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ABSTRACT

A sufficient condition is derived for electrostatic stability of

nonrelativistic nonneutral electron flow in a cylindrical diode with

applied magnetic field B ^Z. The analysis is based on a cold-fluid

guiding-center model that treats the electrons as a massless, strongly

magnetized fluid with wb (r)/wc2 = 4 Tn b(r)mc 2/ B  << 1, and flow velocity

Vb(,,t) = -cVO(x,t)x^ /B0 . Making use of global conservation constraints

satisfied by the fluid-Poisson equations, it is shown that an(r)/r < 0

over the interval a < r < b is a sufficient condition for stability to

small-amplitude electrostatic perturbations. Here n0(r) is the electron

density profile, and the cathode is located at r = a and the anode at

r = b. Space-charge-limited flow with E (r = a) = 0 is assumed. Ther

analysis illustrates the major generality and flexibility of using global

conservation constraints to determine a sufficient condition for stability.

Nowhere is it necessary to make direct use of a detailed normal-mode

analysis or eigenvalue equation.
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I. INTRODUCTION AND SUMMARY

In the present article, a sufficient condition is derived for

electrostatic stability of nonrelativistic nonneutral electron flow1 ,2

in a cylindrical diode with applied magnetic field B (Fig. 1). The

analysis is based on a cold-fluid guiding-center model (Sec. II) that

treats the electrons as a massless, strongly magnetized fluid with

2 0 2
pb ) 41rnb_____

2 2 21,
c B0

and electron flow velocity [Eq. (2)]

$ (x,t)x~
V (,t) = -c B

B0

Here, n0(r) is the equilibrium electron density profile, and k(gt)nbr

-V$( ,t) is the electric field. Making use of global conservation

constraints satisfied by the fluid-Poisson equations (Secs. III and IV),

it is shown that monotonic decreasing density profiles with (Eq. (30)]

9n (r)
r < 0, for a < r < b

are stable to small-amplitude electrostatic perturbations. Here, the cathode

is located at r a and the anode at r = b (Fig. 1). Space-charge-limited

flow with E (r = a) = 0 is assumed.
r

The present analysis illustrates the major generality and flexibility

of using global conservation constraints to determine a sufficient condition

for stability. Nowhere is it necessary to make direct use of a detailed

normal-mode analysis or eigenvalue equation. This work is an important

generalization of the calculation of Briggs et al.2,3 to include the presence
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of an internal conductor (cathode). Moreover, the stability theorem

derived by Briggs et al. was obtained directly from the electrostatic

eigenvalue equation.

II. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, we adopt a cold-fluid guiding-center model

in which electron inertial effects are neglected (m -+ 0), and the motion

of a strongly magnetized electron fluid element is determined from

t) + 1 ((,t) x B(1

In the electrostatic approximation, = -$ and Eq. (1) gives

b z (2)Xb(x't) B= - .V,(t) x (2)
0

for the perpendicular motion. In cylindrical geometry, Eq. (2) reduces to

Vrb(r,O,t) = - (r,e,t),
0 (3)

Vb (r,e,t) = $ (r,6,t),ebrt Bor 3r0

where /3z = 0 has been assumed. The continuity equation, which relates

the density nb(r,e,t) and flow velocity Xb(r,e,t) is given by

nb + - (nb =0, (4)

a V -n(5
nt b + %b - nb = 0, (5)

since Y - = 0 for the electron flow in Eq. (2). Of course, Eqs. (2),
't b

(3) and (5) must be supplemented by Poisson's equation

V2 $(r,e,t) = 47renb(r,e,t), (6)

which self-consistently relates the electrostatic potential 0(r,G,t) to

the electron density nb(r,e,t).
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Equations (2), (5) and (6) constitute a fully nonlinear description

of the system evolution in the cold-fluid guiding-center approximation

with m + 0 and B0 -+ Co. Expressing

0
nb(re,t) nb(r) + nb(ret),

O(r,e,t) = $0 (r) + 60(r,e,t),
(7)

the boundary conditions enforced in solving Eqs. (2), (5) and (6) are

$0 (r = a) - 0 and $0 (r - b) - V,

(8)

= 0,

r = a

= 0, at r = a and r - b.

The equilibrium conditions in Eq. (8) correspond to space-charge-limited

0
flow with Er (r = a) = -$ 0 /r = a- 0. Moreover, Eq. (9) assures that

the tangential electric field and radial flow velocity are equal to zero

at the cathode and at the anode, with

Eg = - 6$ = 0,8 r ==

rb B r H
I at r = a and r = b .

Finally, because of periodicity in the 6-direction,

de - = 0,

20

where i represents any field of fluid variable or nonlinear combination

thereof.

(10)

(11)

(9)
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III. NONLINEAR GLOBAL CONSERVATION CONSTRAINTS

The macroscopic guiding center model based on Eqs. (2), (5) and (6)

possesses certain global (spatially averaged) conservation constraints.

Consider the quantity AUG defined by

AUG = fdx[G(nb) - G(n0)], (12)

where G(nb) is a smooth, differentiable function, and

d2x 2 df fdrr
0

in cylindrical geometry. From Eq. (5) and V - - 0, it follows that

a G(nb) =bGa ba - Ynb
(13)

= Yb G(nb) - - [G(nb.b ].

Therefore

dAUG d2x G(nb)
Tt GGnf ,)

27Tr dj ab drr (rVbG) + (VebG) = 0.

The D/96 contribution in Eq. (14) integrates to zero by virtue of periodicity

in the e-direction [Eq. (11)]. The a/ar contribution in Eq. (14) integrates

to zero because the radial flow velocity is equal to zero at the cathode

(r = a) and at the anode (r = b) [Eq. (7)]. From Eq. (14), we conclude that

AUG = dx[G(nb) - G(n%)] = const. (15)

A special case of Eq. (15) is the conservation of total charge

AU = e d2x(nb - n ) const. - 0, (16)
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where the constant in Eq. (16) has been taken equal to zero. This is

consistent for all time t provided zero net charge is introduced into the

system by the initial density perturbation, i.e., provided Id2x6nb(r,O,

t = 0) = 0.

A further global conservation constraint is related to the density-

weighted average radial location of guiding centers. Defining

AU - d 2xr2(nb - n 0), (17)

and making use of 3nb/Dt (nbb) gives

AU 2r de b drr - r 2 (r gi rvbedt Ur drr r Dr Vb)+ r H(b~b

0 a (18)

f 2Tr e b r a r 3 2 1
= -j2de dr IT (r %b b) 2 rnbVrb

0 a

where the a/a6contribution in Eq. (18) vanishes by virtue of periodicity

in the 0-direction [Eq. (11)]. Moreover, making use of Vrb - 0 at r = a

and r = b [Eq. (7)], the (a/ar)(r 3nb Vrb) term in Eq. (18) integrates to

zero, which gives

d = -2 2 def drrn (19)

0 a

In Eq. (19), use has been made of Vrb = -(c/rB 0) $/wa [Eq. (3)] to eliminate

the radial flow velocity Vrb from the final term in Eq. (18). From V _

47Tenb, Eq. (19) can be expressed as

d _ 27T Ofb dr a2 1

dt r 2eB 2rr br ar 2 2 R
0e0  2 'a dr ae

.2r b (a\f. (20)

- -2T~BOf d~j dr i ae
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where the 2 2/ contribution in Eq. (20) integrates to zero because of

periodicity in the e-direction. Equation (20) can also be expressed

(exactly) as

dAU 27 d b dr r (21)dt r r eB0 f r raer (21)

The 6-derivative term in Eq. (21) vanishes because of periodicity in the

6-direction [Eq. (11)]. The term (a/ar)[r($/ar)(3$/a0)] in Eq. (21)

integrates to zero by virtue of E0 = - (l/r)(3$/30) = 0 at the cathode

(r = a) and at the anode (r = b) [Eq. (10)]. This gives

-AU = 0 (22)dt r

or equivalently,

AU d 2xr2(nb - n ) = const. (23)

IV. SUFFICIENT CONDITION FOR STABILITY

A sufficient condition for stability follows directly from Eqs. (15)

and (23). Defining an effective free energy function AF by

AF = AUr + AUG (24)

it follows that

f2x r2( 0 0~y (25))

AF = dx[r nb - n ) + G(nb) - G(nb)] = const. (25)

is an exact (nonlinear) global constraint. Expressing 6n = n - and

Taylor expanding

G(nb) G(n ) + G'(n )(6nb) + 1 G"(n )(6nb 2 + ... , (26)

it follows that Eq. (25) can be expressed as
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AF =fd x {[r2 + G'(n )](6nb) + -1 G"(n')(6n) = const., (27)

correct to quadratic order in the density perturbation 6nb = nb(r,et)-

0 0
nb(r). The function G(nb) has been arbitrary up to this point. We now

0
choose G(nb) to satisfy

0 2
G'(nb) = -r , (28)

so that G"(n ) -(n /ar)~1. Equation (27) then becomes
bb

AF= ' d 2 (6nb 2 = const. (29)
2f 0 /r2 b

[-3nb/3r ]

It follows trivially from Eq. (29) that for monotonic decreasing density

profiles with

0
anb

1 b < 0, for a < r < b, (30)

the density perturbation 6nb(r,6,t) cannot grow without bound, and the

system is linearly stable. That is to say, Eq. (30) is a sufficient

condition for stability in the context of the cold-fluid guiding-center

model based on Eqs. (2), (5) and (6).

We therefore conclude that a necessary condition for instability is

that n / r change sign on the interval a < r < b, or equivalently that
b

9[r2 E(r)]r r r Ir Er

0
change sign on the interval a < r < b. Here, w (r) = -cE (r)/B r is theE r 0

0
equilibrium angular velocity of a fluid element, and nb(r) is related to

o o 0 0
E (r) by (1/r)(;/ r)(rEr) = -4ren . When 3nb /r changes sign in ther r b' b

interval a < r < b, the corresponding shear in angular velocity can provide

the free energy to drive the diocotron instability.1,2
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V. CONCLUSIONS

The present analysis illustrates the major generality and flexibility

of using global conservation constraints to determine a sufficient condi-

tion for stability. Nowhere was it necessary to make direct use of a

detailed normal-mode analysis or eigenvalue equation.

The sufficient condition for stability developed here can be extended

to the case of relativistic nonneutral electron flow in a planar diode

with equilibrium flow velocity V (x) = -cE 0(x)/B 0(x). Within the context
y x z

of a relativistic guiding-center model that treats the electrons as a cold

massless fluid (m - 0), it is found that the sufficient condition for the

electron flow to be stable to small-amplitude extraordinary-mode perturbations

is given by

n 0(x)1_ 0

-- < 0, 0 < x < d
DX (x)

0 0 2 0 2 -1/2where yb(x) = 11 - E (x)/B z (x)]l. Here, the cathode is located at

x =0 and the anode at x = d.
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FIGURE CAPTIONS

Fig. 1: Cylindrical diode configuration with cathode at r = a and

anode at r = b, and applied axial magnetic field B0 oz

Equilibrium electron flow is in the 6-direction.
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Figure 1: Cylindrical Diode Configuration with cathode at r a

and anode at r = b, and applied axial magnetic field

O( ) = BOkz. Equilibrium electron flow is in the

e-direction.


