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ABSTRACT

The H-like spectrum of chlorine emitted from the Alcator C tokamak has been

measured using a Bragg crystal x-ray spectrometer and in situ wavelength

calibration. The 1s-2p transition energies were determined to an accuracy of

34 ppm allowing for a test of the theoretically calculated Lamb shift of the is

level in C 16+ at the 10% level. This new technique of spectroscopy of highly

ionized atoms could be further refined to approach the 5 ppm accuracy level in

the absolute transition energy determination.

*Present address: JET Joint European Undertaking, Abingdon, 0X14 3EA, ENGLAND
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In this letter we present the results of a precision measurement of the

wavelengths of x-ray transitions in highly ionized atoms. Such experiments have

been done with the aim of determining the radiative QED corrections to the Dirac

energy which cause a significant Lamb shift of strongly bound 92= 0 atomic

orbitals. The information can be obtained by accurately measuring the energy of

the ls-2p transitions in H-like atoms, for which the Dirac energies are well

known, and comparing the data with theoretically calculated energies including

the Lamb shift. Only two such experiments',s have been reported which

determined the Lamb shift of the is ground state through direct measurement of

the ls-2p resonance transition. Accuracies of 18% and 13% were achieved for the

Lamb shift in iron' and chlorines, respectively. These two experiments used

energetic ion beams and the greatest source of error was the experimental

Doppler shift correction due to the high ion velocities involved. Our approach

to circumvent this problem is to observe the x-ray emission from highly ionized

atoms in tokamak plasmas. These plasmas provide the high thermal velocities

needed, i.e., electron temperatures of T > 1 keV, for the formation and

excitation of the ion species of interest while the velocities connected with

any net ion motion are favorably much smaller. High resolution atomic plasma

spectroscopy studies have been reported',4 . Here, however, we present the first

experiment of this kind designed for precise absolute determination of the

wavelengths of x-ray transitions of particular interest to the fundamentals of

physics.

The experiment was carried out at the Alcator C tokamak at MIT. The plasma

conditions for our measurements were: electron temperature of T. = 1.2-1.8 keV

and densities of N = 1-3 10 14cm for toroidal magnetic fields of BT = 8 or

10 T with plasma currents of I = 400-500 kA. A discharge lasts typically some

500 ms of which the middle 200 ms represent constant conditions. In the plasmas



Page 3

of hydrogen or deuterium, there are small amounts of impurities among which

chlorine is usually present at a concentration of 10 to 1075 relative to N .

This ambient Cl concentration could be boosted by gas puff injection (HC1+He

mixtures) between discharges; injection during discharges was inhibited by

condensation on the walls of the entrance port due to the liquid nitrogen

cooling of the Alcator C vacuum vessel. The plasma temperature values mentioned

favor the formation of the ionization states C11 5+ and C 16+. The H-like

spectrum of n = 2 to n = 1 transitions studied here emanate from electron impact

excitation of the C1 6+ ground state leading to the principal 1S1/2 - 2P2/3,1/2

transitions (which are also known as Lyman a1 and a2 denoted here by W and W2

and from dielectronic recombinations leading to satellite lines such as the

strong transitions 1s2s1 S -2s2p Pi, is2s3 S -2s2p3P2, ls2s S -2s2p31

1s2p3p2-2p
2 3P2 and 1s2p1P -2p2 1D2 denoted by T, Q, R, A, and Is. The plasma

was viewed through a 130 gm thick Be-window with the line of sight being

perpendicular to the toroidal axis and the vertical field of view intersecting

about 10 cm of the central part of the plasma whose minor radius is 16.5 cm.

Furthermore, the C11 6+ ions are found predominately in the hot core of the

plasma where they are confined for time periods of the order 10 ms and reach

temperatures generally 200-400 eV below Te, i.e., the thermal velocities for our

conditions are Vi = 6-9 106 cm/s and hence the C1 x-ray lines have a Doppler

broadening amounting to r D = 1.0 to 1.7 eV (FWHM). In comparison, ion

velocities due to net mass motions in our ohmically heated plasma are small

(<106 cm/s)' and mainly in the toroidal direction so that along our line of

sight we estimate the Doppler line shifts to be at the most 0.01 eV.

The x-ray line emission was measured with a Bragg crystal spectrometer.

The instrumentation and methods used were basically the same as described

earlier 7 except for the facilities for obtaining the absolute wavelength
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determination. For the photon detection, we alternatively used two position

sensitive proportional counters of different types for consistency checks.

Furthermore, the spectrometer was placed 25 cm from the torus window making the

total distance between plasma center and spectrometer entrance slit about

110 cm. The 25 cm gap made it possible to use calibration sources without

changing the conditions used for the Cl measurement apart for the simple removal

of the He-bag connecting the torus and the spectrometer. For the principal

wavelength calibration we used a 5-keV electron beam shining on Ar gas kept at a

few millitorr pressure; the Ka line at hv = 2957.813*0.008 eV was our

reference line and this together with Ka2 at 2955.684*0.013 eV and Ka4  at

2977.51±0.06 eV gave the wavelength scales. The Ar source produced count rates

up to 50 c/s in the spectrometer compared to those of the C1 emission from the

plasma reaching 50 kc/s. Count rates of up to 10 kc/s were obtained with the

Ag La emission, hv(La1 ) = 2984.3 eV with a line width of 2.6 eV FWHM6, from an

x-ray tube. By measuring the Ag spectrum during the discharge compared with

recordings during the quiescent interval between discharges, we could verify

that the transient electromagnetic conditions of the discharge did not interfere

with the measurement.

An example of a measured Cl spectrum from a single plasma discharge is

shown in Figure 1. Such a spectrum was obtained every 6 min and we generally

accumulated some 5 C1 spectra before moving the Ar-source into position to

record calibration spectra (see Figure 2). A full measuring cycle thus took

about an hour's time and was repeated some five to ten times during a day's run.

Data were obtained from three production runs (I, II, and III in Table 1), each

consisting of several measuring cycles and altogether Cl spectra were recorded

from more than 100 plasma discharges. The data were divided into four subsets,

according to detector type used (the 10 cm detector7,' for data sets I and II
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and the 35 mm detector1 0 for III) and depending on the Cl emission rate (where

Ia is low rate and all others are high). This provided a check on systematic

trends in the data. The results are given in Table 1. The first column gives

the experimental difference in position (x) between the Ar Ka 1  reference line

and the W line in Cl including two corrections. The position of the Cl

spectrum was found to vary with count rate which was later identified with a

rate dependent off-set in the electronic modules used for the time-to-analog

conversion (TAC). A correction was applied on the basis of the known average

count rates for each discharge and the TAC rate dependence determined after the

experiment. An additional correction was applied to the data taken with the

10 cm detector because a rate dependent space charge build-up causing an

interference between the adjacent 2P3/2 and 2P,/2 "Res. An empirical

correction was established on the basis of the observed rate dependence of the

line separation and the assumption that the 2P3/2  line was shifted

proportionally to the distance from the center of charge gravity. The x values

given are the mean of all the data points of each set and the assigned error

represents the standard deviation. The next column gives the energy scale

factor (k) with the energy E = k - X given in column four. The weighted mean

value is E = 4.65±0.06 eV. The scatter in the data can largely be ascribed to

the uncertainty in the mentioned count rate corrections which are estimated to

be about ±15% for an average value of about 0.5 eV. Allowing for some

additional systematic uncertainty in the line fitting analysis, the total error

is estimated to be ±0.10 eV. Our results for the 1S 1/2-2P3/2 transition energy

in Cl16+ is thus hv = 2962.46±0.10 eV. The result for the V -W fine structure12

splitting is Ahv = 3.84±0.03 eV. Moreover, the two satellite lines (T and .)

are determined to lie 20.2±0.2 eV and 33.6±0.2 eV to the low energy side of the

W1 line.
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The theoretical transition energies are based on the Dirac energy gving

hv = 2963.310 eV for W1 with a small correction of -0.006 eV for the finite

nuclear size. The radiative corrections due to self-energy (-1.009 eV of which

+0.003 eV comes from the 2P3/2 level) and vacuum polarization (+0.068 eV) gives

a Lamb shift of -0.941 eV. The total energy is predicted by Erikson'% to be

hv = 2962.266 eV for W with the -W 2 fine structure splitting being

Ahv = 3.827 eV (see Table 2). In another calculation Mohrll obtains

hv = 2962.3765 eV and AhV = 3.82718(3) eV. Both these theoretical results on

hv(W1 ) are lower than our data but still within the experimental uncertainty of

0.1 eV or 34 ppm in the energy of the W1,2 lines and about 0.03 eV in the fine

structure splitting. The experimental Lamb shift is hvL = 2962.46-2963.31 =

-0.85 eV and hence smaller than the theoretical one. For the fine structure

splitting we find agreement with theory within the error of 0.03 eV. In the

experiment of Briand et al.1 on Fe2 4+, the Lamb shift was found to be smaller

than predicted but not to exceed the error. They, however, reported a rather

surprising disagreement between experiment and theory on the fine structure

splitting. As an aside we note that the calculated energies of satellites lines

(relative to 1 ) are 20.2 and 33.8 eV and hence consistent with our results to

within the experimental errors.

The present study is important with regard to the implied potential of

atomic-plasma spectroscopy as a new technique among high precision measurements.

We first point out the possibility for further improvement in the accuracy. We

envisage to reach an accuracy of 8 pm in the detector (being one-tenth of the

FWH.M spatial resolution) which, together with new high-count-rate electronics,

should give a line position determination at an accuracy of a few ppm for

accumulation times as short as 50 ms. Second, by having designated tokamak

runs, plasma conditions could be optimized to give minimum line broadening by
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choosing the lowest temperature compatible with the emission rate requirements.

Finally, the ion net velocities, which can give line shifts at the 0.01 eV level

can be dealt with by using instruments capable of radial plasma scans and

ultimately by usinga.dual spectrometer system for simultaneous viewing of the

plasma from opposing directions. The atomic-plasma spectroscopy technique could

thus approach the accuracy of the calibration line used which, for instance, is

8 meV or 3 ppm for the Ar Kai. Therefore, these tokamak measurements are

particularly suited for high precision work on few-electron systems of highly

ionized atoms with Z in the range 10 to 30 which are amenable to accurate

theoretical calculations of fundamental interest to atomic physics.

In conclusion, we have demonstrated the use of tokamak plasmas to perform

high precision measurements of soft x-ray resonance line spectra. Results are

presented on the H-like ls-2p spectrum of Cl of which the Lya lines are used to

extract the is Lamb shift. We find that the predicted Lamb shift is larger than

our results but within the experimental uncertainty of 0.1 eV, so that

corroborative data are needed to determine at which level present theories cease

to be valid. On the other hand, augmented accuracy can be expected. The

experience from this study suggests that with certain refinements in the

instrumentation and with control over the tokamak to optimize plasma conditions,

the plasma-atomic spectroscopy is a viable technique for high precision

measurements of energies of highly ionized few-electron atoms at the ppm level

of accuracy.
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TABLE 1

Comparison of results on the position (x) and energy (E) separation between

the Cl W line and the Ar Ka1 line and scale factors (k) for the four subsets of

the data.

x k E

Set [Chs] [meV/ch] [eV]

17.9810.38

18.30*0.46

17.68±0.25

19.16±0.32

257.5*1.5

257.5±1.5

258.3±1.2

245.0±2.0

4.62*0.10

4.71±0.12

4.60±0.08

4.69±0.08

Ia

Ib

II

III
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TABLE 2

Summary of Results on Energies

hv(eV) Experiment Theory 2

w2

w -W2

Lamb Shif t

2962.46±0.10

2958.62*0.10

3.84±0.03

-0.85±0.10

2962.266

2958.439

3.827

-0.941
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FIGURE CAPTIONS

Figure 1: The Ka spectrum from the argon source obtained with the 10 cm

detector. The result of the line fit is also shown.

Figure 2: The H-like spectrum of Cl from the Alcator C plasma obtained with the

35 mm detector. The result of the line fit to the main lines (W and
1

W2 ) and the n = 2 satellites (T, Q, R, A, and J) is also shown with

the latter marked at the positions predicted in Reference 5.
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