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ABSTRACT

The purpose of the present article is to establish the properties of

a class of radially confined relativistic electron beam equilibria for

longitudinal wiggler free electron laser applications. The theoretical

model is based on the steady-state ( /t = 0) Vlasov equation, assuming a

thin, tenuous electron beam with k R << 1 and negligibly small equilibrium

s0
00

self fields. For the approximate magnetic field configuration, B r= 0 and

0
Bz = 0 [1 + (6B/B0)sink0zl, the single-particle constants of the motion

are: axial momentum pz, perpendicular momentum p = (p + p /2energy

2 2 4 2 2 2 2 1/2
Ymc (m c + c pz + c p) , and canonical angular momentum P =

r[p, - (e/c)A (r,z)], where A (r,z) = (r B /2) [1 + (6B/B )sink z]. Beam

equilibrium properties are investigated for the class of self-consistent

Vlasov equilibria F0 ( = p - 2 )G(p ), where wb = const. isFb P- = Ybwb Pe)G(z b

related to the mean rotation of the electron beam, and Ybmc2 = const. is

the characteristic energy of a beam electron. Specific examples of sharp-

boundary equilibria and diffuse equilibria are analyzed in detail, includ-

0
ing the r-z modulation of the density profile nb(r,z) by the longitudinal

wiggler field.
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I. INTRODUCTION

1-3
The longitudinal wiggler configuration has recently been proposed

as an attractive magnetic field geometry for intense free electron laser

(FEL) radiation generation. In the longitudinal wiggler free electron

laser, an electron beam propagates along the axis of a multiple-mirror

(undulator) magnetic field with axial periodicity length X0 - 27r/k 0 and

0 0
axial and radial vacuum magnetic field components, B (r,z) and B (rz),z r

2 2
given by Eq. (1). For a thin pencil beam with kOb << 1, where Rb is the

characteristic beam radius, the primary wiggler field is in the axial

direction, and the equilibrium field components can be approximated by

0
B (r,z) - 0 and [Eq. (3)]r.

0 B
B (r,z) = B + L sink zBo0 Bl 01

Here, 6B/B is related to the mirror ratio R by R = (1 + 6B/B0 )/(l - 6B/B 0).

The instability mechanism for the longitudinal wiggler free electron

laser1-3 is a hybrid of the Weibel and axial bunching mechanisms for the

cyclotron maser4-6 and standard free electron laser7~10 instabilities.

Calculations of growth rate for the longitudinal wiggler free electron

laser1-3 have been based on a very simple model in which the beam cross

section is treated as infinite in extent, and the influence of finite

radial geometry on stability properties is completely neglected. The

purpose of the present article is to establish the properties of a class of

radially confined relativistic electron beam equilibria for longitudinal

wiggler free electron laser applications. The theoretical model (Sec. II)

is based on the steady-state (/3t = 0) Vlasov equation, assuming a thin,

2 2
tenuous electron beam with k0R << 1 and negligibly small equilibrium self

fields. For the approximate magnetic field configuration, B0 = 0 and
r
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0
B z B0 [1 + (6B/B 0 )sink0 z], the single-particle constants of the motion

are: axial momentum pz, perpendicular momentum p= (pr + pe)
2 2 4 2 2 2 21/2energy ymc = (m c + c p + c p ) , and canonical angular momentum

P8 - r[p, -(e/c)A (r,z)], where A (r,z) = (rB0 /2)[1 + (6B/B 0 )sink0z].

Beam equilibrium properties are investigated in Sec. III for the class

of self-consistent Vlasov equilibria f ) F(p - 2YbnwbP)G(pz),

where wb - const. is related to the mean rotation of the electron beam,

and Ybmc2 - const. is the characteristic energy of a beam electron.

Specific examples of sharp-boundary equilibria (Sec. III.B) and diffuse

equilibria (Sec. III.C) are analyzed in detail, including the r-z modu-

11 0lation of the density profile nb(r,z) by the longitudinal wiggler field.

II. THEORETICAL MODEL AND ASSUMPTIONS

In the present analysis, a tenuous electron beam propagates along

the axis of a multiple-mirror (undulator) magnetic field with axial

periodicity length X0 = 2T/k0 and axial and radial vacuum magnetic fields,

B 0 (r,z) and B 0 (r,z), given by1 2
zr

B (r,z) = B 1 + I(kOr)sinkz,

1 (1)
Br(r,z) = - 6B I (k r)cosk z,

where I (k0r) is the modified Bessel function of the first kind of order

n, and 6B/B 0 < 1 is related to the mirror ratio R by R = (1+6B/B0 )/(1-6B/B0).

In circumstances where the beam radius Rb is sufficiently small with

k 2 << 1, (2)

and the oscillatory field amplitude 6B is sufficiently small with 6B/B0

then the leading-order oscillation (wiggle) in the applied field is

0 = 0primarily in th e axial direction, with B r =O(k 0 r)B . Within the context
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of Eq. (2), the equilibrium magnetic field components can be approximated

by

B (r,z) = B 1 + sinkz ,
SI 0(3)

B (r,z) = 0
r

in the beam interior where r < R b << k 0

Assuming a tenuous electron beam with negligibly small equilibrium

self fields, then the electron motion in the longitudinal wiggler field

specified by Eq. (3) is characterized by the four single-particle

constants of the motion

p Z

2 2 2
p = pr

Ymc2  (m2c4 + c2p2 + c2p2)l/2 (4)

P = ripe - A (rz)

where pZ is the axial momentum, p is the perpendicular momentum, ymc2

is the electron energy, and

A 0 (r,z) = rB0 11 + 6B sinkoz (5)

is the e-component of vector potential consistent with Eq. (3). Here,

-e is the electron charge, m is the electron rest mass, and c is the

2speed of light in vacuo. Note that ymc = const. can be constructed

from the constants of the motion p and p , which are independently

conserved.

It is important to keep in mind that the validity of the single-

particle constants of the motion in Eq. (4) assumes that k2r 2<<, 6B/B <1
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and that the oscillatory radial magnetic field B0  -(6B/2)k 0 rcosk0 zr0 0
0

can be approximated by Br = 0 [Eq. (3)]. To determine the range of

validity of this approximation, we have also calculated (in an iterative

sense) the leading-order corrections to the longitudinal and transverse

orbits, treating the magnetic force (-e/c),vxB as a small correction.

It is found that the quantities p and p2 remain good single-particlez .I

constants of the motion provided the inequalities

1 1 1 wc 6B
22' 2 2 v B

k v k v2 2 k 0 B00Oz 041

Jm ( Wc 6B

kez B0
m=-o q=-

Xq (k1z B) (mk0 vz + wc-l

x [kvz + (m + q)kvz + wc

are satisfied. Of course, this requires that 6B/B0 < 1, k22 2 < 1, and

that the axial motion be removed from cyclotron resonance (wc + Nk0 vz 0).

III. RADIALLY CONFINED BEAM EQUILIBRIA

A. General Considerations

Any distribution function f0(K) that is a function only of the

single-particle constants of the motion in Eq. (4) is a solution to the

steady-state (/3t = 0) Vlasov equation. Previous analyses 1-3 of the

longitudinal wiggler free electron laser instability have considered

perturbations about the class of uniform beam equilibria f (p , p ). In

order to construct radially confined self-consistent beam equilibria with
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0
n (r + 00) - 0, which is the subject matter of this article, it is necessary
b

that fb 0,k) depend explicitly on the canonical angular momentum P

For present purposes, we consider the class of radially confined beam

equilibria of the general form

fb(-,) - F(p - 2yb Wb P)G(pz) , (6)

where dpz G (pz ) W b is a constant, and y - const. is the

characteristic energy of a beam electron. Making use of Eq. (4), it is

readily shown that the argument of the function F in Eq. (6) can be

expressed as

p -_ 2yab = + r - bbr) 2+ $(r,z) (7)

where the envelope function (r,z) is defined by

2 22 6B
$(r,z) = ybm r 2b 1 bl + sinkoz-<b1 (8)

0

Here, w cb m eB 0 .b mc is the relativistic cyclotron frequency. Therefore,

from Eqs. (6) - (8), the electron beam density profile n (r,z) =

27 f dp p dp b ±' e'pz) can be expressed as
0

0 2nb (r,z) = 2r f dp'p' F[p' + $(r,z)], (9)

2 2 2where p' = p +p - , and use has been made of rdp G(p 1.I0r+ p Yb1mwb) CO z

It is clear from Eq. (9) that $(r,z) = const. contours correspond to

constant-density contours.

B. Sharp-Boundary Beam Equilibrium

As a specific example that is analytically tractable, we consider the

case where

nb 2
F = 6(p - 2ybmwbrPe - 2ybMTb), (10)

(2ryb Mb)
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where Tb = const. is related to the transverse temperature of the beam

2-
electrons, and V2b ~ 2TAb bm. Substituting Eq. (10) into Eq. (9)

readily gives

n = const. , $(r,z) . (ybm b)2

0
nb(r,z) =

0 , $(r,z) > (Yb2Vb2

From Eq. (11), the electron density is constant (equal to fb) in the beam

interior, and the outer envelope of the electron beam is determined from

$(r,z) = (ybm b)2 , (12)

^2
where Vb = 2Tb/ bm. Substituting Eq. (8) into Eq. (12), and solving

for the radius r = R b(z) of the electron beam gives

^72
2 __ _ _ __ _ _ _ ___A__ _ _ _

%b(z) = b W cb[1 + (6BB 0 )sinkOz' - b1 (13)

0 *0

where nb(r,z) =b = const. for 0 : r Rb(z), and nb(r,z) = 0 for

r > Rb(z).

From Eq. (13), it is clear that radially confined equilibria exist

only for angular rotation velocity wb in the range

0 < Wb Wcb[1 - 6B/B0
(

where 0 < 6B/B 0 < 1 has been assumed. In this regard, it is important

to keep in mind that <p,> = (fd3 PPef )/(fd 3p Y bbr for the entire

class of self-consistent Vlasov equilibria in Eq. (6). That is, wb is

directly related to the mean angular rotation of the electron beam. It

is also clear from Eq. (13) that the outer envelope of the constant-
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density electron beam undulates axially between a maximum outer radius

[RbOA

2
2 __ __ _ __ __ _ __ __ _

[ 'MAX = b cb[l - B/BO] - Wbl , (15)

where the axial magnetic field is weakest [at k0 z = (2n + 1)71/2,

n = ±1, ±3, ±5, ...], and a minimum outer radius [ RbMIN
^2

2 Vb
]MIN = Wb{cb[l + 6B/B 0 ] - W ,l (16)

where the axial magnetic field is strongest [at k0z (2n + 1)71/2,

n = 0, ±2, ±4, ...].

Equation (2) is an important condition for validity of the present

equilibrium theory. From Eq. (15), it is readily shown that k2[R ] <<1

can be expressed in the equivalent form

0 Lb Wcb B 0 cb

where 0 < "b < (1 - 6B/B 0 ) is assumed, and rLb= (Vb /Wb) is the

effective thermal Larmor radius of a beam electron. Equations (2) and

(17) of course restrict the validity of the present analysis to a thin

pencil beam propagating down the axis of the multiple-mirror system.

C. Diffuse Beam Equilibrium

Depending on the choice of F, the class of beam equilibria in Eq. (6)

also allows the possibility of a diffuse (bell-shaped) density profile.

As a second example, consider the case where F is specified by

2
nb p - 2ybebrP

F = exp - (18)
(2ryb Mb) 2ybmTLb
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where ft. and T b are positive constants. Substituting Eq. (18) into

Eq. (9) gives directly

n (rz) - exp - * , (19)2YbmILb

which can be expressed in the equivalent form

22where R (z) is defined in Eq. (13) with V - 2T As for the case

of the rectangular density profile in Eq. (11), the necessary condition

for a radially confined equilibrium in Eq. (20) is that wb be in the

interval 0 < wb Wcb(1-6 B/B0). Note from Eq. (20) that the choice of

distribution function in Eq. (18) gives a Gaussian density profile with

peak density (f b.) at r = 0 and characteristic radial width of the density

profile equal to Rb(z). Moreover, r/Rb(z) = const. contours correspond

0to constant-density contours with nb(r,z) = const. Finally, the condition

2 2 2koR(z) << 1 is required, where R(z) is defined in Eq. (13).

IV. CONCLUSIONS

Calculations of growth rate for the longitudinal wiggler free electron

laser1-3 have heretofore been based on a very simple model in which the

beam cross section is treated as infinite in extent, and the influence of

finite radial geometry on stability properties is completely neglected. The

purpose of the present article was to establish the properties of a class

of radially confined relativistic electron beam equilibria for longitudinal

wiggler free electron laser applications. The theoretical model (Sec. II)

was based on the steady-state (/3t = 0) Vlasov equation, assuming a thin,

tenuous electron beam with k R << 1 and negligibly small equilibrium self
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fields. For the approximate magnetic field configuration, B 0 0 andr

B0 = B0 [1 + (6B/B 0 )sink0 z], the single-particle constants of the motion

are: axial momentum pZ, perpendicular momentum p a (p + 2 1/2
r

energy ymic 2 = (m2c4 + c2p + c2 2)1/2, and canonical angular momentum

P- r[p6 - (e/c)A (r,z)], where A (rz) - (rB0 /2)[1 + (6B/B0 )sink0 z].

Beam equilibrium properties were investigated in Sec. III for the class

of self-consistent Vlasov equilibria f ( - F(p - 2yb gPe)G(pz), where

Wb - const. is related to the mean rotation of the electron beam, and

Ybmc2 = const. is the characteristic energy of a beam electron. Specific

examples of sharp-boundary equilibria (Sec. III.B) and diffuse equilibria

(Sec. III.C) were analyzed in detail, including the r - z modulation of

0
the density profile n%(r,z) by the longitudinal wiggler field.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research.



11

REFERENCES

1. R.C. Davidson and W.A. McMullin, Phys. Fluids 26, 840 (1983).

2. W.A. McMullin and R.C. Davidson, Phys. Rev. A26, 1997 (1982).

3. W.A. McMullin and G. Bekefi, Phys. Rev. A25, 1826 (1982).

4. R.Q. Twiss, Aust. J. Phys. 11, 564 (1958).

5. H. Uhm, R.C. Davidson, and K.R. Chu, Phys. Fluids 21, 1877 (1978).

6. K.R. Chu and J.L. Hirshfield, Phys. Fluids 21, 461 (1978).

7. V.P. Sukhatme and P.A. Wolff, J. Appl. Phys. 44, 2331 (1973).

8. T. Kwan, J.M. Dawson, and A.T. Lin, Phys. Fluids 20, 581 (1977).

9. N.M. Kroll and W.A. McMullin, Phys. Rev. A17, 300, (1978).

10. P. Sprangle and R.A. Smith, Phys. Rev. A21, 293 (1980).

11. R.C. Davidson and H.S. Uhm, J. Appl. Phys. 53, 2910 (1982).

12. H.S. Uhm and R.C. Davidson, Phys. Fluids 24, 1541 (1981).


