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ABSTRACT

The relativistic motion of an electron is calculated in the combined

fields of the longitudinal magnetic wiggler field z(B0 + B sink z), and1% 0 w 0

constant-amplitude, circularly polarized primary and secondary electro-

magnetic waves propagating in the z-direction. It is shown that the

presence of the secondary electromagnetic wave can detrap electrons near

the separatrix of the primary wave or near the bottom of the primary wave

potential well. The results obtained are also applicable to the electron

cyclotron maser (gyrotron) in the limit Bw =0 and k= 0.
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I. INTRODUCTION

Stochastic instabilities can develop in systems where the particle

motion is described by certain classes of nonlinear oscillator equations

of motion. Analytic and numerical techniques have been developed that

describe essential features of stochastic instabilities 8 that occur

under many different physical circumstances. Particularly noteworthy

is the development of secular variations of the particle action or

energy for classes of particles which in the absence of the appropriate

perturbation force undergo nonlinear periodic motion. This nonlinear

periodic motion can be greatly modified by the stochastic instability

and develop chaotic features.

In the present article, we consider the possible development

of stochastic instability in circumstances relevant to sustained free

electron laser (FEL) radiation generation in a longitudinal magnetic

wiggler configuration.9 In particular, we consider a tenuous relativistic

electron beam with negligibly small equilibrium self fields propagating

in the z-direction through a steady, radiation field with two monochromatic

wave components. The detrapping of electrons from the primary wave

potential well due to stochastic instability is investigated. To briefly

summarize, the relativistic electrons travel along the z-direction in

the combined fields of a longitudinal magnetic wiggler9 [Eq. (5)],

a constant-amplitude primary transverse electromagnetic wave (6E, w, k)

propagating in the z-direction [Eqs. (1) and (2)], as well as a secondary

(parasitic) transverse electromagnetic wave (6SE 1, W1, k 1 ) propagating

in the z-direction [Eqs. (3) and (4)]. The dynamical equation of motion

for an electron in the above field configuration reduces to the driven

pendulum equation (23). By analogy with the stochastic instability
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previously studied for a free electron laser with helical transverse

wiggler field, 7,8 we make use of the techniques developed by Zaslavskii

2
and Filonenko to determine the region where the electrons are

detrapped from the primary wave potential well.

In Secs. II and III, the dymamical equation of motion is obtained

for an electron in the electromagnetic field configuration described

by Eqs. (1) - (5). In Sec. IV, the conditions are derived for electron

detrapping near the separatrix of the primary wave and near the bottom

of the primary wave potential well. The results obtained in Sec. IV

are also applicable to the electron cyclotron maser (gyrotron).

Finally, in Sec. V, the results are summarized.
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II. ELECTROMAGNETIC FIELD CONFIGURATION AND BASIC ASSUMPTIONS

In the present analysis we examine the relativistic motion of an

electron in the combined fields of a longitudinal wiggler magnetic

field, a primary circularly polarized transverse electromagnetic

wave propagating in the z-direction, and a secondary circularly

polarized transverse electromagnetic wave with frequency and

wavenumber close to that of the primary wave. The electron beam density

is assumed to be sufficiently low that equilibrium self fields are negligibly

small, and all spatial variations of field quantities are taken to be in

the z-direction. In addition, a laser oscillator configuration is

assumed in which the steady-state amplitudes of the primary wave (6E)

and secondary wave (6E1 ) have negligibly small spatial variation.

The electromagnetic field of the primary wave is given by

6E( ,t) = -6E[kxsin(kz-wt) + , cos(kz-wt)] , (1)"U Vy

6B(x,t) = (kE [ xcos(kz-wt) - sin(kz-wt)] (2)

and the electromagnetic field of the secondary wave is given by

, )= -6E 1[sin(klz-wlt) + kycos(klz-mwt)] , (3)

6~([,t) [ cos(kiz-wit) - 6ysin(kiz-wit)] . (4)

The longitudinal magnetic field is assumed to be of the form
9

0 _= &( 0+Bwsink0 z) , (5)
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where X 0 27r/k 0=const. is the wiggler wavelength, and B =const. is the

wiggler amplitude. Equation (5) is a valid approximation near the axis

of the multiple-mirror configuration for electrons with sufficiently

2 2
small orbital radius r that k r << 1. In what follows, it is also

0

assumed that the relative ordering of field amplitudes is given by

JBQJ > IB wI >> 16EI > 16E 11 .(6)

Before the electrons enter the interaction region, the initial

conditions are taken to be: axial momentum pzo, transverse momentum

2 2 2 2 2 2 4 1/2 2
pi0, and energy E0 = mc (c pZ0 +c p 0+m c ) ,where y0

2 2 2 2 -1
(1-v 0/c -v/c ) . It is necessary for the electrons to enter the

interaction region with an initial transverse momentum, since it is this

excess transverse momentum that serves to drive the free electron laser

instability for the longitudinal wiggler configuration in Eq. (5).9
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III. EQUATIONS OF MOTION

In this section, the relativistic Lorentz force equation for an

electron moving in the electromagnetic field configuration given

by Eqs. (1) - (5) is used to determine the coupled equations

of motion for the electron energy and the slowly varying phase of the

ponderomotive bunching force. The components of the relativistic

Lorentz force equation are given by

dp v

t -e (BO+Bwsinkoz) + e6E(l-kvz/w)sin(kz-wt)

(7)

+ e6El(l-klvz/W )sin(kz-Wt) ,

dp ev (+Bsn +

= x(B+Bsink z) + e6E(l-kv /w)cos(kz-t)

(8)

+ e6E (1-k1vz/wl)cos(k1z-Wit)

dp fkv kv
Z 6E sin(kz-wt) + 6E cos(kz-ot)

dt (A

(9)
kv kv

+ 6E sin(k z-w t) + : 6E cos(k z-W t),

and

dE
dt= e[v 6Esin(kz-wt) + v 6Ecos(kz-wt)

(10)

+ v x6Esin(k1 z-w1 t) + vy 6E 1 cos(k1 z-wit)],

where E = ymc = mc (1-v /c -v /c )-1/2 is the electron energy.
I

To express the equations of motion in a useful form, we define

p+Px+ipy and combine Eqs. (7) and (8) to give
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d
{p+exp[-ia(t)]} = ie6E(l-kvz/w)exp{-i(kz-wt+a(t))}

(11)

+ ie6E (1-k1v /W1)exp{-i(k1z-W1 t+a(t))}

where

a(t) = dt(eB0+eBwsink0 z)c/E

Assuming that
t

p 0  >> e6E dt(l-kvz/w)exp{-i(kz-wt+a(t))}

(12)
t

+ e6E f dt(l-k1 vz /W1)exp{-i(k1z-W t+a(t))}

it is straightforward to show that the approximate solution to Eq. (11) is

P+ = p,.0 exp [i+ia (t) ] , (13)

where $ is the initial (t=O) phase of the transverse momentum. From

Eq. (13), it follows that the magnitude of the transverse momentum

remains approximately constant, although the individual x and y

components of the momentum can be strongly modulated by the factor

exp[io(t)], thereby resulting in the generation of high frequency

radiation.

In order to further simplify Eq. (13), we define

b = eB0 /mc and , = f dt/y . (14)

Moreover, in the wiggler contribution to the expression for a(t), we

approximate vz v 0 and y yo. This gives



8

eBw
a(t) = W k+ k (1-cosk0z) . (15)

Rewriting Eqs. (9) and (10) in terms of p+ and pt = p -ipy gives

+E p* exp[-i(kz-wt)] 6 Ep+ exp[i(kz-wt)]

(16)
kk 1

+ SE p* WA exp[-i(k z-o t)J -6 E p+ - exp[i(kz-W t)]
1 + +1  1

and

dE - ~ S6Ep*exp[-i(kz-wt)] - SEp exp[i(kz-wt)]
dt 2 mry + +

(1.7)

+6E 1p* exp[-i(k1z-W1 t)] - 6Eip+exp[i(k Iz-Wt) 1 .

Substituting Eq. (15) into Eq. (13), expanding the exponential factors

in a series of ordinary Bessel functions J (x), and substituting

the resulting expression into Eqs. (16) and (17) give (for harmonic

component 9,)

dp ep eB k- 10 J_ W E - sin* +6E in , (18)
dt 1yO -9 k0pz W 1W 1

dE ep ( eB \-d U c [6Esin* + SE sin*P] . (19)
dt MYO -1 (_k OpzO)

In Eqs. (18) and (19) we have approximated y~y 0 on the right-hand side

and retained only those terms with the slowly varying phases (*,*P1)

of the ponderomotive bunching force. The phases (',*1) are defined by

(Z=0,l,2,...)

* = kz-wt + wb +ZkOz + 4 + kt/2 + eB /ck0p 0 0,
(20)
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(k 1 +1k 0 )

i (k+2k 0) [X - - 9a/2 - eBw/ck 0 p 0

(21)

(k+k 0 ) ( w +
+ k+k 0 ) - (cAol)jt ck zO2

Here, o = eB0/mcy0 is the relativistic cyclotron frequency in the

average solenoidal magnetic field B0. Differentiating Eq. (20) with

respect to time t gives

(k+k 0 )vz - w + Wb/Y (k+ k)p/m+ - (22)

Equations (19) and (22) give the desired dynamical equations of motion

for the electron energy E and the phase * of the primary wave bunching

force with radiation emission occuring at the V'th harmonic of the

wiggler magnetic field wavenumber k0.

In order to obtain a solution to Eqs. (19) and (22), we differentiate

Eq. (22) with respect to time t and substitute Eqs. (18) and (19) into

the resulting expression. In normalized variables, this yields the

equation of motion

+ sin* - -6lsin[kil(-V T+a)] , (23)

dT2

where T= t, 61(i2 &2, V =AW1/k1 , and

ep 6E eB 2
2 2 2 J ck0  [(k+2Pk 0)vz0+wc0 - c k(k+kk 0)/w]

c m YO

ep 6E eB

2 222 -k 0  [(kl+kk 0 )vz06+c 0 - c kl(k1 +kk0 )/w1
c m YO

ki (k+%k0) /(k+2k0 '4 (24)
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eB (14)

1 ckOpzO ++2

Awl (w (1-Wo0 (kl+-ZkO)W co )/(k+kk0)

Equation (23) is of the form of a driven pendulum equation which, in the

absence of the secondary wave (6 1=0), is a conservative equation.

In the presence of the secondary wave (6 10), the right-hand side of

Eq. (23), when averaged over the lowest-order motion, can lead to secular

changes in the electron energy and result in stochastic electron motion

and a concomitant detrapping of electrons from the primary wave pondero-

motive potential well.

Finally, we reiterate that several approximations have been made

in deriving Eq. (23). First, Eq. (12) must be satisfied. Taking v ~v 0 ,

making use of Eq. (15), and retaining only the slowly varying phases (pi ),

Eq. (12) can be expressed as

p > -6~lkv/w eB w \ sin*
Pt. e6E(l-kvz0  - kp I $d./ 0-2.. k k pop1/ d*/dt

(25)

/eBw sin~P
+ e6E 1 -k v 0/w )J e I w 1sn~

Sck0pz0 dp 1/dt

Also, in retaining only the axial component of the magnetic field in

Eq. (5), it has been assumed that the influence of the lowest-order

radial magnetic field9

B = Bwk r cosk z (26)r 2 w0 .0

on the electron motion and the ponderomotive bunching phases ($,*l)

0
is negligibly small. It can be shown that the effects of B on and

r an*
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are negligibly small provided

2 O 2 (eBw

1 >> "b _k_ n ckno (7
k _ _ _ _ 2k 2 C 0 o (27)
k~ 0 O 0 _ZOI n-- (n~b /ko0v ZO~O)

eB

Wb k p 0 0e n ck0pzO
1>> .2 (28)

0 zO 0 2k Z0 n=-- (n+wb/k0v ) (28)

In Eqs. (27) and (28), it is assumed that system parameters are well

removed from beam-cyclotron resonance so that the denominators do not

vanish (i.e., wb/YO # -nk 0 v).
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IV. STOCHASTIC INSTABILITY

In this section we determine the region of stochastic instability

for Eq. (23) in the limit 61 << 1. Multiplying Eq. (23) by d$/dT gives

dH0  d (( p 21
-d = d - cos* d= 1sin[i(P-V t+a)]

In lowest order (6 1=0), Eq. (29) gives the conserved energy

0 i 2

(29)

(30)- cos$ = const.

Equation (30) can also be expressed as

1(l 2 -2 ,-sin:, 2

where

K 2 = +H ) .H2 1

The solution to Eq. (31) can be expressed in terms of the elliptic

integrals, F(TI,ie ) and E(n ,ic ), where

F(n,ic) = 2 dn; , 1/2
fQ (1-Kc sin 2n )

E(n,K) =n d' (1-K 2 sin2 n')1/2
fo

(31)

(32)

(33)

(34)

In the present analysis, Eq. (31) is solved assuming trapped electron

orbits with K2 < 1. Introducing the coordinate n defined by

j
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K sinn = sin (35)2'

Eq. (31) can be expressed as

22
d = (1-ic 2 sin2n) , (36)

which has the solution (neglecting initial conditions)

F(n,) =t . (37)

Here, n=sin 1[(1/K )sin ], and F(7,K ) is the elliptic integral of the

first kind defined in Eq. (33). Several properties of the trapped

electron motion can be determined directly from Eqs. (31), (35), and (37).

For example, it is readily shown that the normalized velocity is given by

di= 2K cn'r, (38)

where cnT = [1-sn2 1/2, and snT = sinn ~ (1/K)sin is the inverse2

function to the elliptic integral

F (sin (K, .K

For subsequent analysis of the stochastic instability, it is useful

to express properties of the trapped electron motion in terms of action-

angle variables (1,0). Defining, in the usual manner,

I.= I(H) = d* d,
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e6(,1) = S (, s I) , (39)

S(*,I) d,

we find

I(H0) =1 [E(w/2,K) - (1-K )F(T/2,K)] , (40)0 7r

where K2 (1/2)(1+H 0), and F(n,k) and E(n,K) are defined in Eqs. (33)

and (34). The unperturbed equation of motion (23) (for 6 1=0) can be

expressed in the new variables (I,0) as

dI de W TMI

dT 0 , - (41)

where L is defined in Eq. (24), and the frequency wT(I) is determined

from wT(I)/w = 3H 0(I)/DI, i.e.,

WT(M = .r (42)
WT 2F( T/2,K)

Near the bottom of the potential well, H0  2 -1, K + 0, F(T/2,K) + n/2 ,

and therefore WT (I) + (, as expected from Eq. (23) with 6 =0. On the

other hand, near the top of the potential well, H0 + +1, K2 + 1, F(7r/2,K) +

and w T(I) + 0.

For future reference, the normalized velocity can be expressed as

_ o an-/2

2n = W n1 a-2n-1 cos[(2n-l)wTt] (43)
T n=q 1+a

The quantity a in Eq. (43) is defined by
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a . exp(-7rF'/F)

(44)

F' E F[r/2, (1-K2 )/] , F H F(f/2,K)

Near the top of the potential well, where H +1, the electron motion

becomes stochastic in the presence of the perturbation 6 . Defining

H0 = 1-AH, where AH << 1 near the separatrix, we find K 2

WT(I) -+ 0, and

F =-! kn(32/AH)

(45)

F' w/2

W T =rtj[kn(32/AH)]~A ,

a exp(-fw T/1)

for small AH << 1.

In what follows, the leading-order correction to the electron

motion is retained on the right-hand side of Eq. (23) in an iterative

sense. For consideration of the stochastic instability that develops

near the separatrix, it is particularly convenient to examine the motion

in action-angle variables. Correct to order 61, we find

d - (46)
d- dH0 d-r T dT

where wT = wT(I), and
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dHO dP6 sini -VT+) (47)
dT 1 1 p1

Equation (46) then becomes

l- 6 )]in .(p- '~
iT1WT dT 1i~ I(- p Ta(48)

It is well known that near the separatrix Eq. (48) can lead to a

stochastic instability that is manifest by a secular change in the action I

and a systematic departure of the electron.from the potential well.

Near the separatrix with H0 + 1, it follows from Eqs. (30) and (43)

that the electron is moving with approximately constant normalized

velocity d*/dr = 2 for a short time of order t=Cl. Moreover, this

feature of the electron motion recurs with frequency wT(I) << G, and can

lead to a significant change in the action I in Eq. (48).

We now examine the implications of Eq. (48) near the separatrix

keeping in mind that the sin[...] term on the right-hand side of.

Eq. (48) generally represents a high-frequency modulation. Making

use of the lowest-order expression for the normalized velocity d*/dT,

it follows that

dI * n-l/2
S-46 la n-1 in(i kal+(2n-1)WT /lV

1 1+a 2n-l

(49)

+sin[k 1 +k a - (2n-1),WT T/ 1 p T

Near the separatrix, the first sin[...] term on the right-hand side of

Eq. (49) acts as a nearly constant driving term for some high harmonic

number s >> 1 satisfying the resonance condition
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2swT (18)/G k 1 p (50)

or equivalently,

(W -c- ) (k+ik0)-(W-W c (kl+Zk0)
T (s 1 p/2s 2s(k+tk 0) (51)

Here, Is is the action corresponding to the resonance condition for

harmonic number s. From Eq. (51), it follows that the separation

between the adjacent resonances s and s+1 is

2 2 2
6s = T (Is WT (Is+1 W1 Vp /2s 2w 2T (Is)/wk 1 V

2 w (I) (k+k0  (52)

(w-wO0 )(k+Rk 0 ) - (w-w0 )(k+'k0)

On the other hand, for a small change in the action AI, the characteristic

frequency width of the s'th resonance can be expressed as

AW (Is Id= T s(I) A
aT s F- dI Us

where AwT s <T s) has been assumed. The condition for the

appearance of stochastic instability2 is AWT (Is) 6s, or

dT(Iw) 2 (Is
Ts AI > Ts (53)

To determine the size of AIs, we express WT(I) as w T (Is) + AWT (IS)

and integrate Eq. (49) over a time interval of duration i=6 in the

vicinity-of the s'th resonance defined in Eq. (51). In an order-of-

magnitude sense, this gives
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a - 1 / 2  dw T(I ) -1

s 2"' 1 a2s-1 dI l (54)

Solving Eq. (54) for AI then gives

461as-1/2 1+a2s-1 WT s ) 1/2

s a + )(I s)/dIs k1 V(

where Eq. (50) has been used to eliminate s. Substituting Eq. (55)

into Eq. (53) then gives the condition for stochastic instability to

occur,

doT I a s-1/2) w ( (k+.tk0)

61 dIs 1+a2s-lJ ( 1-Wc0 )(k+Ek 0) - o (k+9k0)

W3 (
T (Is
2 i(56)

The various factors in Eq. (56) are now estimated near the separatrix

where H0 + 1 and wT (1) << G. From Eqs. (45) and (51) it follows that

Ts

a exp[- V . (57)

Also, from Eq. (45), kn[ 32 /(l-H0 J=WWW/T gives

DH /Di dw ( I)

1-H 0  2 dI . (58)
WT(I)

Using the fact that aHo/3I = WT(I)/G yields

_2 dw(I)

3 dI = - exphr/w (I)1 . (59)

T
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Substituting Eqs. (57) and (59) into Eq. (56) then gives

.pexp[7rGj/wT - V /2]
-kV > 1. (60)

1 + exp[- wk V ]

Expressed in terms of the energy bandwidth AH = 1-HO, the condition in

Eq. (60) for stochastic instability becomes

1 exp[-irk V /2]
-k V >> A H .(61)

t 1 V i+iT[t vp ]

Because 61 << 1, it follows from Eq. (61) that the detrapping of the

elec.trons will be most pronounced when k 1V ~ 1, or from Eq. (51) when

(W -oW0 ) (k+kk0 )-(W- ) c (kl+ik0)

(k+k 0) (62)

Making use of the expression for ( given in Eq. (24), the condition in

Eq. (62) can be expressed as

p2 -.t [(k+kk 0 )v z + WCo - c k(k+tk0/1

(63)
(W1-Wo0 )(k+kk 0) - ( o )(kl+k

(k+tk0)

In the limit of zero wiggler magnetic field with Bw=0, k0 -0, and Z=0,

the above analysis holds for the electron cyclotron maser interaction.

The parameter regime for detrapping of the electrons for the cyclotron

maser is then given by [Eq. (63)]

e6Ep 1/2

2 2 (kv 0 + wc0 - c2k2/w) (1/2= c (WWc0 )k /k . (64)

F c m Yk 1t

For the case w >> k C, W >> kc and k /k =1 (gyrotron), the condition
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given in Eq. (64) becomes

e6 EpLOLCO /
(e 2 2 2 ) w 1 - W (65)

cm y0 /

Equation (65) indicates that if the difference in frequency between

the primary and secondary waves in a gyrotron is close to the electron

bounce frequency t in the primary wave, then the electrons will detrap

from the primary wave potential well, leading to a decrease in output

power at the primary wave frequency.

Finally, we examine the condition for stochastic instability

for an electron deeply trapped in the prTLmary wave potential well,

i.e., H0 + -l and K2 << 1. For this case, the quantities given in

Eqs. (42) and (44) become

F 7r/2 + 2K /8

F' = n(4/K)

(66)

T (I) = (1- 4)

a K2 /16

Because a << 1, the equation for the unperturbed normalized velocity.

[Eq. (43)] becomes (n=1, wT

2Kcos(w T/3) . (67)

Equation (67) gives for i
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2Ksin(wT / (68)

Substituting Eq. (68) into Eq. (49), and expanding in a series of ordinary

Bessel functions J (x) yields

dIaO 00 n-1/2
d -46 a 2n-l q (2Kk 1)

n=1 q=-w 1+a

x sin{(qw / + (2n-l)wT 63 TT + ka} (69)

+ sin{(QwT/t - (2n-l)wT/3 k 1 V IT + k 1a 1

Near the bottom of the well, both sin[...] terms in Eq. (69) can act as

nearly constant driving terms for some harmonic numbers n=s and q=r

astisfying the resonance conditions

w T (Ir,s V p /(r+2s-1)

or (70)

WT r,s V pr-2s+l)

Here, Ir,s is the action corresponding to the resonance condition for

harmonic numbers (rs). From Eq. (70), it follows that the separation

between adjacent resonances s and s+l, and r and r+l is

3^Af V 3W

orr,s (r+2s-1)(r+2s+2) 3 W+ AW1  (

or 3 T 2
- k V WT

6r,s (i-2s)(r-2s+l)- T 61 VT lp

For a small change in the action AI , the characteristic frequency widthr s
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of the (r,s) resonance can be expressed as

. dw (I )'

T r,s dI r,s r,s

where again AwT rs W(Is) has been assumed. The condition

for the appearance of stochastic instability is AwT (Irs r.s or

equivalently

dw (I 3w 2 W2
T r,s AI >> or T (72)
dr,s r,s 3w + tk 1V p- wT 1 Vp

The size of AIr,s is estimated in the same manner as for the case near

the separatrix. Integrating Eq. (69) in the vicinity of the (r,s)

resonance gives

a s-1/2  1/(r+2s-l)Aw ,
AIrs "' 461 2W- (73)

1+a 1/(r-2s+l)AwT

Solving for AIr,s then results in

2-/ T 1T
(AI r 2 r(1 2s-W d( /dI

rs 11+a T r,s

where use has been made of Eq. (70). Substituting Eq. (74) into Eq. (72)

we find that the condition for stochastic Instability to occur near the

bottom of the potential well is given by

72kfcV 8k v
6 Jr (2iK) (2s-1) >> p) 2 or 2 (75)

where use has been made of a K 2/16 and
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wT dK2 dH0 T
dI 4dI 8 dI 8

Because << 1, K2 << 1, and J r 1, the inequality in Eq. (75),

subject to the constraint given in Eq. (70), can only be satisfied

for k V << 1, or equivalently,

1ip

(W-Wo 0 )(k+gk 0)-(W-W co)(k+Zk0 )

(k+2k 0) << , (76)

which follows from Eq. (24).

In the limit where B w=0, k0=O, and k=0, together with w >> k c,

w >> kc and k /k = 1 (gyrotron), Eq. (76) gives

- WA <<« (77)

Equation (77) indicates that if the frequency difference between the

primary and secondary waves in a gyrotron is much less than the

bounce frequency of an electron at the bottom of the potential

well, then the deeply traDped electrons can be detrapped by a low-

amplitude secondary wave.
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V. CONCLUSIONS

To suimmarize, we have investigated the motion of an electron in the

combined fields of a longitudinal magnetic wiggler, and constant-amplitude,

circularly polarized primary electromagnetic wave (6E,w,k). It has

been shown that the presence of a secondary moderate-amplitude transverse

electromagnetic wave (6E,W,k 1 ) can lead to a stochastic particle

instability in which eleetrons trapped near the separatrix of the primary

wave or near the bottom of the primary wave potential well can undergo

a systematic departure from the potential well. This "detrapping"

can result in a significant reduction in power output at the primary

wave frequency. The conditions for onset of stochastic instability

has been calculated near the separatrix [Eq. (61)], and near the bottom

of the potential well [Eq. (75)]. Equations (61) and (75) are also valid

in the limit Bw=0 and k0=O, and give the condition for onset of the

stochastic instability for the electron cyclotron maser (gyrotron).
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