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ABSTRACT

Experiments are underway on the Alcator C Tokamak with over 1 MW of RF
power injected into the plasma at a frequency of 4.6 GHz to study both
heating and current drive effects. During these studies, impurity genera-
tion from limiter structures has been observed. The RF induced impurity
influx is a strongly nonlinear function of net injected power. For Prf <
500 kW, only small effects are seen. As Prf approaches 1 MW, however, sharp
increases in impurity influxes and Zeff are observed. Three different lim-
iter materials have been used during these studies: molybdenum, graphite,
and silicon-carbide coated graphite. In each case, the materials of the
limiter structure are seen to dominate the increased impurity influx. In a

typical case, with Prf = 1.0 MW e = 1.3 x 1014 cm- 3 , and the SiC coated
limiters, Zeff is seen to increase from 1.5 before the RF pulse to about 4
during the heating. At the same time, central Te increases from 2000 eV to
3000 eV and central Ti from 1200 eV to 1800 eV. Similar effects are seen in
both H2 and D2 working gas discharges. The contribution to impurity genera-
tion of nonthermal electrons, which are produced by the RF, is under investi-
gation. Changes in edge plasma temperature and density, as well as the
possibility that the particle transport is affected by the RF, are also being
examined. Results of the experiments with the three different limiter
materials are compared, and contributions of impurity radiation to the
overall power balance are estimated.
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I. Introduction

Impurities play a role in the development of nearly all tokamak dis-

charges. However, through the application of various techniques, including

discharge cleaning (both glow and pulsed), baking and gettering, and through

judicious choices of limiter design and materials [1], it has been generally

possible to run these devices over wide parameter ranges with only minor

perturbations of plasma resistivity and power balance caused by impurities.

This is especially true in the case of ohmically heated discharges. As

auxiliary input powers, particularly from various forms of RF, reach levels

of 1 MW or greater, certain presently operating devices begin to see

strong impurity effects once again. In the case of ICRF heating, the TFR

experience is one such example [2]. In this case, as RF power levels

exceed 1 MW, nickel influxes are large, resulting in most of the input

power being radiated away. The walls, limiters and antenna faraday shields

were all made from Inconel, and which of these structures was the main

source of the Ni was not resolved. On the TCA device [31, Alfven wave

heating, at power levels of only 90 kW, has yielded disastrous results with

respect to metal contamination of the plasma. In this case, the limiter,

antenna and wall materials were stainless steel. Recent results from ICRF

heating of the PLT device have been more favorable [4]. At the 1 MW level,

metal densities are seen to double, but do not dominate the discharge

characteristics, with less than 15% of the central input power being radiated

away. Because of PLT's larger size compared to the other devices, the sur-

face power loadings are, of course, lower in this case.

Experiments are presently underway on the Alcator C tokamak to study

current drive and heating using lower hybrid RF at v = 4.6 GHz [5]. To date,
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up to 1 MW of power has been coupled into the plasma, and it is the purpose

of this paper to describe the changes in impurity influxes and concentra-

tions which result, particularly in the plasma heating regimes which have

been studied. Experiments using limiters composed of molybdenum, silicon-

carbide coated graphite, and bare graphite have been performed, and the

results are described below.

II. Experimental Results

The results are grouped according to the particular limiter design

in use. For Prf up to 1 MW, there have been three types of limiter used:

(1) molybdenum; (2) SiC coated graphite; (3) a combination which is primar-

ily Mo with graphite sections in the outer midplane. In all cases, it is

the material of the limiter which is seen to dominate the RF induced impur-

ity influx. The limiters themselves are structurally similar. Each is

composed of complete poloidal rings of small blocks attached to a stainless

steel spine. Each ring consists of a large number of blocks, and there are

a total of four rings. Two rings are paired at each of two ports, the

ports being separated toroidally by 180 degrees. The total surface area of

the limiters is about 1200 cm2 .

II.(a) Molybdenum Limiters

The time histories of various plasma parameters during a typical LHRF

heating discharge with Mo limiters are shown in figure 1. In this case the

total forward RF power coupled into the vacuum chamber (Prf) was 950 kW.

The central chord brightness at X = 75 A is indicative of Mo behavior in

the plasma. This wavelength is in the center of a pseudo-continuum [6]
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which includes lines from many ionization states, up to MoXXX, and this

emission is predominantly from the regions of the plasma where 500 eV < Te

< 1500 eV [7]. This is thus a good indicator of the time history of the

Mo density, provided that the electron density and temperature are not

changing significantly. It is clear from figure 1 that there is a large

increase in the Mo level in the plasma during the RF pulse. The decay

after the turn off of the RF is consistent with impurity transport times

measured in other experiments [8]. The fifth trace in figure 1 shows the

brightness at X = 5360 A, which is due mainly to free-free bremsstrahlung.

Since the emissivity is proportional to n2Zeff//-, it can be used to in-

fer a "line-averaged" Zeff [9], which is shown as the last trace in the

figure. It can be seen that before the RF power is injected, Zeff = 1.5.

The enhancement over 1 is due mostly to carbon in the plasma, which is the

dominant low Z impurity.

During the RF pulse, with the Mo limiters, the C levels do not change

significantly, and we infer that the change in Zeff is due almost entirely to

the increased molybdenum. It is thus possible to calculate the absolute Mo

density in the plasma. Although bolometric measurements of total radiated

power were not available during these experiments, using the cooling rate

formalism of Post et. al. [10], the resulting radiated power loss from the

plasma due to the molybdenum can be estimated. Assuming that nMo(r)/ne(r)

= constant, the result is that about 1 MW is radiated away. It must be

pointed out that there are large uncertainties in this calculation. In

particular, the cooling rates, according to the authors of reference 10, are

only accurate to about a factor of 2. A direct comparison between the

brightness at 75 A and bolometric measurements has been made, in non-RF

discharges [11]. In these cases, the cooling rate model, combined with
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the Zeff measurement, predicted central radiated power densities which were

25% higher than was actually observed. Using these observations as a

"calibration" for the technique would imply that ~ 850 MW is radiated

during the RF case examined here. The resultant heating is modest, with Te

increasing by about 400 eV and Ti by about 200 eV.

II.(b) Silicon-Carbide Coated Graphite Limiters

In order to reduce the levels of high Z (Mo) impurities in the LHRF

heated plasmas, the Mo limiters were replaced with limiters utilizing

coated graphite blocks. The coatings are chemical vapor deposited silicon

carbide, with a coating thickness of about 100 micron. The blocks were

baked in vacuum to a temperature of 900* C after coating and before being

installed in the tokamak. Mo levels with these limiters decreased by about

a factor of 20 to 30 when compared to similar ohmic discharges with the Mo

limiters. During the LHRF heating, only small increases in the Mo level

are seen (<30%). However, both Si and C levels are seen to increase sub-

stantially. Figure 2 shows the time development of several plasma para-

meters with Prf = 850 kW and the SiC limiters. Along with the increases

of Si and C influx, as evidenced by line radiation from ionization states

near the edge of the plasma, strong increases of Zeff are also seen. Fig-

ure 2 shows the Zeff time history for this discharge, and there is clearly

a much larger perturbation to this parameter than was the case with the Mo

limiters. Although Zeff increases substantially, the electron temperature

also goes up, and the net ohmic input power is not greatly increased (<15%).

Te in this case, as inferred from both soft x-rays and Thomson scattering,

increases from 2000 eV before the RF, to about 3000 eV during the heating

pulse. The time history of the ion temperature is also shown in figure 2,
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with Ti almost doubling during the heating. It thus appears that the

central radiation problem has been been largely alleviated, allowing for

the good heating. However, plasma purity has been seriously compromised.

The increase of Zeff is a very non-linear function of Prf* Figure 3 shows

the results of a power scan with fixed ne, Ip, and Bt. Below about 500 kW,

little or no effect is seen. As the power level approaches 1 MW, the

change in Zeff is seen to increase sharply.

In order to investigate the effects of the increasing low Z impurity

content on the confinement properties, experiments are being carried out to

inject N2 into discharges similar to those being heated. Preliminary

results indicate that some of the ion heating might be explained by the

rise in Zeff alone.

II.(c) Electron Tail

One of the main effects which the LHRF has on the plasma is to produce

a population of non-thermal electrons, with energies in the range of 20

keV to over 300 keV. Figure 4 shows typical x-ray spectra, with and without

the RF (Mo limiter, Prf = 500 kW). At Prf = 900 kW, estimates indicate that

the fractional population of these non thermal electrons is on the order of

10-3. Since they have energies of 10 or more times the thermal, if these

electrons are relatively poorly confined, they could account for a signifi-

cant energy loss from the plasma. Furthermore, they might be expected to

scrape-off in a small poloidal portion of the limiters, due to the small

outward shift of their drift surfaces relative to the flux surfaces. Post-

mortem examination of the SiC coated limiters indicates that there is indeed

much damage in a poloidally localized region of the limiters near the outside
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mid-plane. The total area affected is about 5 cm2 . If, in fact, 100 kW,

or more, is carried out of the plasma by the non-thermal electrons, the

resulting power loading (j 20 kW/cm2 ) would be sufficient to give rise to

rapid surface melting (for Mo or SiC) or sublimation (graphite). This then

might be the major cause of the impurity generation.

Supporting evidence that the impurity generation is caused by the

non-thermal electrons comes from a comparison of similar discharges, one

with good heating, and the other for unknown reasons, with little generation

of non-thermals, and at the same time almost no heating, impurity generation,

or rise in Zeff. Two such shots are compared in figures 5 and 6. Figure 5

shows a typical case with large increases in Zeff as well as Si and C lev-

els in the plasma. In this case, ATi = 800 eV. Figure 6 shows a discharge

from the same day, where the pre-RF plasma conditions are apparently quite

similar to those of figure 5. However, the RF appears not to have coupled

as well to the electrons in this second case, with the result that there is

a smaller generation of Si and C, and the AZeff is also much smaller. At the

same time ATi was only 200 eV for this shot.

II.(d) Hybrid Limiter

To test further the idea that the impurities might be coming mostly

from the heating of the outside midplane of the limiters, a so-called

"hybrid" limiter was installed into the tokamak. This limiter consists of

Mo, with the exception of 4 blocks at the outside midplane each ring, which

are uncoated graphite. Initial results from this limiter show that at

levels approaching 1 MW, the effects on both Mo and C are small. Figure 7

shows time histories for a typical case. Neutron rates indicate ATi =
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250 eV for this discharge during the RF. Although some of the improvement

in the impurity situation with this limiter might be related to the presence

of the graphite blocks on the outside midplane, the "hybrid" limiter is

different in another important way from the previous limiters. The damage

to the SiC blocks was mostly in the radially leading 2 to 3 mm. It was

therefore decided to flatten the blocks on the "hybrid" limiter. The

density scrapeoff length, as measured previously with Langmuir probes, was

found to be about 3 mm [12]. It is therefore probable that in the "hybrid"

limiter, the loading is spread out over roughly 2 to 3 times the area. It

is likely that this is the main reason for the improvement with this limiter.

III. Discussion

While non-thermal electron heating of the limiter surface is the prime

candidate to explain the observed impurity effects during the LHRF experi-

ments on Alcator C, other processes cannot be ruled out. Probe measurements,

one cm beyond the limiter, indicate that the electron temperature increases

from about 5 eV before the RF, to about 7.5 eV during. These temperatures

are too low to result in significant sputtering of limiter material due to

acceleration of ions across the expected sheath (- 4 x Te). Another pos-

sibility is that either the RF directly, or the non-thermal electrons,

affect the potential drop across the sheath at the limiters, again leading

to ion sputtering. A definitive resolution of these questions awaits fur-

ther experimentation.
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IV. Conclusions

Lower Hybrid heating experiments on the Alcator C tokamak indicate

that as Prf approaches 1 MW, impurity effects begin to play a large role in

the evolution of the discharges. The mechanism of limiter surface heating

due to RF produced non-thermal electrons is identified as the prime candidate

which could explain the impurity influx. With Mo limiters, the radiated pow-

er from the plasma rises dramatically, approaching a significant fraction

of the total input power. With silicon carbide coated graphite limiters,

efficient electron and ion heating are achieved, but at the expense of

plasma purity as reflected by an increasing Zeff. Experiments are continu-

ing, both to delineate more precisely the responsible mechanisms, and, if

possible, to reduce these impurity effects as the RF power is further

increased.
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FIGURE CAPTIONS

Fig. 1 Time histories
discharge with
parameters are
BT = 9.3 T.

of various plasma parameters for a typical heating
molybdenum limiters. In this case, the peak
Ip = 400 kA, ne = 1.6 x 1014 cm- 3 , PRF = 950 kW,

Fig. 2 Typical heating discharge with silicon carbide coated graphite
limiters: I = 400 kA, He = 1.7 x 1014 cm-3, pRF = 850
BT = 9.3 T.

Fig. 3 Power scan for A Zeff vs. PRF with SiC limiters.

Fig. 4 X-ray spectrum, with and without the RF.

Fig. 5 Typical good heating shot with SiC limiters. PRF = 850 kW.

Fig. 6 A shot with similar plasma conditions to those of figure 5, but
exhibiting small impurity effects and little heating.

Fig. 7 Typical shot with "hybrid" limiter.
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