the integrand maximizes at the minimum allow-
able k. which here is st by the condition that |.andau damping be absent, k, ~ mw,./p,. This puts the

phasc velocity of the dominant modcs at the runaway point. We find

o= L2l n (o) ]*(;;; Y e () £ 2 -

where N, = v./w,, is the Debye length.
The cquation for the cutoff, Eq. (46), using Fq. (69) for T, , becomes

£=p+§=ﬁigf, (90)

Remarkably, the ratio of the clectric force to the dynamic friction at the cutoff is given by the golden mean!
Although this equation is transcendental, the unknown appears in a large exponent, and the desired root can
" be found approximately to a very high accuracy. The details are given in Appendix IIL. In the relativistic limit,

7 = py/me, which is the most useful one in practice,

2 2
5 S (1 +é€)ng, : (91)

where

_ 3 | In¢ _
€= [(In = 3)]1 [(l 27l€ 3) a = &(In(27¢,))°,

e o=(relE) (ererafizz]”

The nonrclativistic limit 4 — 1 is obtained by dcleting the mc/p, term in (91), replacing the factor 27 in
the ¢; and ¢, cxprc;ssions by (9/2)%/? and replacing the exponent 3/2 in the last term of ¢; by 3. Note that in
Eq. (91), p? ~ 1/r. This radial dependence of the cutoff momentum arises because of the convective nature of
the instability. To sce this, refer to Fig. 3 and recall that py ~ m{)./ky. Consider a fixed radius ry and suppose

that at some wave number j (momentum pj), the distribution function has cut off. For a slightly smaller k.
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there are no particles at the resonant momentum and radius rg, so that the growth must start at a smaller radius

r where fj is not yet cut oﬁ' In fact, solving Kq. (90) for r instead of pyj gives the cutoff radius

11(&&)“& (1+¢)ing
‘-f’pc Py me V4 1 + imc/p")i,

—
hc Tnr

- where

3/2 In¢ -
T [(ln ¢ — 3/2)] ln[ln 1.845]’ ¢ = €(in1.84¢)°7,

¢= [(12 ‘3",”2.'.’;) ((eze/lil))(?zl)z(g)(:—‘%)s and (3’ 2)3/2 ~ 184

The net result for £ as a function of r and py;is shown in Fig. 3.
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V. MOMENTUM SPACE FLOW PATHS

In order to clarify the nature of the solution just obtaincd, we compute the flow associated with the steady
state distribution function. This is cffectively a transformatibn to a Lagrangian description from the Fulerian
one, which was more canvenient for the calculation of f. Note that the steady state kinctic cquation can be
written as the divergc_ncc of a current (in momentum space), or, with angular symmetry '

Ll =0, (93)
where J contains the collisional, the n = 0, —1 quasilinear and the electric field fluxes or accelerations.
Equation (93) is identically satisficd byJ="V X ¥, with ¢ = (Y, Yo ). The ¢ symmetry makes only one

component ¢ = 1, nccessary, so that

1 9

Jp= ol 55'(?.1.1#). | (94)
=19 ,

Taking Jj times Eq. (94) and subtracting J, times Eq. (95) gives

8 4
Jy—p, ¥)+J, —(p, ¥)=0, 96) -
a quasilinear partial differential equation,®® whose solution is
dpy
% = (97)
dp,
2 =L : (98)
2o 0)=0. (99)
ds”+

The characteristics given by Egs. (97) and (98) are the flow lines we seek. Having obtained a solution with the
Eulerian description, Jj and J,; are known, and the flow lines can be obtained by direct integration.

In regions VII, where the Dy term dominates in the paralicl flow, we have

dp / dT.L( P
@ = (1 ) (100)
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dp, _"""”27 Py f
ds ~ p 2mT, "

(101)

Thus for the perpendicular momentum, pﬂ_ < ﬁmT 'L, the ﬂow is toward higher parallel momentum,
whilc at higher perpendicular momentum the flow is reversed, as shown in Figurc 4 rcturmng to the bulk. Since
dpy/dp, > L. the lincs are gencrally flat, nearly parallel to the py axis.

In region IX, where the clectric field and pitch angle scattering from the wpe €08 8 modes are dominant, the

flow lines are
i AR R -
ds 2mT, eE\" . eE 2mT_LeE
dPJ. PipL

FPL ] (103)

ds  ImT i fF[ ¢E ' ¢EImT, N

‘These show generally the same behavior as in region VI The difference here is that for pf,_ ~ 2mT,,
dp, /dp) > 1 and the flow lincs curve very rapidly toward the vertical p, axis; most of the electrons turn

around in the region.
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V1. Applications

‘I'he preceding analysis can be readily applied to determince the current carried by high energy clectrons
in a plasma subjected to a.small DC - clectric ficld. Recent cxbcriments on PLT have observed a well confined
runaway tail in rcasonable qtiamiwtivc agreement with the theory in this paper.? ‘There is also currently
great interest in experiments on RE driven currents for steady-state confinement in mkamuk'plasmus. In such
experiments the RF |s applied to a plasma which has been formed and maintained by an ohmic current in
an cssentially DC clectric ficld. Recent experiments with lower-hybrid current drive are of two types. In the
first type, the RE is turned on after the density and ohmic field have decayed (by open-circuiting the primary)
to sufficiently low values; the current is then maintained by the RF and with esentially no 1DC field.®® In
the second type, using low-density plasmas, a small DC electric ficld is always present.*21% In both types of
cxperiments there is initially a high energy tail in the clectron distribution function due to the small DC electric
ficld. and an cvaluation of the current carried by these energetic electrons is of interest. Using vthc results of the
preceding scctions we shall outline how such a calculation can be carried out.

For known profiles of the plasma density and temperature the cutoff momentum as a function of plasma
radius can be obtained from (91) together with (7). Using the result that f is approximately Gaussian in the

perpendicular direction we can find the density of clectrons in the tail

Pe ' .
mir)= | fidp ~nrBFe (104)
and the current denéity associated with the tail
P P
i) = dey
(14?2 — (1422
s enyre
G
1 12 (1 1/2 '

where g, = (p,,/mp) and we have assumed, as throughout, ¥y /~ 1 4 qﬁ. The tail current can then be found by
intcgrating Eq. (105) over the plasma cross scction. _

To obtain rough cstimates, ignoring profile cffects: take (p./pr) = (Q2¢/wpe) (assumed to be > 1, as
throughout). and usc half the plasma radius as an cffective radius for the tail current. For the recent lower-

hybrid current drive experiments of the first type, we thus find that just before the turn-on of the RF the
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plasmas were characterized by the following energetic tails:* in Alcator C39, 8, ~ 20 keV. 8, ~ 370 keV,
and I; = 100 Amp: in PLTH0 8, = 10keV, 6, ~ 140 keV and [, ~ 80 Amp. ln‘ both cascs a negligible
current compared to the RF maintained current. On the other hand. for lower-hybrid current drive of the
sccond type. for example in Versator 1172 at the turn-on of the RF we find 8, ~ 3 keV, 8, ~ 36 keV and
[, ~8 KA which is about one-fifth of the total eurrent. It should be cautioned that since ny is a rapidly vairying
function of (E,/E) ~ n/T, [sec (7)], which also enters in the more exact evaluation of p, through (91), more
accurate t;\-'aluatio'ns of the above quoted cxpcrir’ncnis need to be carried out, as cxplained above with (104) and
(105). | -

Another potential application of our results is to the recently observed enhanced confinement for low-
density plasmas having an encrgetic clectron tail.*! In these plasmas the enhanced confincment (so-called H-
mode) is characterized by a risc in the plasma edge temperature. The collisional dissipation in the edge plasma
of the power radiated by the convcctivély unstable wp, cos @ modes could contribute to this. We can estimate

this possibility as follows. The power radiated by the unstable modecs is given by

Pyr) = / dk k) dky 284, (106)

where the integrand is detcrmined approximately by Egs. (24) and (88). The k space intcgrations can be
carried out asymptotically: the maximum contribution comes from k, = muwy./p, and ky =~ mQ,/p.. An

approximate cvaluation of P,(r) can be obtained by also taking r = r,, where it is maximum. One thus obtains

P, nrP Pc)'“"
vnT, ~ n P,(p, N (107)

where

N

— V2 1 [(ln 1.845,)l+3¢.]3/2
B 1+ v5) (L +3a)l 1+ea)ing

- €}, €1, and z1) are as given following Eq. (91), and v is the bulk plasma elcctron-ion collision frequency. As
an cxample, for a toroidal plasma of 10 cm minor radius, 50 cm major radius with bulk T, = 800 ¢V, n =
5 x 10'3/cm® and an applicd dc ficld of E = 0.01 Volts/cm we find P, ~ 250 KW. When this power arrives
at the plasma edge some of it tunnels through and converts to clcctromagnétic radiation that keaves the plasma
(as is usually detected outside the plasma) and some of it is dissipated in the collisional edge plasma which may
account for the observed risc in the edge clectron temperature. Here, again, a more accurate determination of
the radiated power and its absorption at the edge would reguire calculitions that include the plasma profile; the

plasma edge temperature change would need to consider an appropriate edge transport model.
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APPENDIX I:  The Quasilinear Friction Force

We discuss systems described by the Fokker-Planck cquation., restricting consideration to thermal and

weakly turbulent situations, The standard form of this equation is

of a1 1 &

5t_=—07):—pf+2avﬂv,D”f’ (I1)
“where
Fi (]
(Av ) (12)
Av;Av; ' »
: D,‘j = ( .vAt vJ). (13)

In taking the momentum moment of Eq. (11). the second term on the right annihilates. The cocficient F} is
clearly interpretable as a force.

Equation (I1) can also be written -

of oFS 10
o = —ow 3o D) (r4)
where
maDc
Fi=Fi— 5%,
Now it happens for the special case of collisional Coulomb interactions® that the relation
Fi &8 '
= a—v;Df, (I5)
holds. Thus, for this case '
o o1 : a

and excepting the factor of 1 /2, the cocfficients are the same whether one uscs Fq. (I1) or (I4). The coefficient
of the first term in (14). F,, is often referred to as the force of dynamical friction.'” This terminology can be
misleading. since the second term- in (14) also alters the momentum, thus affecting a force. For example, in
quasilincar theory, F?! = (m/2)0D" /3v;. so that F; = 0. and enc could say that there is no friction in

quasilincar theory. While this is certainly true in the comvention of Eq. (I4). it suggests an absence of forces,
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which is not true. Clearly the waves can contain momentum and the extraction of it from the particle will result

in a force,
'lhc cocfficients (12) and (13) can be computed directly™ for an arbitrary (small) level of clectric ficld

ﬂuuu.mons ‘The test particle sdf ficlds (which are not in general related to the ambient ficld ﬂuctu.mnns)

contribute to F, which can be written™

maDu
0”)

Therefore, —eE] = F, and it is the sclf-ficlds that are neglected in quasilincar theory. The force cocfficient,

F()=eEi0) + 5 (17)

in Eq. (17), is still non-zcro in gencral. In quasilincar theory, integrating over one of the coordinate variables

produces in certain situations a reduced cquation which has the form of Eq. (14).




APPENDIX I

(a) DIFFUSION PATHS USING CONSERVATION OF ENERGY AND MOMENTUM
We shall first use a simple physical argument to find when a resonant particle is moved out of resonance by

quasilincar scattering and thus provides a source of energy for the waves?? We define

n__‘_‘i

as the action density of clectrostatic waves in the ncighborhood of wave number k. Then the conservation of
energy and parallel momemum between Any waves havmg k valucs between (k, k + Ak), resonating with N

particles having velocitics between (v,v+ Av) leads to

mN(nAvy + vy Avy ) + w,Ang = 0, (111)

mN Ay + kjAn; =0, (112)

where ky is determined by the wave particle resonance condition. The perpendicular momentum need not be

conserved, since the applied magnctic ficld can absorb momentum. Solving (112) for Any, and substituting in

(I11) leads to

(v" - %‘:)A"H” + v, Ay, =0. - (1m3)

- We study these diffusion paths for two specific resonances.
Consider first the Landau interaction at n = 0, which requires that w, = kyv); then we see that the

diffusion paths are

v, == constant; (114)

that is, the particle is scattcred along constant perpendicular energy paths, the preferred direction being
specified by the local slope in the distribution function.

By combining the resonance condition for the n ¢ 0 wave particle interaction, wy — kyvy — n€l = 0,
together with the definition of the wave phase velocity for the panicular waves of interest, we can write wr/ky
in Eq. (13) in terms of vy. This is casy to do in the case of magnetized plasma waves, w, = wyoky/k when

k; >> k. and lcadsto
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AL
!(v" - ‘ﬂ'—'-) + —-2—'5 = constant. (115)

‘These are circles centered at the wave phase velocity.

Once again the prcfcrrcd dircction will be given by the local slopes in the distribution function (as scen by
the diffusing particle). |

A more satisfactory vwa'y to derive these results would be to start from the quasilinear kinctic cquation and

construct an H theorem. ‘The kinctic equation describing the quasilincar evolution of the resonant clectron

distribution function is given by??

81202 E/dzk (n)Jz(k_Lv_L)a(wk_k"qI TIQ)L(")f (1186)

where L) = k,ﬂ/dvu + nQ/v, , J, is the Besscl functions. EZ is the electric ficld energy density, and the
delta function insures that we only pick out the resonant distribution function. DeﬁncH f d%fInf, then,

using (116),

dH —sﬂe’ ):,‘dJ / gy LalbLo L) ('”""L/ Do — by — ,.9)(“”2 ()

This implies that the marginally stable asymptotic states of f are given by zeroes of H. This occurs in two ways:

if E'z vanishes (trivial case since there are no waves present), or if

(@£ =o, (118)

with E? ¢ 0. Equation (II8) is a simple first order partial differential equation. It can be integrated by the
method of characterjstics, giving

dyy |
b (119)
dv_,_ nfl
- = m, (IIIO)
af
u =0 (1111)

In addition, k is specified by the delta function selection in Eq. (116).. Equation (1111) implics that £ is constant
on the diffusion paths. Integrating Eqgs. (119-1110) reproduces (114-115). Note that all of these analyses are
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based upon the assumption lhai cach of the gyroresonances can be treated without any interferences from all
the other gyroresonances. A wave at phase velocity (w,/ky) can suffer Landau growth (damping) at that phase
velocity, gyroresonance growth n = —1 and gyroresonance damping n = <1 and similarly for all the other
gyroresonances. In the case of the runaway clectron tail, the distribution is so anisotropic that the gyroresonance
damping is ncgligiblc and lLandau d;uﬁping is also negligible since the distribution function is flat. One final’
note: when w, < .. then the diffusion paths are virtually identical t constant encrgy surféccs and there is

very little free energy available to drive the instabilitics. -
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(b) CONSERVA’ l‘ION IIII~ORI ‘MS IN QUASIHLINEAR THEORY

Finally, we briefly turn our attention to the separation of the distribution function into resonant (v =~
w/k) and nonresonant (v 3> w/k) parts and the various conservation of cnergy and momentum theorems be-
tween the waves and pz'miclcs.A Wc shall treat only the simple one dimensional model, since the results gencral-

529‘3_‘1

ize quite casily to the three dimensional case. The quasilincar kinetic cquation in a onc dimensional

clectron plasma are

Oflv,t) 8 pl;
O _ o (I113)

=0, (1115)

(R ()
k (v— %)au k ] O |y sk
where f(v, t) is the background distribution function, w; is the growth rate, E’f_ is the clectrostatic electric field
energy density, e = 0 characterizes the particular dispersion relation that we wish to study and gives both the
frequency of oscillation w, and the growth (damping) rate w;. We take the principal part in the integral in
Eq. (1115), which is the same as intcgrating only over the nonresonant distribution function. It is well known
that Eqs. (1112-1115) conserve particles, momentum and cnergy when the total distribution function (resonant
plus nonresonant piecé) is considered. Since it is somewhat cumbersome to treat continuously the distribution

function consisting of a resonant and a nonresonant piece, we shall instead consider a modified set of kinetic

equations
Of"(v. Of(v,t) -2 Dgof’:;:: . (I116)
%‘tis = 2w, Y

812(-:;)2 / dk~ o g&z) [(k—w,/v)] (1118)

& = -0—(”#')32» (I 1 19)
r

where the R on the distribution function and diffusion cocfficient signified that this is the resonant picce, and

84 is the total wave energy density and consists of the clectric ficld cnergy density plus the kinetic energy of the
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nonresonant particle, ¢, is the real 'part of the plasma permittivity function (115). ‘The total wave encrgy density

8y, is obtained from

/ E’dk+a¢/ nma’ {1 = at/ d"Ela(w'e'). | (1120).

and using the kinetic equation for the nonresonant (NR) distribution function and clectric ficld cnergy density.
Now it is a simplc matter to show that the Kinctic cquations in (I1116) and (1119) conserve particles, momentum

and encrgy. In providing momentum conscrvation, the following result will be useful:

g / nmyfN1t =2 / dklcE'kw.gi , (I121)
and in proving energy conscrvation it will be ncccssary to make use of
Gw,e, _ wy [ Wy, /
G ( ) P av(v (1122)
o erlwr)
w; == B () B’ (1123)
where ¢; is the imaginary part of the plasma permittivity function in (I115). This altcrnate representation of the

quasilinear cquations has been discussed by Kaufmann 3,

The advantage of the above sct ofequations is that one no longer has to solve for the nonresonant distribu-
tion function as long as the total wave energy density is used in the diffusion coefficient. In addition, the waves
now carry momentum, because the mechanical oscillation of the nonresonant electrons has been included in the

description of the waves. The electrostatic field docs not carry any momentum.

10




APPENDIX I

We outline a method of getting very accurate approximate solutions to transcendental cquations of the
form
. e '
where A and B arc constants and £ can be any power, In the limit where Bz 3> 1, we look for solutions with

z > 1 where z is the point at which Eq. (1111) exhibits a minimum (z0 = €/B). It is now convenicnt to

define y = z/z and look for solutions at large y. Taking the logarithms of Eq. (1111), we obtain

TVIAY |
y—lny—-zlnA B =0 (1112)

For y > 1. this can be solved by iteration,

1 AN
0) — = b
y I A( b) , (I113)
v =Iny®, . (I114)
¢y =Iny®), (I115)

where y©@ > ¢y > y@, which is kept up until (™ < 1, where it must be stopped. The remainder
term then determines the crror in the asymptotic serics. Since the sequence generated consists of compounded

logarithms, the terms decrcase very rapidly. For our case of interest, the first two terms suffice to produce

z 1 (A AN
Ve " {(37)['"(‘ () ]} (THs)
This is a good approximation for the cxponential term of Eq. (I1I1). However, it is sometimes ncccssary
to improve upon the expansion in compounded logarithms. This is done by performing a Newton-Raphson
iteration using Eq. (I116) as the initial guess. This leads to
z = (1 +¢)za, (1)
where z,4 is given in Eq. (1116) and
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| ¢= (ln ge—e)'"(ln(Al(sz)f))' | (T1s)

@
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Figurc Captions

Figure 1. 'I'he parallel distribution function fi(p)) = 27 f p.dp, as a function of py. The drift velocity of
the bulk is indicated by. P zmd_ the runaway momentum by p,. The classical (collisional) distribution function
'is shown dashed for py > pr. The positive slope due to the w,;., modecs is shown. highly exaggerated for
rr < bll < P The cffective dynamic friction due to the wp cos# modes becomes effective for py > py =~
Q,p,/w,,, and cuts the distribution function off at p.. The n = 41 gyrorcsonance interactions are shown. The
nonrelativistic picture can be obtained simply by letting y = 1. _
Figure 2. 'The plasma wave spectrum consists of w,;, modes with k= 0 and wp, cos@ modes with k> k.
The maximum k is limited by Landau damping (w/k; = v,). The X denotes the position of the maximally
unstable waves for a finite length il (py < pe).

Figure 3. The structure of the high energy tail ih momentum and position space. The distribution function is
cdual to the classical one in the shaded region and is zero outside.

Figure 4. Contours of acceleration ficld stream function. The fact that the lines close upon themselves is indica-
tive of a steady statc. In the dashed region between pp < py < poi. the flow lines have not been computed

exactly.
Figure 5. The quasilinear diffusion paths for the n = 0 (Landau) resonance and the n = —1 gyroresonance.

In the Landau case, the diffusion paths are p, = constant, while in the gyrorcsonance case they are circles

centered at the wave phase velocity.

Figure 6. 'The diffusion cocfficient due to the absolutely unstable wy,. modes. Region 1V of Kruskal-Bernstein

extends approximately to py ~ pA1 4 (E/E)!/3) > py where D(P,) = 0. Hence, we have labeled their
region IV by our V, VI and part of VIIa. Their region V is replaced by our regions VII-X. Regions VI, VIII
where Dy varics rapidly are replaced by jhmp conditions.

Figure 7. The perpendicular temperature as a function of momentum in the various regions.- The heating in
region VI is greatly exaggerated.

Figure 8. Transformation of coordinates for the evaluation of the Green's function from (r,8) to coordinates
centered on a line joining (r, #'). Waves propagating through the conical region (shaded) produce the dominant

contribution to the fluctuation level at (7,8 = 0). The plasma radius is denoted by a.
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