# ELECTRON BEAM IN A VARIABLE PARAMETER 

LONGITUDINAL MAGNETIC WIGGLER

Wayne A. McMullin, Ronald C. Davidson and George Johnston

# STIMULATEI EAISSSION FROM A RELATIVISTIC 

ELECTRON BEAM IN A VARIABLEPARAMETER
LONGITUDINAL MAGNETIC WIGGLER

Wayne $\Lambda$. McMullin, Ronald C. Davidson and Gcorge L. Johnston<br>Plasma Fusion Center<br>Massachusetts Institute of Technology<br>Cambridge, Massachusetts 02139


#### Abstract

The single-particle equations of miotion are used to study the stimulated emission from a tenuous relativistic electron beam propagating in the combined solenoidal and variable parameter longitudinal wiggler magnetic ficlds produced near the axis of a multiple-mirror (undulator) field configuration. The specific case of constant field amplitude and variable wiggler periodicity is studied. It is found that the efficiency of radiation generation can be increased by orders-of-magnitude relative to the case where the wiggler periodicity is constant. This is due to the fact that the phase velocity of the ponderomotive potential in which the electrons are trapped is decreasing, allowing the electrons to exchange energy with the radiation field.


## I. INTRODUCTION

In the present article, we investigate free electron laser radiation generation by a tenuous, relativistic electron beam propagating along the axis of a multiple-mirror (undulator) magnetic ficld in circumstances where the amplitude $B_{w}(z)$ and wavenumber $k_{0}(z)$ of the longitudinal wiggler field are allowed to vary slowly with axial position $\boldsymbol{z}$. The beam radius is assumed to be sufficiently small that the electrons interact only with the axial magnetic field given approximately by Eq. (3). In previous investigations ${ }^{1-3}$, radiation generation in such a longitudinal wiggler configuration has been studied for the case where the wiggler amplitude and wavenumber are constant. As for the case of a free electron laser with constant-amplitude, constantwavenumber, transverse wiggler, it is found ${ }^{1-3}$ that the efficiency of radiation generation is relatively low. However, for a free electron laser with variable parameter transverse wiggler, it has been recently shown ${ }^{4-8}$ that the efficiency of radiation generation can be greatly increased relative to that of a constant parameter wiggler. In the present analysis, we extend the techniques developed in Ref. 6 to calculate the efficiency of radiation generation for the case of a variable parameter longitudinal wiggler.

In Scc. II, we outline the basic assumptions and electromagnetic field configuration related to the present analysis. In Sec. III, coupled dynamical equations are derived for the electron energy and slowly varying phase of the ponderomotive bunching force. These equations are analyzed in Sec. IV for the specific case of constant wiggler amplitude $B_{w}=$ const. and variable wiggler wavenumber $k_{0}(z)$. By slowly varying the wavenumber $k_{0}(z)$ of the wiggler magnetic field, the phase velocity of the ponderomotive potential in which the electrons are trapped decreases in the axial direction, thereby allowing the electrons to give up energy to the electromagnetic radiation ficld. In Sec. $V$, an analytic expression [Eq.(49)] for the efficiency of radiation generation is derived. It is found that this efficiency can be orders-of-magnitude larger than the efficiency for a constant parameter longitudinal wiggler. Finally, in Sec. V, a numerical example is presented for a radiation source with parameters of interest for electron cyclotron heating of fusion plasmas.

## II. EI.ECTROM^GNETIC FIELD CONFIGUR^TION $\Lambda N D$ B BSIC $\wedge$ SSUMPTIONS

In the present analysis, we examine the relativistic motion of an electron in the presence of an applied solenoidal and longitudinal wiggler magnetic ficld combined with a circularly polarized, constant-amplitude, transverse electromagnetic wave propagating in the $z$-direction. The spatial variation of applied field quantities is assumed to be in the $z$-direction. It is also assumed that the configuration corresponds to a laser oscillator operating at a saturated steady-state amplitude with propagating wave clectric ficld amplitude $\delta E=$ const. and wavenumber $k=$ const. that have negligibly small spatial variation. The density of electrons is assumed to be sufficiently tenuous that $\omega \simeq k c$, and the steady-amplitude electromagnetic wave is specified by

$$
\begin{gather*}
\delta E(z, t)=-\delta E\left[\hat{e}_{x} \sin (k z-\omega t+\varphi)+\hat{e}_{y} \cos (k z-\omega t+\varphi)\right],  \tag{1}\\
\delta B(z, t)=\left(\frac{c k \delta E}{\omega}\right)\left[\hat{e}_{x} \cos (k z-\omega t+\varphi)-\hat{e}_{y} \sin (k z-\omega t+\varphi)\right], \tag{2}
\end{gather*}
$$

where $\varphi$ is an arbitrary phase.
The expression for the applied solenoidal and longitudinal wiggler magnetic field is taken to be of the form ${ }^{1-3}$

$$
\begin{equation*}
B(z)=\hat{e}_{z}\left[B_{0}+B_{w}(z) \sin \int_{0}^{z} d z^{\prime} k_{0}\left(z^{\prime}\right)\right] \tag{3}
\end{equation*}
$$

where $B_{0}=$ const. The expression given in Eq.(3) is valid near the axis of the multiple-mirror (undulator) magnetic field, i.e., for $\left|k_{0} r\right| \ll 1$ where $r$ is the radial distance from the axis of symmetry, and the wiggler amplitude $B_{w}(z)$ and wavenumber $k_{0}(z)$ are allowed to vary slowly as a function of axial coordinate $z$ over a distance $k_{0}^{-1}$. In what follows it is assumed that the field amplitudes are ordered by

$$
\begin{equation*}
\left|B_{0}\right| \gg\left|B_{w}\right| \gg|\delta E| . \tag{4}
\end{equation*}
$$

Before entering the interaction region, the electrons have an initial axial momentum $p_{z}$, an initial transverse momentum $p_{\perp 0}$, and energy $E_{0}=\left(c^{2} p_{z 0}^{2}+c^{2} p_{\perp 0}^{2}+m^{2} c^{4}\right)^{\frac{1}{2}}=\gamma_{0} m c^{2}$, where $\gamma_{0}^{2}=(1-$ $\left.v_{\perp 0}^{2} / c^{2}-v_{z 0}^{2} / c^{2}\right)^{-1}$. As for the case of an electron cyclotron maser, it is necessary that the electrons enter
the interaction region with an initial transverse momentum, because it is the excess transverse momentum that drives the instability and causes radiation amplification.

## III. EQUATIONS OF MOTION

In this section, we make use of the relativistic Lorentz force equation for an electron moving in the combined electromagnetic fields given by Eqs.(1)-(3) to determine coupled equations for the electron energy and phase of the ponderomotive bunching force. The equations of motion can be expressed as (where $\omega \simeq k c$ )

$$
\begin{gather*}
\frac{d p_{x}}{d t}=-e \frac{v_{y}}{c}\left[B_{0}+B_{w}(z) \sin \int_{0}^{z} d z^{\prime} k_{0}\right]+ \\
e \delta E\left(1-k v_{z} / \omega\right) \sin (k z-\omega t+\varphi)  \tag{5}\\
\frac{d p_{y}}{d t}=e \frac{v_{x}}{c}\left[B_{0}+B_{w}(z) \sin \int_{0}^{z} d z^{\prime} k_{0}\right]+ \\
e \delta E\left(1-k v_{z} / \omega\right) \cos (k z-\omega t+\varphi)  \tag{6}\\
\frac{d p_{z}}{d t}=\frac{e}{c} \delta E\left[v_{x} \sin (k z-\omega t+\varphi)+v_{y} \cos (k z-\omega t+\varphi)\right]  \tag{7}\\
\frac{d E}{d t}=e \delta E\left[v_{x} \sin (k z-\omega t+\varphi)+v_{y} \cos (k z-\omega t+\varphi)\right] \tag{8}
\end{gather*}
$$

Multiplying Eq.(7) by $c$ and subtracting the resulting cquation from Eq.(8) yiclds the constant of the motion

$$
\begin{equation*}
E-c p_{z}=E_{0}-c p_{z 0}=\text { const. } \tag{9}
\end{equation*}
$$

which relates the axial momentum $p_{z}$ to the energy $E$. Defining the relative change in energy by

$$
\begin{equation*}
W \equiv 1-E / E_{0}=1-\gamma / \gamma_{0} \tag{10}
\end{equation*}
$$

and making use of Eq.(9), gives an expression for the axial momentum in terms of $W$,

$$
\begin{equation*}
p_{z}=p_{z 0}\left[1-c W / v_{z 0}\right] . \tag{11}
\end{equation*}
$$

Defining $p_{+}=p_{x}+i p_{y}$. and combining Fqs.(5) and (6) give

$$
\begin{align*}
& \frac{d}{d t}\left\{p_{+} \exp \left[-i \int_{0}^{t} d t\left(e B_{0}+e B_{u} \sin \int_{0}^{z} d z^{\prime} k_{u}\right) c / E\right]\right\}= \\
& \quad i e \delta E\left(1-v_{z} / c\right) \exp \left[-i(k z-\omega t+\varphi)-i \int_{0}^{t} d t\left(e B_{0}+e B_{u} \sin \cdot \int_{0}^{z} d z^{\prime} k_{0}\right) c / E\right] \tag{12}
\end{align*}
$$

To evaluate the integrals appearing in the exponential, we define

$$
\begin{equation*}
\int_{0}^{t} d t e B_{0} / m c \gamma=\omega_{b} \int_{0}^{t} d t / \gamma=\omega_{b} \zeta \tag{13}
\end{equation*}
$$

and assume

$$
\left|\frac{B_{w}}{k_{0} p_{z}}\right| \gg\left|\frac{1}{k_{0}} \frac{d}{d z}\left(\frac{B_{w}}{k_{0} p_{z}}\right)\right| .
$$

The second integral in the exponential in Eq.(12) is approximately

$$
\begin{align*}
& \int_{0}^{t} \frac{d t}{E} e c B_{u} \cdot \sin \int_{0}^{z} d z^{\prime} k_{0}=-\int_{0}^{z} \frac{d z}{p_{z}} \frac{e B_{u}}{c k_{0}} \frac{d}{d z} \cos \int_{0}^{z} d z^{\prime} k_{0} \\
& \quad \simeq \frac{-e B_{u}}{c k_{0} p_{z}}\left[\cos \int_{0}^{z} d z^{\prime} k_{0}-1\right] . \tag{14}
\end{align*}
$$

It is further assumed that the inequality,

$$
\begin{aligned}
\left|p_{\perp 0}\right| \gg \mid e \delta E & \int_{0}^{t} d t\left(1-v_{z} / c\right) \\
& \times \exp \left[-i(k z-\omega t+\varphi)-i \omega_{b} S+i e B_{u}\left(\cos \int_{0}^{z} d z^{\prime} k_{0}-1\right) / k_{0} p_{z} c\right] \mid
\end{aligned}
$$

is satisfied, so that the solution to Eq.(12) can be approximated by

$$
\begin{equation*}
p_{+} \simeq p_{\perp 0} \quad \exp i\left[\varphi_{0}+\omega_{b \zeta}-e B_{w}\left(\cos \int_{0}^{z} d z^{\prime} k_{0}-1\right) / k_{0} p_{z} c\right] . \tag{15}
\end{equation*}
$$

Therefore, the magnitude of the transverse electron momentum remains approximately equal to the initial value $p_{\perp 0}$, although the individual $x$ and $y$ components of the momentum are strongly modulated by the longitudinal wiggler field.

Choosing the independent variable to be the $z$-coordinate, Eq.(8) can be expressed in terms of $p_{+}$as

$$
\begin{align*}
\frac{d E}{d z}=\frac{i e \delta E}{2 p_{z}} & {\left[p_{+}^{*} \exp i(\omega t-k z-\varphi)\right.} \\
& \left.-p_{+} \exp i(k z-\omega t+\varphi)\right] \tag{16}
\end{align*}
$$

Substituting Eq.(15) into Eq.(16), expanding the sinusoidally varying argument of the exponentials in a series of ordinary Bessel functions $J_{l}(a)$, and defining the slowly varying phase of the ponderomotive bunching force by $(\ell=1,2,3, \ldots)$

$$
\begin{equation*}
\psi=k z-\omega t+\omega_{b} \zeta+\ell \int_{0}^{z} d z^{\prime} k_{0}+e B_{w} / c k_{0} p_{z}+\varphi+\varphi_{0}-\ell \pi / 2 \tag{17}
\end{equation*}
$$

we find that Eq.(16) can be expressed as

$$
\begin{equation*}
\frac{d W}{d z}=\frac{-e \delta E}{E_{0}} \frac{p_{\perp 0}}{p_{z 0}} \frac{J_{-( }\left(e B_{w} / c k_{0} p_{z 0}\left(1-c W / v_{z 0}\right)\right]}{\left(1-c W / v_{z 0}\right)} \sin \psi \tag{18}
\end{equation*}
$$

In obtaining Eq.(18), use has been made of Eqs.(10) and (11), and only the term with the slowly varying phase $\psi$ has been retained. Differentiating Eq.(17) with respect to $z$, and making use of Eqs.(10) and (11) yields $\left(\omega_{c 0}=e B_{0} / m c \gamma_{0}\right)$

$$
\begin{equation*}
\frac{d \psi}{d z}=\left(k+\ell k_{0}\right)-\frac{\omega(1-W)-\omega_{c 0}}{v_{z 0}\left(1-c W / v_{z 0}\right)}+\frac{d}{d z}\left[\frac{e B_{w}}{c k_{0} p_{z 0}\left(1-c W / v_{z 0}\right)}\right] \tag{19}
\end{equation*}
$$

Eqs.(18) and (19) constitute the desired dynamical equations for the phase of the ponderomotive bunching force and the electron energy. Here, the radiation emission occurs at the $\ell$ 'th harmonic of the wiggler wavenumber. In order to obtain an approximate solution to these equations, in Sec. IV we expand about the synchronous energy and phase for which $\psi$ is constant.

## IV. MOTION ABOUT THE SYNCHRONOUS ENERGY' AND PHASE

In this section the synchronous relative energy $W_{r}^{\prime}$ and phase $\psi_{r}$ are defined, and the resulting equations are used to determine the functional dependence of the wiggler amplitude $B_{w}$ and wavenumber $k_{0}$ upon the $z$ coordinate. For present purposes, we will take $B_{w}$ to be constant and only consider variable $k_{0}(z)$. Equations (18) and (19) are then expanded about $W_{r}$ to determine the conditions for the electron energy to remain close to the synchronous value.

The synchronous phase $\psi_{r}$ is defined as the value of $\psi$ for which Eq.(19) vanishes,

$$
\begin{align*}
\frac{d \psi_{r}}{d z} & =\left(k+\ell k_{0}\right)-\frac{\omega\left(1-W_{r}\right)-\omega_{c 0}}{v_{z 0}\left(1-c W_{r} / v_{z 0}\right)}+\frac{d}{d z}\left[\frac{e B_{u}}{c k_{0} p_{z}\left(1-c W_{r} / v_{z 0}\right)}\right] \\
& =0 \tag{20}
\end{align*}
$$

where $W_{\tau} \equiv 1-\gamma_{r} / \gamma_{0}$. In the following, the quantity $e B_{w} / c k_{0} p_{20}\left(1-c W_{r} / v_{z 0}\right)$ is assumed to be constant, so that Eq.(20) yields

$$
\begin{equation*}
\left(1-c W_{r} / v_{z 0}\right) \ell k_{0} v_{z 0}=\omega\left(1-v_{z 0} / c\right)-\omega_{c 0} . \tag{21}
\end{equation*}
$$

Since $\omega=$ const. is assumed, Eq.(21) gives the constraint that $k_{0}\left(1-c W_{r} / v_{z 0}\right)$ must be independent of $z$.
From Eq.(18). the resonant relative energy $W_{r}$ is found to satisfy

$$
\begin{align*}
\frac{d W_{r}}{d z} & =\frac{-e \delta E}{E_{0}} \frac{p_{\perp 0}}{p_{z 0}} \frac{J_{-( }\left[e B_{w} / c k_{0} p_{z 0}\left(1-c W_{r} / v_{z 0}\right)\right]}{\left(1-c W_{r} / v_{z 0}\right)} \sin \psi_{r} \\
& \equiv-\frac{\Delta \sin \psi_{r}}{\left(1-c W_{r} / v_{z 0}\right)} \tag{22}
\end{align*}
$$

Rewriting Eq.(22) as

$$
\begin{equation*}
\frac{d\left(1-c W_{r} / v_{z 0}\right)^{2}}{d z}=\frac{2 c \Delta}{v_{z 0}} \sin \psi_{r} \tag{23}
\end{equation*}
$$

we see from Eqs.(21) and (23) that $k_{0}^{-2}$ exhibits a linear dependence on the axial coordinate $\boldsymbol{z}$. In terms of the wiggler wavelength $\lambda_{0}(z)=2 \pi / k_{0}(z)$, we find

$$
\begin{equation*}
\lambda_{0}^{2}(z)=\left[\lambda_{0}^{2}(L)-\lambda_{0}^{2}(0)\right] z / L+\lambda_{0}^{2}(0) \tag{24}
\end{equation*}
$$

where $L$ is the length of the interaction region. From Eq.(21) it is evident that $\lambda_{0}(0)$ and $\lambda_{0}(L)$ are related by

$$
\begin{equation*}
\left[1-c W_{r}(L) / v_{z 0}\right] \lambda_{0}(0)=\lambda_{0}(L) \tag{25}
\end{equation*}
$$

Solving Eq.(23), and substituting into Eq.(25) provides the further relation

$$
\begin{equation*}
\lambda_{0}^{2}(L)=\left[1+\sin \psi_{r} 2 c L \Delta / v_{z}\right] \lambda_{0}^{2}(0) \tag{26}
\end{equation*}
$$

and Eq.(24) can be expressed as

$$
\begin{equation*}
\lambda_{0}^{2}(z)=\lambda_{0}^{2}(0)\left[1+\sin \psi_{r} 2 c z \Delta / v_{z} 0\right] \tag{27}
\end{equation*}
$$

In order for the electrons to give up energy to the electromagnetic radiation field, they must be decelerating, which from Eq.(22) imposes the requirement

$$
\begin{equation*}
\Delta \sin \psi_{r}<0 \tag{28}
\end{equation*}
$$

From the condition in Eq.(28), we find from Eq.(27) that the longitudinal wiggler wavelength decreases as the axial coordinate $z$ is increased, with the result that the ponderomotive potential wells slow down as they pass through the wiggler magnetic field. This allows the electrons to transfer energy to the electromagnetic radiation field.

In order for the electrons to remain close to the synchronous values $\left(W_{r}, \psi_{r}\right)$, the electron motion must exhibit stable oscillations about the synchronous values for small-amplitude perturbations. To study this smallamplitude motion, the quantity $W$ is expanded,

$$
\begin{equation*}
W=W_{\tau}+\delta W=W_{\tau}-\delta \gamma / \gamma_{0}, \tag{29}
\end{equation*}
$$

with the assumption that $\left|W_{r}\right| \gg|\delta W|,|\delta \gamma / \gamma 0|$. We substitute Eq.(29) into Eqs.(18) and (19), linearize the resulting equations for small $\delta W$, and assume that the following inequalities are satisfied

$$
\left|\ell k_{0}(z)\right| \gg\left|a \frac{d \ln k_{0}(z)}{d z}\right|
$$

$$
\begin{gather*}
\left|\ell k_{0}(z)\right| \gg\left|a \frac{d \ln \delta W}{d z}\right|, \\
\left|\ell k_{0}(z)\right| \gg\left|a \frac{k_{0}^{2}(z)}{k_{0}^{2}(0)} \Delta \frac{\sin \psi}{\beta_{z 0}}\left[1+\frac{a}{J_{-\ell}(a)} \frac{d J_{-\ell}(a)}{d a}\right]\right|, \\
\left|\sin \psi-\sin \psi_{r}\right| \gg\left|\frac{\delta W \sin \psi}{\beta_{z 0}} \frac{k_{0}(z)}{k_{0}(0)}\left[1+\frac{a}{J_{-\ell}(a)} \frac{d J_{-\ell}(\alpha)}{d \alpha}\right]\right| \tag{30}
\end{gather*}
$$

where $\alpha=e B_{w} / c k_{0}(z) p_{z}, \beta_{z 0}=v_{z 0} / c$, and $\Delta=\left(e \delta E / E_{0}\right)\left(\beta_{\perp 0} / \beta_{z 0}\right) J_{-\varepsilon}(\alpha)$. This gives the approximate dynamical equations

$$
\begin{gather*}
\frac{d \delta \gamma}{d z}=\gamma_{0} \Delta \frac{k_{0}(z)}{k_{0}(0)}\left(\sin \psi-\sin \psi_{r}\right),  \tag{31}\\
\frac{d \psi}{d z}=\frac{\ell k_{0}^{2}(z)}{\beta_{z 0} k_{0}(0)} \frac{\delta \gamma}{\gamma_{0}} \tag{32}
\end{gather*}
$$

The conditions in Eqs.(30) for Eqs.(31) and (32) to be valid are essentially conditions that the spatial variation be slow over a wiggler wavelength. Equations (31) and (32) can also be derived from the Hamiltonian $H$ defined by

$$
\begin{equation*}
H=\frac{\gamma_{0} \ell k_{0}^{2}(z)}{2 \beta_{z 0} k_{0}(0)}\left(\frac{\delta \gamma}{\gamma_{0}}\right)^{2}+\gamma_{0} \Delta \frac{k_{0}(z)}{k_{0}(0)}\left(\cos \psi+\psi \sin \psi_{\tau}\right) \tag{33}
\end{equation*}
$$

where $d \psi / d z=\partial H / \partial \delta \gamma$ and $d \delta \gamma / d z=-\partial H / \partial \psi$. Here $\delta \gamma$ plays the role of the canonical momentum coordinate and $\psi$ plays the role of the position coordinate. The Hamiltonian given by Eq.(33) is of the same functional form as that for a free electron laser utilizing a transverse helical wiggler and studied extensively by Kroll, Morton, and Rosenbluth ${ }^{6}$. The Hamiltonian has the form of a nonrelativistic single particle Hamiltonian with an effective "mass" that is a function of the $z$-coordinate and a potential function $U$ that is also $z$ dependent

$$
\begin{equation*}
U=\gamma_{0} \Delta \frac{k_{0}(z)}{k_{0}(0)}\left(\cos \psi+\psi \sin \psi_{r}\right) . \tag{34}
\end{equation*}
$$

Here, it is assumed that a value of $\psi_{r}$ exists such that

$$
\left|\frac{d W_{r}}{d z}\right|<\left|\frac{\Delta}{1-W_{r} / \beta_{z 0}}\right|
$$

and $\Delta \sin \psi_{r}<0$. Taking $\Delta<0$ and $\sin \psi_{r}>0$. the potential function $U$ consists of a serics of decreasingamplitude troughs in which the electrons become trapped, with successive minima located at $\psi=\psi_{r}+2 \pi n$ and maxima located at $\psi=\pi-\psi_{\tau}+2 \pi n$, provided $\psi_{r}$ lies in the range $0<\psi_{r}<\pi / 2$. For the case where $\Delta>0$ and $\sin \psi_{r}<0$, the range of values of $\psi_{r}$ is restricted to the interval $-\pi / 2<\psi_{r}<0$. In the following analysis, for the sake of definiteness, it is assumed that $\psi_{r}$ lies in the interval $0<\psi_{\tau}<\pi / 2$. Also, since the trajectories of the electrons in the phase space $(\psi, \delta \gamma)$ have $2 \pi$-periodicity in $\psi$, the analysis is restricted to values of $\psi$ in the range of $-\pi<\psi<\pi$.

The maximum value of the Hamiltonian $H$ occurs for $\psi=\pi-\psi_{r}, \delta \gamma=0$ and is given by $(\Delta<0)$

$$
\begin{equation*}
H_{\max }=-\gamma_{0} \Delta \frac{k_{0}(z)}{k_{0}(0)}\left[\cos \psi_{r}-\left(\pi-\psi_{r}\right) \sin \psi_{r}\right] . \tag{35}
\end{equation*}
$$

The electrons remain trapped in the potential wells for $|\delta \gamma|<\left|\delta \gamma_{\max }\right|$, where $\delta \gamma_{\max }=\delta \gamma\left(\psi=\psi_{r}\right)$. Making use of Eq.(35) in Eq.(33) gives

$$
\begin{equation*}
|\delta \gamma|<\left|\delta \gamma_{\max }\right|=\left[\frac{-4 \beta_{z 0} \gamma_{0}^{2} \Delta}{\ell k_{0}(z)}\left[\cos \psi_{r}-\left(\pi / 2-\psi_{r}\right) \sin \psi_{r}\right]\right]^{\frac{1}{2}} \tag{36}
\end{equation*}
$$

The maximum closed contour in the phase space $(\gamma, \psi)$ for which the electrons remain trapped in the potential (and are also decelerating) is illustrated in Fig. 1, where $\psi_{2}$ is defined by

$$
\begin{equation*}
\psi_{2}=\pi-\psi_{r} \tag{37}
\end{equation*}
$$

and $\psi_{1}$ and $\psi_{2}$ are related by

$$
\begin{equation*}
\cos \psi_{1}+\psi_{1} \sin \psi_{r}=\cos \psi_{2}+\psi_{2} \sin \psi_{r} . \tag{38}
\end{equation*}
$$

The quantities $\psi_{1}$ and $\psi_{2}$ are the turning points of Eq.(33), and are plotted as a function of $\psi_{r}$ in Fig. 2.
The electrons remain trapped in the potential wells with energy close to the resonant value $\boldsymbol{\gamma}_{\boldsymbol{r}}$ provided that the area of the closed contour in phase space,

$$
\begin{equation*}
A=\oint \delta \gamma d \psi \tag{39}
\end{equation*}
$$

remains approximately constant. The area enclosed in the outermost phase space contour illustrated in Fig. 1 is determined from Eqs.(35), (33). and (39). This gives (for $\Delta<0$ )

$$
\begin{align*}
A & =\left(\frac{-2 \beta_{z 0} \gamma_{0}^{2} \Delta}{\ell k_{0}(z)}\right)^{\frac{1}{2}} \int_{\psi_{1}}^{\psi_{2}} d \psi\left[\cos \psi+\cos \psi_{r}-\left(\pi-\psi_{r}-\psi\right) \sin \psi_{r}\right] \\
& =8\left(\frac{-\beta_{z 0} \gamma_{0}^{2} \Delta}{\ell k_{0}(z)}\right)^{\frac{1}{2}} \Gamma\left(\psi_{r}\right), \tag{40}
\end{align*}
$$

where the quantity $\Gamma\left(\psi_{r}\right)$ is plotted versus $\psi_{r}$ in Fig.3. With $k_{0}(z)$ specified by Eq.(27), it is evident that the first condition in Eq.(30) assures that the variation of $A$ over a wiggier wavelength remains small so that the motion of the electrons about the synchronous energy may be regarded as adiabatic.

Finally, we note that several approximations have been made in order for the preceding analysis to hold. In retaining only the axial magnetic ficid component [Eq.(3)], it has been assumed that the effects of the lowestorder radial magnetic field, ${ }^{3}$

$$
\begin{equation*}
B_{r} \simeq-\frac{1}{2} B_{w} k_{0}(z) r \cos \int_{0}^{z} d z^{\prime} k_{0}\left(z^{\prime}\right) \tag{41}
\end{equation*}
$$

on the electron motion and ponderomotive force bunching phase $\psi$ are negligibly small. Assuming that the first inequality in Eq.(30) is satisfied, it can be shown that the effect of $B_{r}$ on the constraint equation (9) is negligibly small provided the inequality ${ }^{3}$

$$
\begin{equation*}
\left(1-\beta_{z 0}\right) \gg\left|\frac{B_{w}}{B_{0}} \frac{k_{0}(z)}{k_{0}(0)} \frac{\beta_{\perp 0}^{2}}{\beta_{z 0}} \sum_{\ell=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \frac{J_{\ell}(\alpha) J_{n}(a)}{\left(1+\ell k_{0} v_{z 0} 0 \gamma_{0} / \omega_{b}\right)\left(1+n k_{0} v_{z} 0 \gamma_{0} / \omega_{b}\right)}\right| \tag{42}
\end{equation*}
$$

is satisfied. Here, it is assumed that system parameters are removed from resonance so that the denominators in Eq.(42) do not vanish. Also, the effects of $B_{r}$ on the bunching force phase $\psi$ are small whenever ${ }^{3}$

$$
\begin{equation*}
1 \gg \frac{\omega_{b}}{k_{0} v_{z 0} \gamma_{0}} \frac{k}{2 k_{0}}\left(\frac{\beta_{\perp 0}}{\beta_{z 0}}\right)^{2}\left|\sum_{n=-\infty}^{\infty} \frac{J_{n}^{2}(\alpha)}{\left(n+\omega_{b} / k_{0} v_{z 0} \gamma_{0}\right)^{2}}\right| \tag{43}
\end{equation*}
$$

For Eq.(15) to hold, it can be shown that the inequality

$$
\begin{equation*}
\left|\beta_{\perp 0}\right| \gg\left|e \delta E\left(1-\beta_{z 0}\right) J_{-\ell}(a) / c p_{z 0}\right|\left|\int_{0}^{z} d z k_{0}(z) \exp (i \psi) / k_{0}(0)\right| \tag{44}
\end{equation*}
$$

must be satisficd, where use has been made of Eq.(9), and only the term with the slowly varying ponderomotive phase defined in Eq.(17) has been retained. To estimate the integral appearing in the above inequality, we make use of Eq.(27) for $k_{0}(z)$ and $\psi \simeq \psi_{r}=$ const. This gives, for Eq.(44),

$$
\begin{equation*}
\beta_{\perp 0}^{2} \gg\left|\frac{\left(1-\beta_{z 0}\right) \beta_{z o}}{\sin \psi_{r}}\right|\left|1-\sqrt{1+\frac{2 z \Delta}{\beta_{z 0}} \sin \psi_{r}}\right| . \tag{45}
\end{equation*}
$$

In Sec. V, it will be shown that Eq.(45) places a stringent limitation on the efficiency of radiation generation.

## V. EFFICIENCY OF RADIATION GENERATION

In this section, the efficiency of radiation generation is determined for the electrons that are trapped in the decelerating ponderomotive potential. The efficiency of radiation gencration for variable wiggler wavenumber $k_{0}(z)$ is compared to the efficiency for a constant parameter longitudinal wiggler with $k_{0}=$ const. Nlso, the conditions under which the electrons do not detrap within the interaction region are determined. Finally, a numcrical example is presented.

The electrons entering the interaction region are assumed to enter at an arbitrary initial phase $\psi_{0}$. As illustrated in Fig. 1, electrons with energy $\gamma_{r} m c^{2}$ are trapped in the potential well only for

$$
\begin{equation*}
\psi_{1}<\psi_{0}<\psi_{2} \tag{46}
\end{equation*}
$$

where $\psi_{1}$ and $\psi_{2}$ are defined in Eqs.(38) and (37). It is also assumed that the electrons enter with initial energy $\gamma_{r} m c^{2}$ and $\delta \gamma=0$ so that the fraction of electrons trapped in the potential wells is given by

$$
\begin{equation*}
f_{T}=\left(\psi_{2}-\psi_{1}\right) / 2 \pi . \tag{47}
\end{equation*}
$$

The quantity $f_{T}$ is plotted as a function of $\psi_{T}$ in Fig. 4. The trapped electron efficiency is given by

$$
\begin{equation*}
\eta_{T}=\frac{\gamma_{0} W_{r}(L)}{\left(\gamma_{0}-1\right)} \tag{48}
\end{equation*}
$$

where $W_{\tau}(L)$ is obtained from Eqs.(25) and (26), and $L$ is the length of the interaction region. Expressed in terms of the wiggler wavenumber, the quantity $\eta_{T}$ is given by ( $\Delta \sin \psi_{r}<0$ )

$$
\begin{align*}
\eta_{T} & =\frac{\gamma_{0} \beta_{z 0}}{\left(\gamma_{0}-1\right)}\left[1-\left(1+\frac{2 L \Delta}{\beta_{z 0}} \sin \psi_{r}\right)^{\frac{1}{2}}\right] \\
& =\frac{\gamma_{0} \beta_{z 0}}{\left(\gamma_{0}-1\right)}\left[1-\frac{k_{0}(0)}{k_{0}(L)}\right] \tag{49}
\end{align*}
$$

where Eqs.(25) and (26) have been substituted into Eq.(48). The total "ideal" cfficiency of radiation generation is then equal to the product of the trapped electron fraction $f_{T}$ and the efficiency $\eta_{T}$,

$$
\begin{equation*}
\eta_{V}=f_{T} \eta_{T} . \tag{50}
\end{equation*}
$$

Although it is desirable that $\eta_{T}$ be close to the (maximum) value of unity, it is evident that the inequality in Eq.(45) imposes a stringent limitation on $\eta_{T}$, i.e.,

$$
\begin{equation*}
\left|\beta_{\perp 0}^{2} \sin \psi_{\tau}\right| \gg\left|\left(1-\beta_{z 0}\right)\left(\gamma_{0}-1\right) \eta_{T} / \gamma_{0}\right| . \tag{51}
\end{equation*}
$$

For $0>2 L \Delta / \beta_{z 0} \geq-1$, the quantity $\left(\gamma_{0}-1\right) \eta_{V} / \gamma_{0} \beta_{z 0}$ achieves its maximum value when $\psi_{r} \simeq 40^{\circ}$. When $2 L \Delta / \beta_{z 0}<-1$, the quantity $\left(\gamma_{0}-1\right) \eta_{V} / \gamma_{0} \beta_{z 0}$ achieves its maximum value for $\psi_{r}<40^{\circ}$, under the restriction that the argument of the square root appearing in Eq.(49) does not become negative.

For the case of constant wiggler wavenumber, $k_{0}=$ const., the efficiency of radiation generation is given approximately by ${ }^{6}$

$$
\begin{equation*}
\eta_{c}=\frac{2 \pi \beta_{z 0}}{\ell L k_{0}(0)} \frac{\gamma_{0}}{\left(\gamma_{0}-1\right)} \tag{52}
\end{equation*}
$$

Comparing this result to Eq.(50) gives

$$
\begin{equation*}
\frac{\eta_{V}}{\eta_{c}}=\frac{\ell L k_{0}(0) f_{T}}{2 \pi}\left[1-\frac{k_{0}(0)}{k_{0}(L)}\right] . \tag{53}
\end{equation*}
$$

Typically, the quantity $L k_{0}(0)$ is sufficiently large that $\eta_{c}$ is less than a few per cent. From Eq. (53), it is evident that, by varying the wiggler wavenumber $k_{0}(z)$, the efficiency of radiation generation can be increased by orders-of-magnitude relative to the efficiency for constant wiggler wavenumber, provided $f_{T}\left[1-k_{0}(0) / k_{0}(L)\right]$ does not become vanishingly small.

The expressions given by Eqs.(47), (49), and (50) are valid provided the electrons remain trapped in the ponderomotive potential within the interaction region. Conditions for the electrons to remain trapped can be determined from the (slowly changing) area inside the closed phase-space contour given in Eq.(39). It is assumed that the electrons enter the interaction region with $\delta \gamma=0$ and $\psi=\psi_{0}$. Solving Eq.(33) for $\delta \gamma$ that appears in Eq.(39), we find

$$
\begin{equation*}
A=8\left(\frac{-\beta_{z 0} \gamma_{0}^{2} \Delta}{\ell k_{0}(0)}\right)^{\frac{1}{2}} \bar{\Gamma}\left(\psi_{r}, \psi_{0}\right) \tag{54}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{\Gamma}\left(\psi_{r}, \psi_{0}\right)=\frac{\sqrt{2}}{8} \int_{\overline{\psi_{1}}}^{\overline{\psi_{2}}}\left[\cos \psi+\psi \sin \psi_{r}-\cos \psi_{0}-\psi_{0} \sin \psi_{r}\right]^{\frac{1}{2}} . \tag{55}
\end{equation*}
$$

Here, $\overline{\psi_{1}}$ and $\overline{\psi_{2}}$ are illustrated in Fig. 1. Because $\psi_{1}<\overline{\psi_{1}}<\psi_{\tau}$ and $\psi_{r}<\overline{\psi_{2}}<\psi_{2}$, then either $\overline{\psi_{1}}=\psi_{0}$ or $\overline{\psi_{2}}=\psi_{0}$ must be satisfied, depending on the interval in which $\psi_{0}$ is located. The other limit in Eq.(55) is then determined by a relation analogous to Eq.(38). The maximum phase-space area at any $z$ is given by Eq.(40). Equating Eqs.(54) and(40) then determines the value $z=z_{u}$ at which the electrons become untrapped

$$
\begin{equation*}
\frac{k_{0}(0)}{k_{0}\left(z_{u}\right)}=\frac{\bar{\Gamma}^{2}\left(\psi_{r}, \psi_{0}\right)}{\Gamma^{2}\left(\psi_{r}\right)} \tag{56}
\end{equation*}
$$

Making use of Eq.(27) in Eq.(56) and solving for $z_{u}$ gives

$$
\begin{equation*}
z_{u}=\frac{\bar{\Gamma}^{4} / \Gamma^{4}-1}{2 \sin \psi_{r} \Delta / \beta_{20}}=\frac{L\left(1-\bar{\Gamma}^{4} / \Gamma^{4}\right)}{1-\left[1-\left(\gamma_{0}-1\right) \eta_{T} / \gamma_{0} \beta_{z 0}\right]^{2}} \tag{57}
\end{equation*}
$$

where Eq.(49) has been substituted. As long as $z_{u}>L$ the electrons remain trapped throughout the interaction region. The condition $z_{u}>L$ can be expressed as

$$
\begin{equation*}
1<\frac{\left(1-\bar{\Gamma}^{4} / \Gamma^{4}\right)}{1-\left[1-\left(\gamma_{0}-1\right) \eta_{T} / \gamma_{0} \beta_{z} 0\right]^{2}}=\frac{\left(1-\bar{\Gamma}^{4} / \Gamma^{4}\right)}{1-k_{0}^{2}(0) / k_{0}^{2}(L)} \tag{58}
\end{equation*}
$$

Provided $\bar{\Gamma}^{4} / \Gamma^{4}$ does not approach close to unity, this condition is readily satisfied. The quantity $\bar{\Gamma}^{4}\left(\psi_{r}, \psi_{0}\right) / \Gamma^{4}\left(\psi_{r}\right)$ is plotted versus $\psi_{0}$ for several values of $\psi_{r}$ in Fig. 5. From Fig. 5 , for $0^{\circ} \leq \psi_{r} \leq 40^{\circ}$, it is evident that the quantity $\bar{\Gamma}^{4} / \Gamma^{4}$ remains close to zero whenever $0^{\circ} \leq \psi_{0} \leq 90^{\circ}$.

As a numerical example, we choose parameters for a radiation source that would be of interest for electron cyclotron heating of fusion plasmas. It is assumed that the resonator has no losses so that the power radiated is determined by the energy balance equation

$$
\begin{equation*}
P=\left(\gamma_{0}-1\right)\left(m c^{2} / e\right) I \eta_{V} \tag{59}
\end{equation*}
$$

where $I$ is the electron beam current. For the electron beam, we also choose $\gamma_{0}=2, \beta_{\perp 0}=0.25$, and $\beta_{20}=$ 0.81 , corresponding to an electron energy of 1 Mev . The assumed magnetic field parameters are $B_{0}=10 \mathrm{kG}$, wiggler ficld amplitude $B_{w}=3 \mathrm{kG}$, and wiggler wavenumber $k_{0}(0)=5.77 \mathrm{~cm}^{-1}$. The output frequency at the fundamental harmonic $(\ell=1)$ is then $f=210 \mathrm{GHz}$. The interaction length is taken to be $L=219$ cm , as well as $2 L \Delta / \beta_{z 0}=-0.5, \psi_{\tau}=40^{\circ}$, and $\delta E=600$ statvolt $\mathrm{cm}^{-1}$. These parameters then give for the variable wiggler wavelength $\lambda_{0}(z)=\lambda_{0}(0)[1-0.321 z / L]^{\frac{1}{2}}$ and $\lambda_{0}(L) / \lambda_{0}(0)=0.82$. The trapped electron efficiency is found to be $\eta_{T}=29 \%$, which gives for the total "ideal" efficiency $\eta_{V}=12 \%$. If we also
assume an electron beam with current $I=16.7$ Amperes and beam radius $R_{b}=1 \mathrm{~mm}$, then from Eq.(59), the radiated power is $P=1 \mathrm{MW}$.

## VI. CONCL.USIONS

We have examined the efficiency of radiation generation by a relativistic electron beam propagating along the axis of a multiple-mirror (undulator) magnetic ficld approximated by Eq.(3). The specific case studied corresponds to constant wiggler amplitude with wiggler wavenumber varying axially according to Eq.(27). The efficiency is improved by orders-of-magnitude relative to the case where the wiggler wavenumber is constant. Since the improved efficiency relies on trapped clectrons in the decelerating ponderomotive potential, fairly substantial electromagnetic ficld amplitudes are required. This mechanism of radiation generation appears to be ideally suited for the power levels and electron cyclotron frequency ranges necessary to heat fusion plasmas. The undulator (multiple-mirror) magnetic field configuration is more easily constructed and its periodicity more easily varied than the transverse wiggler field use in a standard free electron laser. Also, the longitudinal wiggler ficld configuration produces a higher output frequency for a given electron energy than does a transverse wiggler field provided $\gamma_{0}^{2} \beta_{\perp 0}^{2} \leq 1$. Moreover, the longitudinal wiggler configuration provides a much higher output frequency than an electron cyclotron maser (gyrotron) at the same average value of axial magnetic field.

## REFERENCES

1. W.A. McMullin and G. Bekefi, Phys. Rev. A 25, 1826 (1982).
2. R.C. Davidson and W.A. McMullin. Phys. Rev. A 26, 1997 (1982).
3. R.C. Davidson and W.A. McMullin, Phys. Fluids 26 , in press (1983).
4. C.A. Brau, IEEE J. Quant. Electron. QE-16, 335 (1980).
5. P. Sprangle, C.M. Tang, and W.M. Manheimer, Phys. Rev. A 21, 302 (1980).
6. N.M. Kroll, P.L. Morton, and M.N. Rosenbluth, IEEE J. Quant. Electron. QE-17, 1436 (1981).
7. D. Prosnitz, A. Szoke, and V.K. Neil, Phys. Rev. A 24, 1436 (1981).
8. "Free Electron Generators of Coherent Radiation," Physics of Quantum Electronics, Vol. 7, edited by S.F. Jacobs, H.S. Pilloff, M. Sargent III, M.O. Scully, and R. Spitzer (Addison-Wesley, Reading, Mass., 1980).

## FIGURECAPTIONS

Fig. $1 \quad$ Closed phase space orbits.
Fig. 2 Plot of $\psi_{1}, \psi_{2}$ versus the synchronous phase $\psi_{r}$.
Fig. 3 Plot of the phase space arca function $\Gamma\left(\psi_{r}\right)$ versus $\sin \psi_{r}$.
Fig. 4 Plot of the fraction of trapped ejectrons versus $\psi_{r}$.
Fig. 5 Plot of the detrapping function $\bar{\Gamma}^{4}\left(\psi_{r}, \psi_{0}\right) / \Gamma^{4}\left(\psi_{r}\right)$ versus the initial phase $\psi_{0}$ for various values of $\psi_{r}$.


Fig. 1


Fig. 2


Fig. 3


Fig. 4


Fig. 5

