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ABSTR ACT

The structure of the high-encrg) electron tail in a current-carrying, magnctized plasma column is deter-

mined self-consistcntly with the plasma wave turbulence it gencrates. 'lhc theory applies to cases when runaway

confinement is good and radial scattering of the runaways can be neglected. The unstable spectra consist of

absolutely unstable, parallel propagating plasma oscillations at w = w, and convecctively unstable magnetized

plasma waves propagating nearly perpendicular, with w = wjkjj/k < w,,. Enhanced dynamic friction

resulting from the magnetized plasma waves increases with parallel momentum, and cuts off the distribution

function at high energies. The convective nature of the modes gives a radial structure to the cutoff, with the

highest energies concentrated in the center. Below the cutoff, the distribution function has a small positive

slope. Equilibrium is maintained by the plasma oscillations which produce the back diffusion flux necessary

to offset the electric field acceleration. Five separate asymptotic regions for the tail distribution function are

identified and the calculation is carried out to give an explicit solution. Once obtained, the solution is expressed

in Lagrangian form to determine the flow paths of particles in momentum space. This clarifies the nature of the

steady state.
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51013 and NSF Grant ECS82.
tAlso at Francis Bitter National Magnet laboratory. Massachusetts Institute of Technology. Cambridge. Mass. 02139.
"Also at Research Laboratory of Elcctronics. Massachusetts Institute of Technolog). Cambridge. Mass. 02139.
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When a weak clectric field is applied to a plasma, the electron distribution dcvelops a drift, a slight distor-

tion and at energies above thennal, a runaway electron tail. In the classical runaway theory. I the high energy

tail extends to infinite momentum (or, rather, grows indefinitely with time) and if included would produce

a divergence in the computed conductivity. The Spitzcr-Harm2 conductivity results by ignoring this part of

the current. It works quite well when the runaway confinement is poor, as when large radial excursions of

the magnetic field lines occur,' or orbit shifts are largc.' Hlowcvcr. there are many practical cases when the

ninaways are well confined 5 and they can then contribute significantly to the plasma current, as well as the

radiation and energy loss processes of the plasma. For such circumstances we have proposed that a high-energy

electron tail can be maintained in steady-state by the self-consistent turbulence that it generates.! This paper is a

detailed exposition of these ideas.

Recent experiments in plasma current generation by externally excited, unidirectional waves in the lower-

hybrid frequency regime have shown that a steady-state, high-energy electron tail can be maintained by these

waves. In a variety of these experiments a weak dc electric field is also present and the maintenance of a steady-

state current in the presence of both a weak dc electric field and high-frequency wave fields is of great interest.

Here we shall not consider externally applied high-frequency fields.

We consider an infinitely long, radially finite plasma column immersed in axial magnetic and electric

fields. A steady state for the high energy electrons in this situation can be obtained in roughly two different

ways. Runaway production can be balanced by some radial loss mechanism. Experiments are often interpreted

with an empirical version of this steady state.5 Alternatively, turbulence resulting from the high energy tail

could enhance the dynamic friction on the electrons and prohibit the runaway process, even in the absence of

radial loss.6 The waves that interact with the runaways do not produce significant radial diffusion, so that with

well formed magnetic surfaces it is unlikely that the radial loss of runaways determines the steady state. We will

assume that the surfaces are well formed. In addition, we assume that the plasma waves convecting radially do

not reflect from the edge and cause an absolute instability. These are the principal assumptions of the analysis to

be presented in this paper. From them, we develop a self-consistent solution to the kinetic equations for the tail

electrons and the waves.

We find that the friction and diffusion forces produced by the turbulent wave spectrum pen-nit the particle

distribution function to attain a steady state. Electron runaway to infinite momentum occurs only on the column

axis while at other radii, the distribution is cut off by the friction from the unstable waves. This, in fact, makes

the designation "runaway" somewhat inappropriate. The present paper is devoted to a detailed derivation of

the structure of the high energy distribution function and associated turbulent wave spectra. iese. as well as

other details, are given in the Ph.D. thesis of one of the authors (M.S.'.) 7
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Another models, in which radial convection of the magnetized plasma waves is ignored, and the plasma is

taken to be infinite and homogeneous has been studied in considerable dctail"t). The original works described

relaxation oscillations of the runaway current and turbulent spectra and attempted to explain an observation

of such a phenomenon in tokamaks 1 . A more recent studyl0 , in which the quasilinear kinetic equations were

solved numerically, did not find relaxation oscillations and attributed the results of Ref. [8] to the stiffness of

the approximate moment 'quations used therein. It iust be emphasized. however. that the modes in question

are, in fact, convective (with a radial group velocity on the order of the electron thermal speed), and it is

difficult, if not impossible, to ignore this fact in describing realistic runaway phenomenon. Even if one argues

that reflections of the rays from the plasma edge, to a degree as yet unknown, enhance the spectrum over that

computed in our model, the inhomogeneity will enter the problem in a critical way, creating a very complex ray

trajectory pattern. The model of Refs. [9.10] has this inherent limitation.

The phenomenon of electron runaway was first pointed out by Giovanclli, 12 who observed that since

the dynamic friction due to Coulomb collisions decreased at high velocity like v- 2, for any electric field

there would always be some velocity beyond which collisions could not restrain electrons from accelerating

indefinitely. Denoting the friction force, F = mw'1ve/v) 2, with v = Q/T7/, and v = 4rne'(2 + Z) In A/m 2V3,

this critical "runaway" velocity is v, = vv/E7/E, where E, = frwv,/e is the electric field at which thcrmal

particles runaway.

An actual calculation of the runaway rate requires a determination of the electron distribution function.

This started with Spitzer and Harm.2 They analyzed the Fokker-Planck equation for electrons in a homogeneous,

unmagnetized plasma,

Of HE. f a v(V) -V2
M OV 2t (9

3+ (j) - f - I

where I is the identity tensor and the ions have a Maxwcllian distribution. This equation was analyzed in the

steady state, neglecting the slow joule heating of the electrons. Their procedure was to expand the distribution

function in a power series in the electric field and then to solve the resulting equations order by order using

spherical harmonics. This led to the classical (parallel) resistivity , rjsl, = 1.8 X 10-' 8 T, 31 2 In A (sec.)

This solution is valid for velocities v/v, < (E,/E)'/1 , and so to be meaningful E/E, must be small, (the

limit I1/E, > I was studied by Kovryz.nik'"). For velocities above this. their representation of the solution is

inappropriate and a different expansion procedure has to be used.15 M The primary concern was to determine
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the flux of electrons into the runaway region. the so-called "runaway rate". Upon expanding equation (1) for

v > y, in the steady state, there results the following linear equation.'

E +I ")~ = (I_ \,U)

.+ = (j - U2)(I (2)f,), + (u - (2)

where E is normalized to the runaway field. u is normalized to the thermal velocity and A is the cosine of the

angle between the clectric field and the velocity of the particc. subscripts denoting dcrivatives. This is the basic

equation of the classical rinaway problem.

'The first attempt to calculate the flux was made by Drciccr.' For v < v,. he assumed that the distribution

function was determined predominantly by collisions and hence was isotropic. Equation (2) was expanded in

spherical harmonics as in the Spitzer-Harm problem. The rate at which the particles scattered across v = v,

was used to determine the runaway rate numerically.

Gurevichlo realized that this picture of velocity space was too simplified, that, in fact, as one approached

v ~ v, the distribution ftnction was no longer isotropic but would be localized around the electric field

direction. He expanded the distribution function near v - v, and u > 1, using the form f = exp{0o(u) +

01(U)(1 -A)+ 2(u)(1 -M) 2 + .}. This was substituted into Eq. (2) which was then solved order by order in

the electric field. However, the match to the distribution function near v - v, was not performed correctly and

an assumption that 01 = 0 to the lowest order led to a singularity in the distribution function when v -+ v,. In

spite of this, the exponential dependence of the runaway rate upon (E,,/E) was correctly determined; only the

premultiplicative term was incorrect.

Lebedev17 used a similar approach -to Gurevich. He found, however, that there was an internal boundary

layer (since the coefficient of f/Ou vanished at s = 1, v = v,) at v = v,, and he also did not set #1 = 0

to leading order. However, he did set 02 = 0 to leading order. This led to an error in matching to the bulk

electron distribution function but did not produce a singularity in the distribution function for v > v. Thus he

was able to compute the runaway flux with reasonable accuracy and obtained

E, )14 -~[ Er
SL = 0.36nw(v,) ( exP[ -4EE,/E. (3)

The most rigorous solution to equation (2) was performed by Kruskal and Bernstein.1 They made no ad

hoc assumptions about the distribution function, but found it necessary to introduce five distinct regions for the

distribution function. The solutions were matched asymptotically at the transition between the various regions.

Their expression for the flux is given by
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SI = knv4(v,) ex -E, - 2/iQE]. (4)

The constant k is of order one, but not known precisely because the differential equations in two of the regions

were unsolved. The details of the Kruskal-liernstcin solution are summarized in a recent paper by Cohen,18

who also included impurity ions in the Fokker-Planck equation.

A numerical analysis of the Fokkcr-Planck equation (1) was performed by Kulsrud et al.19 They found

good agreement with the results of Kruskal-Bernstein if k = 0.35 in Eq. (4). Comparing the runaway flux with

the experimental observations of Von Gocler et al.,20 they found that the theoretically predicted runaway rates

were generally larger than the experimental values.

Finally, Connor and Hastie 2 1 included relativistic effects and impurity ions in the Fokker-Planck equation.

They used an asymptotic matching procedure identical to that of Kruskal-Bernstein. The main result intro-

duced by the inclusion of relativistic effects was that if the electric field was sufficiently small so that v, =

c (c = speed of light), then there would be no runaways produced, because for relativistic velocities the

dynamic friction no longer decreases with momentum. For this effect to come into play, one requires a =
(E/Ev)(mc2/T) > 1, where ED = E,/(2 + Z) is the so-called Dreicer field. The critical (runaway) momen-

LUM is (p,/mc) = (a - 1) for a >> i this reduces to the nonrelativistic result quoted earlier.

A recent review of the runaway problem and experiments in tokamak plasmas has been given by Knoepfel

and Spong.22

For future use, we compute here some of the parameters from the classical collisional solution. Since the

tail in general extends to large velocities, a fully relativistic treatment will be used. To proceed, we first define

the following perpendicular moments

AI(p) = / 21rpdpJ(plj, pt), (5)

T 21rpdp( '-)f(pigs pi), (6)

where (p11, p) are the parallel and perpendicular momentum, respectively, to the direction of E JI Bo. The

time rate of change of the density of tail electrons is obtained by integrating the time dependent Fokker-Planck

equation over all p_ (which annihilates the collision operator when p_ < p is satisfied) and over p, from

(-oo, oo). This leads to nlT/&t = cEfi(oo), since fj(-oo) = 0. Since f.i(oo) is obtained from the solution

of the kinetic equation, the runaway rate follows. On the other hand, since fl(pl) is approximately flat beyond
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t.

the runaway momentum, we can dcfine a density, nT, such that fA(oo) = fj(p,.) = f, = nT/p, where p, is the

thermal momentum. 'Ten

=l0. 35 ( Exp[ - /27./] (7)

where we used the results of Kruskal-llcrnstcin together with the constant determined by Kulsrud et al.'"

Note that n7 is not the density of runaway electrons. Determining the density would require knowing the

distribution function length.

Another parameter we shall require is the perpendicular temperature. Once fil is found, it can be obtained

from Eq. (6). In the collisional problem. using the approximately correct formulas of I.cbedev, we find that the

perpendicular temperature at the runaway momentum is

= 21/3 (8)TeE
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In order to produce a steady state, Pearson23 and Biateman 2 included collective cifects. 'lcy both added

a dynamic friction term due to the Chercnhov Cmission of waves25 into the classical equation (2). Neither

found substantial alterations of the runaway rate. ihis is the expected result since in a thermal equilibrium

(Maxwellian) plasma, the dynamic friction form the waves is smaller than that from collisions by the factor

ln(v1 /ve) In X. An additional difficulty of this calculation for a stationary, infinite, homogencous plasma is that

the spectral energy density of the waves diverges as marginal stability is approached. This situation arises for

v > v, where the distribution function. fl. is flat and I.andau damping vanishes.

In the analysis presented in this paper. the parallel distribution ftinction fA(pli) takes the form shown (with

an enlarged positive slope) in Fig. 1. along with the bulk distribution function, for pl < pr, to which it matches.

The height of the tail in this notation is f. =! n/P,. We will use the results of classical theory for nT. This

does not mean that the analysis hinges on the validity of the classical theory. Rather, the rail distribution

function will match to any bulk function which is flat at p1 P p, and Gaussian in the perpendicular directions.

properties which are fairly universal consequences of the kinetic equation in the vicinity of P1 F p,. Our

results are written in terms of nr/n, which in this analysis may take on any (small) value. Wave effects become

important for pl1 > pr where the flattened tail permits instabilities to develop. The unstable plasma wave

spectrum splits into two distinct parts. as shown in Fig. 2. and described in detail in Sec. II. For simplicity, we

treat the strong magnetic field limit, 0, >> w,,, in which the plasma wave frequency is w = wpkj11k, k being

the wave vector component along the magnetic field. We refer to that part of the spectrum with k± = 0 and

W = wpe as the "w,e modes". These waves are driven by a positive slope in fj . They have vanishing radial

group velocity and when excited are absolutely unstable. In the steady state, their saturation level is determined

by marginal stability. The second part of the spectrum, characterized by k-1- > k11, and hence W < cpe, is

referred to as the "wpe cos# modes". They are driven unstable by the anisotropy of the distribution function in

the parallel direction through the wave-particle interaction at the first gyroresonance.26 ,2 8 These modes have a

large radial group velocity and are saturated by convection out of the unstable region.

The waves contribute additions to the diffusion tensor of the particle kinetic equation according to the well

known quasi-linear operator? 9 When the kinetic equation (collisions plus waves) is integrated over p_. one

obtains an equation of the form

o 00o
-(eE - F1) = i--D iI, (9)

where D contains contributions from both spectra, while only the wpecosO modes contribute to F11. 'Ibis

effective dynamical friction results from the pitch axle scattering in the quasilinear response at the first

gyroresonance which appears like a friction when projected on the parallel axis. The origin and physical
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mechanism of the friction term in discussed in Sec. I and Appendix 1. Its relation to the overall solution is

clarified in Sec. V, with the derivation of the flow pattern in momentum space which characterizes the steady

state.

'Thc effect of the enhanced plasma wave spectrum on the self-consistent particle distribution function in

Fig. I can be understood in the following way. First, for comparison, consider the bulk electrons with p1l < p,

For these, the collisional dynamic friction exceeds the electric field acceleration, hence an individual (test)

clectron would tend to slow down. In order to heave a steady state, this deceleration must be balanced by an

outward velocity space diffusion flux as is produced by a negative slope in the distribution function. this picture

remains qualitatively correct out to the runaway momentum p,. Beyond the runaway momentum, the electric

field dominates the collisional dynamic friction and an individual electron tends to be accelerated. In the colli-

sional theory there is nothing to balance this tendency and electron runaway occurs. There is no steady state.

With the waves present, it is still true that eE > Fj1 for some distance beyond p,. 'he only way the maintain an

equilibrium is, then, to balance the electric field acceleration by a back diffusion flux. 'l'his is precisely where the

w., modes come into play, maintaining the tail with a small but finite positive slope. This positive slope persists

up to a sufficiently large momentum where the effective dynamic friction from the wp, cosa modes exceeds eE

and cuts off the distribution function.

One can see that this steady state can be reached by the evolution of an initial (non-stationary) distribution

with a flat tail. First, particles accelerating through the runaway region pile up at the cutoff point. A positive

slope then develops there.30 The wp modes are then excited and fatten f by the backward diffusion of

particles, until the small residual slope of the steady state is achieved at marginal stability.

These are the results obtained by examining the distribution function at a fixed radius. However, because

the effective dynamic friction is produced by the convectively unstable wp, cos 9 modes, we would expect that

the distribution function would develop a radial structure. This is indeed the case, as is shown in Fig. 3, which is

a plot of Ai in pii, r space. The parallel distribution function is flat in the shaded region and zero outside.

To complete the picture, it is necessary to determine the perpendicular momentum space structure of the

distribution function. Actually, Ag(pig) can be found5 without knowing this, but then the origin of the dynamic

friction and the precise nature of the steady state are unclear. In particular, the balance of friction and diffusion

just described only applied globally in the consideration of 4l(pII). When the full distribution function in the

p±, pu plane is considered locally. the steady state picture must entail a divergence-free flow in momentum

space.

To calculate the full f(pl, pj), it is necessary to identify field separate asymptotic regions for the kinetic

equation of the tail electrons. This is done in Sec. I1. We continue the scheme of Kruskal and Bernstein, num-
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hering dhe tail regions V-X. so that we match to region IV of the classical solution. In Sec. IV, the procedure for

obtaining f asymptotically is described and carried out explicitly to determine Ti. To clarify the nature of the

steady state, we revert to a L.agrangian description and calculate the electron flow lines in momentum space in

Sec. V. Thc flow lines close on themselves to form vortices as shown in Fig. 4. Finally, in Sec. VI we describe an

application of the results to recent experiments in'lower-hybrid current drive.
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11. IINFAR ST AtillfI 'ANAIlSIS

We outline here the stability properties of the electrostatic waves which resonate with the rnaway

electrons. To be consistent with the energies obtained by the runaways. it will he necessary to obtain relativisti-

cally correct growth rates. We do this by identifying a simple transformation rule to convert the usual dielectric

function into a relativistic one.

The transformation is obtained by writing down the lincarizcd Vlasov equation for the one particle dis-

tribution function f(p, r, t) in relativistic form," for electrostatic perturbations,

Of .- 1 pX A- (10)Mry Or y Op Or Op

where A = qBo/mc. q is the signed charge, m is the non-relativistic mass, B is the applied magnetic field, c

is the speed of light, p the momentum. 0, f o are the perturbed potential, distribution function and the steady

state distribution function respectively, and -2 = 1 + p2/m 2C2. Equation (10) can be obtained from the non-

relativistic Vlasov equation by

p + (11)m

00 flo (12)

M, (13)

-+ ,(14)

(15)

f d3v - d3Ap, (16)

where 0 in (15) is the azimuthal angle.

It is clear that the procedure of obtaining the electrostatic dielectric function commutes with the operations

(11) to (16) so that they may be applied directly to the usual non-relativistic dielectric function.32 The real and

imaginary parts are thus given by
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e,(w,A)=i+ k d(1)

i(w,ak)= 2 ) X W _ - -n -L"f, (18)

where the sums arc over species (s) and harmonics (n) of 0, J, is the Bessel function, and L,") -

m~kj0/6p + (nflm.2/pj)9/p .

The relevant waves have very high phase velocitics. w/k 1 > vi. so that thermal corrections to the dielectric

function are negligible. The density of tail electrons is assumed to be sufficiently small, n7/n < 1, so that they

will not affect the frequency of oscillation but only the growth rate. In this limit, Eq. (17) reduces to

W2 w2Ic Q _ W2 k2

r =C 11 PC - (19)w2  W2 Vc (W2 - fl) V2  (9

When w 2 < f1, the real part of the frequency, given by e, = 0, is

W2 = 2 +M&D 2  (20)

and finally, for k /k 2 > mL/rn,

W C- W,, k(21)

which is the limit we utilize. Unstable lower hybrid waves with k/k 2 < me/mi can be excited at high plasma

densities when the runaway tail is very long. However, in such cases, the total runaway number is extremely

small and their effects on bulk plasma properties, radiation, etc., are minor.

The waves considered can be destabilized in two different ways. For modes driven by the n = 0 or

Landau resonance, w = kjp 1/m'y, the growth rate, in the absence of collisional damping, is

= l 2Og.(22)

Note that the growth rate is maximized at the largest frequency of oscillation or when k_ , 0. Since the radial

group velocity vanishes as kj -+ 0, we expect an absolute instability with w = wp, whenever Ai has a positive

slope. We refer to such modes as "c, modes".

For the gyroresonance driven modes, at w - 1p 1/my - nfl,/y = 0, we take the limit p2 < P 2

kpjmfl, < 1. and yw < 0, which can be verified a posteriori. The n = -1 resonances are then

dominant and we have
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!!;2if -L , Lwl (23)
w ~~ 4 0,2~ k2  &piij"' k11  j 2 fe kj F1 k11  23

where - ~ y + pj/m2 c2 , T_ and fi arc defined in Eqs. (5) and (6), and the second term in (23) results from

an integration by parts. The parallel derivative term will turn out to be small, so we neglect it for the moment (it

has an additional destabilizing influence for the modes we consider). Assuming negligible Landau damping for

the mode considered. instability will occur if fjj(m1I,/k 1) > fi(-m0,/kj). With the tremendous anisotropy in

the parallel distribution function, this condition is strongly satisfied, and (23) becomes

J =2 k2 myo, /mf,\
=4 02 kV k|\ i .24

These waves have large radial group velocities v, ve, and the convection time across the plasma column,

L/vg, is quite short. Provided the coherent reflections from the edge are small, the instability is convective

with a growth factor of

)kM 'rw -- = L YMOefA - (25)vw3  n2 kl kTI

TIhc giowth facior is large when k±/k 1 > 1. The maximum k_ is determined by the minimum phase velocity

at which Landau damping is negligible, i.e., the runaway velocity. Thus, kL c w,,/vR and Xk increases with

decreasing kj. Since kI1 ~ mf,/p, for constant f.4, the growth rate increases with momentum. The dominant

convective modes thus have w, = wpk/k± < u,, and we refer to these as the "wp, cos9 modes ". The

resulting enhanced wave spectrum, for distributions of the runaway type, are summarized in Fig. 2.

To clarify the mechanisms by which these instabilities are produced, and, more important, to facilitate the

discussion of their effect on the distribution function, we briefly examine.the quasilinear response at the two

resonances. Using the conservation of energy and momentum between the resonant particles and the unstable

waves, one can obtain the particle diffusion paths. 29 The details can be found in Appendix IhA. For the n = 0

interaction (w = up spectrum), the well known result is that

RL = constant. (26)

Thus, unstable waves at the Landau resonance diffuse a test particle along p_ = constant trajectories to

lower and higher values of pu with equal probability (see Fig. 5). However, with a local positive slope in the

distribution function there is a net scattering of particles to lower energies, thus tending to wipe out the positive

slope and provide a source of energy to amplify the waves. For the n = -1 gyroresonance driven waves (at
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w = w,kj/k). the diffusion paths are significantly different. In the limit of kg > kj, the diffusion paths are

given by

( w - + p2 = constant; (27)

that is, the particles diffuse along circles centered at the wave phase velocity. Again a test particle gets scattered

with equal probability in either direction along the diffusion path, as shown in Figure 5. Since this scattering

decreases the particle's total energy, the wave is amplified (provided a negligible number of particles exist at the

n = +1 resonance). This accounts for the last term in Eq. (23). Finally, the tendency to remove gradients

along the diffusion path accounts for the first term in Eq. (23).
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Ill. Kinetic Equations for the Tail Electrons and the Unstable Waves

In this section we will derive the limiting forms of the wave and particle kinetic equations appropriate to

the calculation of the runaway tail. The dominant scattering terms in the particle kinetic equation are those due

to collisions and to the n = 0, -I quasilincar diffusion. These terms dominate in different parts of momentum

space and their ordering defines the five asymptotic regions of the tail distribution function.

To evaluatc the kinetic coefficients in the particle kinetic equation, we need the spectral energy distribution

of the waves. For the wpcos9 modes, the spectral density can be obtained directly by integration of the

wave kinetic equation, since the modes are convectively unstable. The modes are assumed to be absorbed or

converted at the plasma edge with negligible reflection. The wp, instability, however, is absolute with a large

growth rate, and it is necessary to find its saturated state. Specifically, we take the saturated state of the w,

modes to be determined by marginal stability with the growth balanced by some damping mechanism (i.e.,

collisions). This criterion specifies the slope of the parallel distribution function. The diffusion coefficient, ,

needed to maintain this known steady state is found from the particle (parallel) kinetic equation, and D1, in

turn, determines the spectral density. This marginal stability analysis (including the smooth matching to the rest

of the distribution function) is described in the present section. The diffusion coefficient so obtained is then

used with the full kinetic equation to find the complete distribution function in Sec. IV.

The particle kinetic equation, including collisional, wave and particle discreteness effects is written3 3

Of 69 f f+ Fo fOP (28)

where FO denotes the zero order forces. The effects of spatial diffusion are of order p2/a 2 < I compared to

velocity space diffusion and have been ignored. The first term on the right hand side is given by Eq. (1) (or

Eq. (2) at high energies); the second term contains the quasilinear terms (wave-particle, wave-wave, nonlinear

Landau damping); and J is the current due to particle discreteness (Cherenkov emission of waves). The validity

of the non-relativistic form of Eq. (28) has been established for both the stable and weakly unstable plasma

regimes.3 For the situation we consider, where a well developed unstable spectrum is present, the term due to

discreteness is negligible. Furthermore, the wave-particle terms in the quasilinear operator are dominant, with

the n = 0 (w = kjpj/m-y) and the n = -1 (w = k 1p 1/m-y + 11,/) resonances being the most important

since k2p2 < 1. Thus, in the steady state, the kinetic equation for the tail electrons reduces to

eE- =C.(f)+ C (f)+ C_ I(f), (29)

where E is the applied electric field. the C's denote the collisional operators and the subscripts have the obvious
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meanings.

The term due to collisions is given by the relativistic form 21 of Eq. (2), expanding for p_ < p1i, pin > pe.

it is

10I+? 1 (9 P0L + I +

pjip( p 2p pi 2p2 

V.- I + z a f .'I +(30)

The quasilinear operators are obtained by applying the transformation(I)-(16) to the non relativistic form, 28

giving

CO + C- 1 = m1 2  d k wk S
n=0,-- JO w) F

x (n) 2 (kLP±\( -<w klI111  nO,(31)

M-/ ly (31)

where Ck is the total wave energy density,

2 + m c2

and

L~)= mk11 .0 + nfl)m2

The restriction k11 > 0 on the integral reflects the positive sign of the phase velocity of the unstable waves.

Frequencies are taken positive in (31), with negative frequencies accounting for the factor of two which has

been included. Expanding the Bessel function for kipi « 1, and noting wg.6/Oak = 2 for the plasma waves,

these become

C2(f) =8122 / d<kwkj k -, (32)
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C-(= 8ir 2C2  d'k~k k [

(p2- + X - f.(33)

While the full spectrum appears in each of these operators, the dominant contributions to (32) and (33) come

from the w, and the w,, cos e modes respectively.

Writing the operators in (31) in terms of the total wave energy is a helpful simplification of the equations.

In this description, the energy in the non-resonant particles is included with the waves. Equation (30) describes

the resonant distribution function, the non-resonant distribution is unnecessary, and all the quasilinear conser-
vation theorems are satisfied (Appendix IIB).

We now consider the marginal stability problem to determine 6k for the wpe modes. This utilizes the
equation for the parallel distribution function, obtained from Eq. (33) by the operation f 2rpdp_. There

results

a - T) + (()f (34)

where FilT = Fc + F + XdT±/dI, and DIIT = DcII + D + xT with

FC= (35)
3

Dc Lei (36)

Dbo 8jr2C2 11k 6 wpl k (37)8ref dlkgkk2  k 7

F = 81 62c- dk~k + (38)f ~ k 1  ____ k 11p11  0e

J k 2 m~ k2 nI 'V

- X = WO2 f d3k~k _2 1 6 +(39)

Upon doing the kil integrals in (38) and (39), we find. for -ywpkIl/k < fl, that

X= P (40)
-P1
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Equation (34) can be integrated once, using the boundary condition corresponding to the condition that

there be no flux of particle across the surface pl = p,: that is,6Ai/pii = 0 atpij = p,, gives

D117 = (eE - PIIT)fi (41)

Just beyond the runaway momentum. where the w,ecos$ modes are stable, eE > FlIT and Eq. (41)

implies that fi has a positive slope. This is to be compared with the slope at marginal stability where collisional

damping balances the growth rate of the w, modes,

.Map s 1 2 p(42)

For some distance beyond p, (where FT ~ Fc is only slightly less than eE) the slope obtained from Eq. (41)

will be less than that from Eq. (42). In this region, region V, the wp, modes are stable and (41) determines fi. At

the point p1l = po, the two slopes are equal and for pl1 > po, and Eq. (42) determines fi. This match between

the stable and marginally stable regions offj is a smooth one.

Using the slope given by Eq. (42) in Eq. (41) gives the diffusion coefficient from the wp, modes,

Dbpi) = -Dcl + ifc- (eE - Fc), (43)

where we have used fi ~ fc = fi(p,), since the slope is so small. Putting Db = 0 in (43) also determines po,

which, since wp,/Lei > 1, is close to p,. Evidently there is a region of very rapid change, a boundary layer, near

po, where D0 rises from zero to its asymptotic value

~- =vfc 2eE. (44)
Ve, -2

The boundary layer is denoted as region VI. The region where Eq. (44) applies is region VII.

At large momentum, pl, > pl, where the unstable we cos 0 modes produce significant friction, the slope in

fi again approaches zero, signifying the end of region VII. Here F > Fc and the analog of Eq. (43) is

U . p2
= -xT±+ fc - ;(eE -F - (dT /dpi). (45)

Vei

Putting Db = 0 in (45) gives p2, the boundary to region VII. As before, this is accompanied by a boundary

layer, region VIII, bringing us to regions IX and X, where the wpe cos 0 modes are dominant. The equation

eE = F + x(aT±/pig) . (46)
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defines the line pl = pi, the boundary between regions IX and X, where O4i/Op = 0. For p1l > pc, the

slope is negative. The diffusion coefficient is shown schematically in Fig. 6. In the Kruskal-Bernstein solution,

region IV extends out to pu ~ p,(I + (E,/E))1/ 3. We. have replaced their region IV by our regions V, VI, and

a small part of region VIl-a. Our region V corresponds to Kruskal-Bernstein's region IV, when p - p, < pO.

Their region V (p'> p,(1 + (E,/E))I/') has been replaced with our regions VII-a - X.

To summarize, we write our the leading order kinetic equations in the different regions. Referring to Eqs.

(31), (37) and (38), these are:

Region V (p, _< P _< po)

= Cef), (47)

Region Vila (po : p < pi)

eE = C'(f)+ Do f (48)

Region VIIb (p1 5 A, P p2)

o0f I I( 1 F) 0 10(912 0 (91 2 F 4eE = Db + -P- - p- - F- |- -p - f

1 F 0 0
+ AI-KP o-f, (49)

Region IX, X (p2 < p1)

Of E 1 2 F 1  1 0eE = P--p -- 12 F- f- (9 p2 FI C f601, 0A, 2 pg Opg2 -_- OpI Fp 9 2  p1 Op

1 10 0
+ pfF--L(f, (50)

where Db is given by Eq. (44) in region VII. Equations (48) and (49) also apply in the boundary layers, regions

VI and VIII respectively, except that one must use the more exact expressions (43) and (45) for Db.

The saturated level of the wpe fluctuations follows from Eq. (37) using Eq. (44). We find

8P d2kgP = 11 mw) E r

To verify that this level is consistent with the assumptions of quasilinear theory, we evaluate the autocorrelation

time, r, ~ (AkjVgj - Vphl)-' ~ (kgVph)- 1 - w-;I, and the trapping time ri, - (e2/mk Akggkj)--'/ 4.

The ratio
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(T~C4_ En 1 , (52)
kitrJ Eis

is always small, as required.

The convective, u, cos9, modes are described by the wave transport equation

V - V,6k - 2w l8k = Pk, (53)

where V is the group velocity, wi is the growth rate as given in Eq. (24), and Pk is the emission due to particle

discreteness.35 Equation (53) describes the total energy in the mode at w = wpki/I and can be thought of

as the integral over the band of frequencies centered on w = w,lkj/k. This equation has been discussed in

some detail,36.3 the latter paper emphasizing its limitations. The case we treat, with a steady state plasma and

neglecting plasma gradients, is straightforward and the meaning of Eq. (53) is unambiguous.

The emission resulting from discreteness is easily obtained by the test particle method. In the limit of weak

damping or growth. the emission concentrates in a narrow line. Integrating over frequency then gives the net

emission into the mode, which is,

Pk { 54)

where we have included only the Cherenkov (wk = k iV) emission term since (with kp 2 < 1) it is larger

than the emission at the gyroresonance. This description [i.e., Eq. (53)] does not have any divergences in a finite

system. In an infinite system 1k would diverge as marginal stability is approached from the stable side, since the

absorption vanishes.
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I.

In general, our pr(xcdure is to derclop an expansion for each region of the particle kinetic equation and

then match these together. asymptotically. If the detailed solution within the boundary layers (regions VI and

Vill) is not needed, they can be replaced by jump conditions on the derivatives of f and this substantially

simplifies the matching. procedure. In this way, we obtain f in tenns of known quantities and the unknown

friction cocfficient, F, for the w,, cosO modes. lhe last step is to calculate F, making the solution sclf-

consistent.

When the w,, modes are stabilized by collisional damping, as we assume here, the expansion can be

formally cast in terms of the small. parameter EIE, (since Db is a complicated function of E/E,) - just as

in the classical runaway theory.' While it is tempting to do this, generality is lost in the process and such a

calculation could not be readily modified to include alternative saturation mechanisms. We prefer instead to

keep the expansion parameter implicit, carrying out the solution to lowest non-trivial order in each region and

then matching. Since the solution in the largest region, VII. is nearly constant in pl1 and expandable in series

form, one does not have the problem of calculating large exponents. The meticulous accuracy required in the

classical runaway problem is not needed here.

The point of departure from the clarieR1 vilution is in region IV very close tog, and the region !abeled

V by Kruskal and Bernstein is eliminated. Furthermore, we treat region IV, a boundary layer, different from

Kruskal and Bernstein. Although this is an important point, it belongs with the classical solution. We discuss

it here only to the extent required to match the tail and classical solutions together. The runaway rate is

adequately determined by the distribution function at the end of region Ill and not significantly altered by this

match.

An outline of our procedure is as follows. The coefficient of the first parallel derivative, eE - Fc, vanishes

at p,. For this reason, the second parallel derivative, although small, must be retained, making the kinetic

equation elliptic in region IV. This means that boundary data is required for a unique specification and hence

the solutions in both region III and region IV must be known. Specifically, the necessary conditions are

f(p,~, p'), f(pn~~, p_), f(p, oo) = 0, Of(p, 0) = 0.

The functionf(p-, pi, in the space where regions Ill and IV overlap, is known from the classical solution

in Ill. But with f(po,p±) unknown until the entire problem is solved, the solution in IV will contain one

undetermined constant (function of p1 ).Classically, region IV extends to p, = p,(1 + (E/E,)"3 ) > pn: we

have thus labeled p, < p : 1k as region V.
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Region V terminates at pt with the onset of the w,, modes and the appearance of the cocfficient LA). This
OCCLirs %cry close to p,, [see Eq. (43): in fact ap - p,. < (E/E,)' pr, which indicates a negligibic changc in f
from p, to pt.

Region VI, ie boundary layer where Do changes rapidly, is replaced here by simple jump conditions.
hlicsc are obtained by integration. of the kinetic Eq. (29) across the layer from pl1 = pj to pu = pf. This

giVCs. to an accuracy of order (p+ - p )/o < 1,

f(pt, P') = f(p, pA) (55)

[Db(p(t) + Drg(pf)] = D,(p5) (56)

where the effects of the n = -1 terms were neglected since they do not come into play until pg > pl.
Application of Eqs. (55) and (56) brings us to region VI1. In region VII the kinetic equation is again elliptic

and hence we require f(p+, pi), f(p2, p±),Of(pgl, O)/ap = 0, f(pl, oo) = 0, for a unique specification.
Thus, before completing the solution in region VI1, we have to determine f(p, p.), which is, again, unknown
until the entire solution is found.

The boundary layer, VI!. is also replaced by jump conditions,

+e f +PL, ) =p P__I (57)

DI(P+) '= [Do(p2 )+D(PT) (58)

which connect into region IX. The kinetic equation, for p > p2, is parabolic (only the n = -1 quasilinear
terms) so the appropriate boundary conditions are f(pt, pt). This changeover to a parabolic equation permits
the completion of the solution, since the jump conditions (56) and (58) are now sufficient to determine the
functions f(pg, pj) andf(p%, pj).

We now turn to the evaluation of f region by region. We first give the calculation formally for the whole
distribution function and afterward carry out explicitly the determination of Tj(pg).
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Region V1I (Pt 5 Al P - )

The largest term in Eq. (48.49) is dhe Db(pj) tenn. Seeking an expansion for ie distribution function in

inverse powers ofDb, this generates the following sequence.

LAb -PO) = 0, (59)

Db f( - - p De_ + 'pAF) f0 ), (60)
(5l (901 P±OP.L2

where D, = veip1y/pj, F is defined in Eq. (38), and terms in (60) involving parallel derivatives, of order

D5-. or p /p, have been discarded. The boundary conditions to be used with Eqs. (59) and (60) are

f 0 (po+, pL) = fAP--, p±), (61)

f(I)(pa,P-) = 0, (62)

(O)(pi, p-) = f(pT, pj), (63)

f(=(Pr, P ) 0. (64)

Integrating Eq. (59,60) we get

P1dp
=(f)fr p ) + gi(F) L ,(p) (65)

f(l(pIP ) f= 1 )(p )+ eE dp'dp - jp (De + "F)

and

f(p, P) - f(PO+ P
gi(P) = , , (67)

_\ i (p)
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g1(p)= dp" + pf" dPY- p,(D,+P"F)A _ _ xy+I ' "+ Op P OP± JJ f"i dp/Dh(p)

(68)

Ilie matching at po and p2 will be used to determine the unknown functions.

Region IX (pt 5 pli P)

To solve Eq. (50), we exploit the disparity of scales in p- and pi, writing in the factorized form

fAr1i, PA = A )IiR-iL(An. P-L), (69)

where fl is given by Eq. (5) and fL satisfies the normalization condition

214dpP-f± =1.

Since p. < p, the dominant term on the right hand side of Eq. (50) is the perpendicular diffusion term. This

creates a rapid spreading of f in the perpendicular direction, but does not affect fA, which is a slowly varying

function ofpI. The equation for fL thus becomes

eE = i lAF I P a f . (70)

In effect, Eq. (70) is the fast scale part of Eq. (50). Application of f dpipL to Eq. (50) annihilates the fast

operator, leaving Eq. (41) for the slow variations. Combining the solutions to Eqs. (41) and (70) gives the

distribution function in region IX,

Am PA f_ P ± (71)

21mTL(pll) x 2mTL&Mi)'

T1 (pI) = T (Pt )+ dp pF (72)
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Region X (pvi > p,)

Ihc seff-consistent evaluation of fi in this region is extremely awkward, involving a determination of the

p, , p_ and r dependences of f together with F(r, pgt): we do not have the bencfit. as in other rcgions, of a

constant fi to lowest order. We therefore restrict the discussion to a qualitative description of the cutoff.

To this end. we write Eq. (50) in the form

eE dof 2
-- -- p= L Lf, (73)

P11 (9pI. 2

where . = 1/p/p - I/pfL4/Op is a pitch angle scattering operator. When F > eE and pi < 2pj the

leading order solution to (73) has Lf = 0 so that f is constant along the diffusion paths. With the boundary

data given on pI = p, as f(p_,) = f,/21mT, exp(-pi/2mT.) and the diffusion paths, p2 + p2 =

pA + p2, this gives, for p > PC.

je f -pI ( p2-p
f pi-, PII) = c T exp[ rTe & ~ (74)

2mmTTL,

Integrating over p_ results in fA(pit) = f, expj-(pj - p )/2mTJ, demonstrating a rapid exponential

decay.

Calculation of T (pll), for p, < p < p

Since f is approximately Gaussian in the perpendicular direction, we use the form f = (Ai/2rmT)

exp[-p2/2mTL] so that, by taking moments in the preceding formalism, the problem reduces to a series

of ordinary differential equations for TL(pM). The jump condition at Pz, region VIII, results by taking the

perpendicular energy moment of Eq. (58), giving

a 2mF 9 mFD-TI- + - TP jg; =2 i; .0Pl _ P\t "Pi _ Pli T A]+ (75

Using the continuity of fA and TL, which follows from Eq. (57), and the fA from (41), this becomes

4mF T LTI 4mF a t+ = -- T (76)
PH I- P11 , 9I|

which is the desired jump condition on the derivatives of T_. Using Eq. (72) forOTI/p9I, and Fqs. (65), (66)

for T /opij, after some algebra. we find
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TL(p2) =s TL(pl+) I l1 + (77)

We should now use the jump condition at po to determine TI(p), but because our region V is so small. we

shall assume that T_(pf) ~ TL(p,) with negligibly small crror. Using the value of DO(p 1 ) in Eq. (44). and

taking the relativistic, (p2/m 2c 2) >> 1 limit. we find

T1 (pj) ~ Ti(P,.)[ + (78)

Using BO = 40k, n ~ 4 x 10, E = 0.01volts/cm, and T, ~ 0.8keV. we find that the two terms arc of

equal order,

T (p2 ) Ti(p) + 2.4 (79)
I (I + v5)2

where we used Eq. (8) for Tj(p,). The hcating, as is expected, is quite small in region VII (see Fig. 7).

Evaluation of the Cutoff Momentum, p,

We require the spectral energy density of the wp, cose modes. Since .4j ~ fe in the region of interest,

pr pu p, this can be obtained by a direct integration of Eq. (53). We carry this out asymptotically for

large growth factor, Xk > 1. [see Eq. (25)), which is the appropriate limit for finding the cutoff.

We thus consider a cylinder of radius a (Fig. 8) and look for the Green's function solution to

(V -V - 2wi)G(r, /)= 6(r- /), (80)

where r, r' are the coordinates of the observation and source points respectively. The only waves which con-

tribute to the spectral energy density at r are those which when emitted at r' propagate through the observation

point at r. That means we can transform into a coordinate system where one of the axes is parallel to the line

joining (r, r') and the other coordinate is orthogonal to it (see Fig. 8); hence, Eq. (80) can be written

V - 2w, G(x, x') = 6(z 1 - ze)b(z± - z'). (81)

Now decomposing G into G(x, x') = g(zj1)b(z - z') and substituting this into Eq. (81), integrating over

z'. and solving for the simple one dimensional Green's function, we get
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I.

G(x, x, Vy) = [expp(z, z')]H(zil - xz1)6(z - z'j, (82)
y

where p(z, z') = (2w;/V) ffds is the distance between (z, x') and H. 6 denote the usual Heaviside unit step

and Dirac dclta functions respectively. The spectral energy density is then obtained from

k = d2iPk(x')G(x, z', V9J. (83)

We treat the plasma as homogeneous within the cylinder. Ilie emission function is independent of the spatial

location. The integral in (83) is just an integral over the Green's function. To cvaluate this, we transform

into a polar coordinate system where 0,9', 4 denote the angles of the observation point. source point and the

group velocity (Fig. 8). In that case we have z1 = r cos, z0 = rcos(4 - 9'), z_ = r sin 9, and z' =

r'sin(4 - '). In addition, using the law of cosines.

p(z,z') = f(r2 +r'+2rrcos#')i, (84)
9

k,= d4.k = -2- J d;b r'dr' J dblePH[r cosO -r'cos(4-')]6(r inf-r' sin(4-9'))dOk V,0

(85)
Performing the 9' integral first

' P f= f. r'dr','cos( - W)

where 80 is the solution to the sin(4 - o) = r sin 0/r'. Note that the integral in (86) is maximized with 9' = v,

which requires that 4 = 0. The maximum contribution to the spectral energy density comes from the waves

which propagate through the axis of the plasma as shown by the dashed conic region in Fig. 8. To do the

asymptotic evaluation, we solve sin(O - 4) = r/r'sin # near g = z and 4 = 0. We define 40 = 7 + 6

and find that 4 2 6/(1 + r/r'). Substituting this into Eq. (86), retaining the dominant terms for 62 < 1, and

extending the integration limits on 6 gives

8k~k'w'd e (r + r) I - 162 . (87)rbk±k11 = kf dr'r'f d6(4,) [w (r + r)( .....!2 (r + r) 1  (7

The remaining integrals can be carried out asymptotically with the dominant contribution in the r' integral

coming from r' = a. This yields (for r 3 0),
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PAJ.* 11, 7(a+r) xp[ (r+ a)j(
- 2w; r r ,(88)

where k is given by Eq. (25). with L =r.

TFhe friction coefficient can now be evaluated with Eq. (88). the integral again being susceptible to

asymptotic methods on account of the exponent. We find that the integrand maximizcs at the minimum allow-

abic k, which here is set by the condition that L.andau damping be absent, k ~ mwp,/Pr. This puts the

phase velocity of the dominant modes at the runaway point. We find

e 2  [ 3 ~ 5~(r 1 ~ f r r~ l ( P 2
I(pI, r)= N2 ),[,nexp - -) I (89)

V2 V2 4r Yr A p n fl, X , pr

where X, = vr/w,,, is the Debye length.

The equation for the cutoff. Eq. (46), using Eq. (69) for T'I. becomes

F (1+V5)F
E=) 2

Remarkably, the ratio of the electric force to the dynamic friction at the cutoff is given by the golden mean!

Although this equation is transcendental, the unknown appears in a large exponent, and the desired root can

be found approximately to a very high accuracy. The details are given in Appendix I1. In the relativistic limit,

-y pl/mc, which is the most useful one in practice,

Sn f X pmc(I,(91)
p'2 lT~e 2 p

where

= Inf[(In J1  j = ei(ln(27(eiD 3,
(In C,- 3) (In 27el) ,A= n

= 23/2 )(e n mC]3/
and x( + 51/2) \P) WPE/ /)[ e r n pe

The nonrelativistic limit -y -+ I is obtained by deleting the mc/pc term in (91), replacing the factor 27 in

the el and C expressions by (9/2)9/2 and replacing the exponent 3/2 in the last term of e by 3. Note that in

Eq. (91), p2 - 1/r. This radial dependence of the cutoff momentum arises because of the convective nature of

the instability. To see this, refer to Fig. 3 and recall that p, ~ vnin/k. Consider a fixed radius ro and suppose

that at some wave number k (momentum p), the distribution function has cut off. For a slightly smaller kj,
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there are no particles at the resofibnt momentum and radius ro. so that the growth must start at a smaller radius

r where A[ is not yet cut off. In fact, solving Fq. (90) for r instead of p gives the cutoff radius

re 1 n fl, mc)2* P, (I+ e)ln (92)
7r n1 7 \ ( p P11 MC + mclp)22

where

(In /22) In In 4 = (In 1.84)3/2,

2(2,)1/ 2  CE ( 2( P. and 2 3/ s 1.84.
T(1+ 5i1/) (e2/uc) f), p pk 11

The net result for fAi as a function of r and p11 is shown in Fig. 3.
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V. MOMENTUM SPACE FLOW PATHS

In order to clarify the nature of the solution just obtained. we compute the flow associated with the steady

state distribution function. This is effectively a transformation to a Lagrangian description from the Eulcrian

one, which was more convenient for the calculation of f. Note that the steady state kinetic equation can be

written as the divergence of a current (in momentum space), or. with angular symmetry

-- l + p- Js = 0, (93)
OPi P..L0P.L 7 ~=0

where J contains the collisional, the n = 0, -1 quasilinear and the electric field fluxes or accelerations.

Fquation (93) is identically satisfied by J= V X V;, with V = ( , , t'). The 4 symmetry makes only one

component 0 = Op necessary, so that

J = 16(p ), (94)

1 60
Ja =---(if).(95)

Taking J1 times Eq. (94) and subtracting JL times Eq. (95) gives

AL PL)+ J~- ,(P-LO) =0, (96)

a quasilinear partial differential equation,38 whose solution is

(97)

d8 JL(98)

d (.O .(99)

The characteristics given by Eqs. (97) and (98) are the flow lines we seek. Having obtained a solution with the

Eulerian description. J and J_ are known, and the flow lines can be obtained by direct integration.

In regions VII, where the Db term dominates in the parallel flow, we have

-= f dT -I+ (100)
d8 TL dp_ 2mTL)
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dpL KiP''/ P L
da p1l 2mT(

'Thus for the perpendicular momentum. p, < 2mTL. the flow is toward higher parallel momentum,
while at higher perpendicular momentum the flow is reversed, as shown in Figure 4 returning to the bulk. Since

dp1/dp_ > 1. the lines are generally flat, nearly parallel to the P axis.

In region IX, where the electric field and pitch angle scattering from the wp, cos 0 modes are dominant, the
flow lines are

dp, p2 2
=eEf -2mT _2 T (102)

eE 1  
-mT e

dp_ PlP± i F F PP 1
79- 2mT ;E +~ m - (103)

*hese show generally the same behavior as in region VII. The difference here is that for pj 2mTi,
dpi/dpI > 1 and the flow lines curve very rapidly toward the vertical pi axis: most of the electrons turn
around in the region.
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VI. Applications

The preceding analysis can be readily applied to determinie the current carried by high energy clectrons

in a plasma subjected to asmall lC clectric field. Recent experiments on PIT have observed a well confined

runaway tail in reasonable quantitative agreement with the theory in this paper?" There is also currcntly

great interest in experiments on RW driven currents for steady-state confinement in tokamak plasmas. In such

experiments the RF is applied to a plasma which has been forned and maintained by an ohmic current in

an essentially DC electric field. Recent experiments with lower-hybrid current drive arc of two types. In the

first type, the RF is turned on after the density and ohmic field have decayed (by open-circuiting the primary)

to sufficiently low values: the current is -then maintained by the RF and with esentially no IX field. ) In

the second type, using low-density plasmas. a small IC electric field is always present.42,43 In both types of

experiments there is initially a high energy tail in the electron distribution function due to the small IX electric

field, and an evaluation of the current carried by these energetic electrons is of interest. Using the results of the

preceding sections we shall outline how such a calculation can be carried out.

For known profiles of the plasma density and temperature the cutoff momentum as a function of plasma

radius can be obtained from (91) together with (7). Using the result that f is approximately Gaussian in the

perpendicular direction we can find the density of electrons in the tail

f p(r) = j s% dp n - P (104)

and the current density associated with the tail

Je(r)=f 
- ,dp

(+ q,2)1/2 + q11/2

+1 q2 )1/2 + q/2
= etC (105)

where q= (pa/mc) and we have assumed, as throughout.'y I + q. The tail current can then be found by

integrating Eq. (105) over the plasma cross section.

To obtain rough estimates, ignoring profile effects: take (p./p,) p (f1e/w,) (assumed to be > 1, as

throughout). and use half the plasma radius as an effective radius for the tail current. For the recent lower-

hybrid current drive experiments of the first type, we thus find that just before the turn-on of the RF the
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plasmas were characterized by the following energetic taiIs:5 in Alcator C39, C, m 20 keV, 9, s 370 keV,

and I, w 100 Amp: in PH" 9, s 10 keV, 9, s 140 kcV and 11 z 80 Amp. In both cases a negligible

current compared to the RF maintained current. On the other hand. for lower-hybrid current drive of the

second type. for example in Vcrsator 11,12 at the turn-on of the RF we find 9, e 3 keV, 1,. P 36 kcV and

i ~ 8 kA which is about one-fifth of the total current. It should be cautioned that since n7- is a rapidly varying

function of (E,/E) ~ n/T, [see (7)], which also enters in the more exact evaluation of pc through (91), more

accurate 'valuations of the above quoted experimcnts need to be carried out, as explained above with (104) and

(105).

Another potential application of our results is to the recently observed enhanced confinement for low-

density plasmas having an energetic electron tail." In these plasmas the enhanced confinement (so-called H-

mode) is characterized by a rise in the plasma edge temperature..The collisional dissipation in the edge plasma

of the power radiated by the convectively unstable w,, cos 9 modes could contribute to this. We can estimate

this possibility as follows. The power radiated by the unstable modes is given by

P,(r) = / dkkdk1 2w 4 .,N (106)

where the integrand is determined approximately by Eqs. (24) and (88). The k space integrations can be

carried out asymptotically: the maximum contribution comes from k- w mw,/p, and k miO,/p. An

approximate evaluation of P,(r) can be obtained by also taking r = r., where it is maximum. One thus obtains

Vf, f~ Le 3N (107)vnT, n Pp.

where

N/2_ 1 (In 1.84%)1+3A 13/2
N=

(1+V/5)(1+ 3e) (1+ed)ln I
el, 1, and zil are as given following Fq. (91), and P is the bulk plasma electron-ion collision frequency. As

an example, for a toroidal plasma of 10 cm minor radius, 50 cm major radius with bulk T, = 800 CV, n =

5 X 1013/cm' and an applied dc field ofE = 0.01 Volts/cm we find P, 250 KW. When this power arrives

at the plasma edge some of it tunnels through and converts to electromagnetic radiation that leaves the plasma

(as is usually detected outside the plasma) and some of it is dissipated in the collisional edge plasma which may

account for the observed rise in the edge electron temperature. Ilere, again, a more accurate determination of

the radiated power and its absorption at the edge would require calculations that include the plasma profile: the

plasna edge temperature change would need to consider an appropriate edge transport model.
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APPENDIX I: Ilie Quasilinear Friction Force

We discuss systems described by the Fokker-Planck equation. restricting consideration to thermal and

weakly turbulent situations. The standard form of this cquation"15 is

(9f a 1 1 32
- - -1 f f Df, (I1)

&t gvi M j8iv

where

F(VI)
(12)

Di A a ). (13)

In taking the momentum moment of Eq. (11). the second term on the right annihilates. lie coefficient F is

clearly interprctable as a force.

Equation (11) can also be written

81 F'f 18 8
+ D f, (14)

where

Fj - mOD,,
2 Ovj

Now it happens for the special case of collisional Coulomb interactions46 that the relation

- = -(5)
m 8v,

holds. Thus, for this case

8f _ 81 81 0
f +--'fa -D'-f, (16)

Xtoi 2m pi 2 IJ49vj

and excepting the factor of 1/2, the coefficients are the same whether one uses Eq. (11) or (14). The coefficient

of the first term in (14). P, is often referred to as the force of dynamical friction.' 7 This terminology can be

misleading. since the second term in (14) also alters the momentum. thus alecting a force. For example, in

quasilinear theory. pF9 = (m/2)LD9 j/vj. so that P = 0. and one could say that there is no friction in

quasilincar theory. While this is certainlf iruc in the cont ention of Eq. (14). it sugges/s an absence of firces.
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which is not true. Clearly the waves can contain momentum and the extraction of it from the particle will result

in a force.

Thc coefficients (12) and (13) can be computed directly"8 for an arbitrary (small) level of clectric field

fluctuations. The test particle self-fields (which are not in general related to the ambient field fluctuations)
contribute to Fi. which can be written'1 -

F(v) =eEj(v) + .'(Daj (17)

Therefore, -eE = P, and it is the self-fields that are neglected in quasilinear theory. The force coefficient.
in Eq. (17), is still non-zero in general. In quasilinear theory, integrating over one of the coordinate variables

produces in certain situations a reduced equation which has the form of Eq. (14).
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APPENIX II

(a) l)IFFUSION PATHS USING CONSFRVATION OF FNERGY ANI) MOMENTUM

We shall first use a simple physical argument to find when a resonant particle is moved out of resonance by

quasilincar scattering and thus provides a source of energy for the waves. 9 We define

as the action density of electrostatic waves in the neighborhood of wave number k. Then the conservation of

energy and parallel momentum between AnA waves having k values between (k, k + Ak), resonating with N

particles having velocities between (y, r + A Y) leads to

mN(vj1 Aj1 + vAvj) + w,.An . = 0, (Ill)

mNAv11 + kllAnk = 0, (112)

where kl is determined by the wave particle resonance condition. h'le perpendicular momentum need not be

conserved, since the applied magnetic field can absorb momentum. Solving (112) for Ank and substituting in

(Ill) leads to

(I - - V + V"&tJ =0. (WI3)

We study these diffusion paths for two specific resonances.

Consider first the Landau interaction at n = 0, which requires that W,. = k1v1 ; then we see that the

diffusion paths are

v_ = constant; (II4)

that is, the particle is scattered along constant perpendicular energy paths, the preferred direction being

specified by the local slope in the distribution function.

By combining the resonance condition for the n 94 0 wave particle interaction, w, - k - nl = 0,

together with the definition of the wave phase velocity for the particular waves of interest, we can write w,/kc

in Eq. (13) in terms of Mi. This is easy to do in the case of magnetized plasma waves, W, = wpc/k when

k_ > k1, and leads to
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- + = constant. (115)

These are circles centered at the wave phase velocity.

Once again the preferred direction will be given by the local slopes in the distribution function (as seen by

the ditrusing particle).

A more satisfactory way to derive these results would be to start from the quasilincar kinetic equation and

construct an H theorem. The kinetic equation describing the quasilincar evolution of the resonant electron

distribution function is given by29

Of_8re rd2kI L("~)J. k cv 6w-un-\L"I I6qf - 12 2  
6ai~ ((ahk - M- nl)L (n)f (116)

where (" = kgr/Ovj + nfl/v_, Jn is the Bessel functions. Ek is the electric field energy density, and the

delta function insures that we only pick out the resonant distribution function. Define H = fdvf In f, then,

using (116),

dH _-S
2e2  jd dI 2 (ivifl _ _n) ___n~)

5'davfd3kE4- n2(k-LV L/G6w-ke O (IM)

This implies that the marginally stable asymptotic states off are given by zeroes of H. This occurs in two ways:

if E2 vanishes (trivial case since there are no waves present), or if

(LQ")f)2 -0, (IIS)

with Ek :4 0. Equation (118) is a simple first order partial differential equation. It can be integrated by the

method of characteristics, giving

dqp - 1, (119)
de

- -- (1110)

df (1111)
de

In addition, kil is specified by the delta function selection in Eq. (116). Equation ( 11) implies that f is constant

on the diffusion paths. Integrating Eqs. (119-1110) reproduces (114-115). Note that all of these analyses are
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based upon the assumption that each of the gyrorcsonances can be treated without any interferences from all

the other gyroresonances. A wave at phase velocity (w,/k 1) can sutfer Landau growth (damping) at that phase

velocity, gyroresonancc growth n = -1 and gyrorcsonance damping n = +1 and similarly for all the other

gyrorcsonanccs. In the case of the rinaway electron tail, the distribution is so anisotropic that the gyroresonance

damping is negligible and 1.andau damping is also negligible since the distribution function is flat. One final

note: when w, < 11. then the diffusion paths arc virtually identical to constant energy surfaces and there is

very little free energy available to drive the instabilitics.
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(b)CONShRVATION 'I hOREFMS IN QUASILINHAR THEORY

Finally, we briefly turn our attention to the separation of the distribution function into resonant (v c

w/k) and nonresonant (v > w/k) parts and the various conservation of energy and momentum theorems be-

tween the waves and particles. We shall treat only the simple one dimensional model, since the results general-

izc quite easily to the three dimensional case. Thc quasilinear kinetic equations" 933 in a one dimensional

electron plasma are

Of(v,t) _0 0 a ), (1112)
9D f(v,

2wiEk, (1113)

2 =1 ( PJ I- - =(w)2 0, (1115)

where f(v, t) is the background distribution function, w is the growth rate, EA is the electrostatic electric field

energy density, e = 0 characterizes the particular dispersion relation that we wish to study and gives both the

frequency of oscillation w, and the growth (damping) rate wi. We take the principal part in the integral in

Eq. (1115), which is the same as integrating only over the nonresonant distribution function. It is well known

that Eqs. (1112-1115) conserve particles, momentum and energy when the total distribution function (resonant

plus nonresonant piece) is considered. Since it is somewhat cumbersome to treat continuously the distribution

function consisting of a resonant and a nonresonant piece, we shall instead consider a modified set of kinetic

equations

tfR(ej) a _ _ (of1(), t)

(1117)

D"= 81r( .~fdk1 [(k w/), (1118)

CA= (~e) (I119)

where the R on the distribution function and diffusion coefficient signified that this is the resonant piece, and

Sk is the total wave energy density and consists of the electric field energy density plus the kinetic energy of the.
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nonresonant particle. e, is the real part of the plasma permittivity function (115). The total wave energy density

Sk is obtained from

E k+ nmv2f-? kE= (1120)

and using the kinetic equation for the nonrcsonant (NR) distribution function and electric field energy density.

Now it is a simple matter to show that the kinetic equations in (1116) and (1119) conserve particles, momentum

and energy. In providing momentum conservation, the following result will be useful:

f nmvfN'=2 f dkkEjwi (1121)

and in proving energy conservation it will be necessary to make use of

&rf'. Wr (t W,, P \ 2 af dii
lk (V _ , (1122)

= -- e() (1123)

where fi is the imaginary part of the plasma permittivity function in (1115). This alternate representation of the

quasilinear equations has been discussed by Kaufmann 50.

The advantage of the above set ofequations is that one no longer has to solve for the nonresonant distribu-

tion function as long as the total wave energy density is used in the diffusion coefficient. In addition, the waves

now carry momentum, because the mechanical oscillation of the nonresonant electrons has been included in the

description of the waves. The electrostatic field does not carry any momentum.
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APPE.NIflX III

We outline a method of getting very accurate approximate solutions to transcendental equations of dhe

form

where A and B are constants and I can be any power. In the limit where Bz > 1, we look for solutions with

z > z where zk is the point at which lq. (lill) exhibits a minimum (2k = t/B). It is now convenient to

define y = z/z:r and look for solutions at large y. Ta king the logarithms of Fq. (11). we obtain

y - In y - InA 0. (II12)

For y >> 1. this can be solved by iteration,

yf() - bn A (1113)

yM) In y(O), (IIM)

y(2)= In yul), (IMI5

where y(O) > y() > y(2), which is kept up until y("2) < 1, where it must be stopped. The remainder

term then determines the error in the asymptotic series. Since the sequence generated consists of compounded

logarithms, the terms decrease very rapidly. For our case of interest, the first two terms suffice to produce

y z in {(ji)ln(A () . (1116)

This is a good approximation for the exponential term of Eq. (1111). However, it is sometimes necessary

to improve upon the expansion in compounded logarithms. This is done by performing a Newton-Raphson

iteration using Eq. (1116) as the initial guess. This leads to

X = (1 + EWA, (1117)

where zA is given in Eq. (1116) and
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) - n (--n-) (1118)

B In A (119)
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I.

Figure Captions

Figure 1. The parallel distribution function f.4(pl) = 21r f p_,dp_ as a function of p11. The drift velocity of

the bulk is indicated by p1) and the runaway momentum by p,. The classical (collisional) distribution function

is shown dashed for pl1 > p,. The positive slope due to the wp, modes is shown highly exaggerated for

p, < p _ p, The cffective dynamic friction due to the wpe cos 0 modes becomes effective for p, z pi C
R,p,/wp, and cuts the distribution function off at p. The n = ±1 gyroresonance interactions are shown. The

nonrelativistic picture can be obtained simply by letting y = 1.

Figure 2. The plasma wave spectrum consists of wp, modes with k_ = 0 and ws cosO modes with k± > kl.

The maximum k is limited by Landau damping (w/k11 > v,). The X denotes the position of the maximally

unstable waves for a finite length tail (p11 < P).

Figure 3. The structure of the high energy tail in Inomentum and position space. The distribution function is

equal to the classical one in the shaded region and is zero outside.

Figure 4. Contours of acceleration field stream function. The fact that the lines close upon themselves is indica-

tive of a steady state. In the dashed region between po < Al < poi, the flow lines have not been computed

exactly.

Figure 5. The quasilinear diffusion paths for the n = 0 (Landau) resonance and the n = -1 gyroresonance.

In the Landau case, the diffusion paths are p_ = constant, while in the gyroresonance case they are circles

centered at the wave phase velocity.

Figure 6. The diffusion cocfficient due to the absolutely unstable w, modes. Region IV of Kruskal-Bernstein

extends approximately to pl ~ p,(l +.(E/E,) 1/3 ) > po where D(Po) = 0. Hence, we have labeled their

region IV by our V, VI and part of Vila. Their region V is replaced by our regions VII-X. Regions VI, VIII

where Do varies rapidly are replaced by jump conditions.

Figure 7. The perpendicular temperature as a function of momentum in the various regions. The heating in

region VII is greatly exaggerated.

Figure 8. Transformation of coordinates for the evaluation of the Green's function from (r, 0) to coordinates

centered on a line joining (r, r'). Waves propagating through the conical region (shaded) produce the dominant

contribution to the fluctuation level at (r, 6 = 0). The plasma radius is denoted by a.
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