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ABSTRACT

The single-particle equations of motion are used to study the stimulated emission from a tenuous relativis-

tic electron beam propagating in the combined solenoidal and variable parameter longitudinal wiggler magnetic

fields produced near the axis of a multiple-mirror (undulator) field configuration. The specific case of constant

field amplitude and variable wiggler periodicity is studied. It is found that the efficiency of radiation .generation

can be increased by orders-of-magnitude relative to the case where the wiggler periodicity is constant. This

is due to the fact that the phase velocity of the ponderomotive potential in which the electrons are trapped is

decreasing, allowing the electrons to exchange energy with the radiation field.
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1. INTRODUCTION

In the present article, we investigate free electron laser radiation generation by a tenuous, relativistic

electron beam propagating along the axis of a multiple-mirror (undulator) magnetic field in circumstances

where the amplitude B.(z) and wavenumber ko(z) of the longitudinal wiggler field are allowed to vary slowly

with axial position z. The beam radius is assumed to be sufficiently small that the electrons interact only

with the axial magnetic field given approximately by Eq. (3). In previous investigations , radiation gener-

ation in such a longiludinal wiggler configuration has been studied for the case where the wiggler amplitude

and wavenumber are constant. As for the case of a free electron laser with constant-amplitude, constant-

wavenumber, transverse wiggler, it is found 1-3 that the efficiency of radiation generation is relatively low.

However, for a free electron laser with variable parameter transverse wiggler, it has been recently shown 4-8

that the efficiency of radiation generation can be greatly increased relative to that of a constant parameter

wiggler. In the present analysis, we extend the techniques developed in Ref. 6 to calculate the efficiency of

radiation generation for the case of a variable parameter longitudinal wiggler.

In Sec. 11, we outline the basic assumptions and electromagnetic field configuration related to the present

analysis. In Sec. Ill, coupled dynamical equations are derived for the electron energy and slowly varying phase

of the ponderomotive bunching force. These equations are analyzed in Sec. IV for the specific case of constant

wiggler amplitude B. = const. and variable wiggler wavenumber ko(z). By slowly varying the wavenumber

ko(z) of the wiggler magnetic field, the phase velocity of the ponderomotive potential in which the electrons are

trapped decreases in the axial direction, thereby allowing the electrons to give up energy to the electromagnetic

radiation field. In Sec. V, an analytic expression [Eq.(49)] for the efficiency of radiation generation is derived.

It is found that this efficiency can be orders-of-magnitude larger than the efficiency for a constant parameter

longitudinal wiggler. Finally, in Sec. V, a numerical example is presented for a radiation source with parameters

of interest for electron cyclotron heating of fusion plasmas.
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11. ELECTROMAGNETIC FI ELD CONFIGUR ATION ANI) BASIC ASSUMPTIONS

In the present analysis, we examine the relativistic motion of an electron in the presence of an applied

solenoidal and longinudinal wiggler magnetic field combined with a circularly polarized, constant-amplitude,

transverse electromagnetic wave propagating in the z-direction. The spatial variation of applied field quantities

is assumed to be in the z-direction. It is also assumed that the configuration corresponds to a laser oscillator

operating at a saturated steady-state amplitude with propagating wave electric field amplitude 6E = const. and

wavenumber k = const. that have negligibly small spatial variation. The density of electrons is assumed to be

sufficiently tenuous that w ~ kc, and the steady-amplitude electromagnetic wave is specified by

6E(z, t) = -6EZ sin(kz - wt + p) + y cos(kz - wt + p)], (1)

6 B(z, t) = [i. cos(kz - wt + p) - i. sin(kz - wt + p)], (2)

where p is an arbitrary phase.

The expression for the applied solenoidal and longitudinal wiggler magnetic field is taken to be of the

form 1-3

B(z) = B 0 + B,(z) sin f dz'ko(z')] (3)

where B0 = const. The expression given in Eq.(3) is valid near the axis of the multiple-mirror (undulator)

magnetic field, i.e., for Ikorl < 1 where r is the radial distance from the axis of symmetry, and the wiggler

amplitude B,(z) and wavenumber ko(z) are allowed to vary slowly as a function of axial coordinate z over a

distance ko-1. In what follows it is assumed that the field amplitudes are ordered by

|Bo|> 1B.1 >>|6bE|. (4A)

Before entering the interaction region, the electrons have an initial axial momentum po, an initial

transverse momentum piO, and energy E0 = (c2 p20 + c2p2o + m2c4)j = -jmc2, where -12 = (1 -

V 20/c2- v%2 /c 2)'. As for the case of an electron cyclotron maser, it is necessary that the electrons enter
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the interaction region with an initial transverse momentum. because it is the excess transverse momentum that

drives the instability and causes radiation amplification.
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111. EQUATIONS OF MOTION

In this section, we make use of the relativistic Lorentz force equation for an electron moving in the com-

bined electromagnetic fields gi\en by Eqs.(1)-(3) to determine coupled equations for the electron energy and

phase of the ponderomotive bunching force. The equations of motion can be expressed as (where W er kc)

=-e [Bo + B,,(z) sin d'k, +

e6E(1 - kv,/w) sin(kz - wt + (p), (5)

dp= e= v[Bo + B,*(z) sin d'ko +dt- k cZs~kl - 0] + ),

e6E(1 - kvl/w) cos(kz - wt + sp),()

= e6E[v, sin(kz - wt + sp) + v. cos(kz - wt + s)],

dE
=t e6E jv, sin(kz - wt + so) + vy cos(kz - wt +s)]

(7)

(8)

Multiplying Eq.(7) by c and subtracting the resulting equation from Eq.(8) yields the constant of the

motion

E - cp, = Eo - cpzo = const., (9)

which relates the axial momentum p. to the energy E. Defining the relative change in energy by

W = I - E/Eo = I - //y, (10)

and making use of Eq.(9), gives an expression for the axial momentum in terms of W,

(11)Pz = Pzo[1 - CW/VzOj.

5

(6)



Defining p+ = p, + ipy. and combining Fqs.(5) and (6) give

~ip+exp[-i fdt e~o+ eBi sinf dziko)cIE]}

ie5E(1 - v/c) exp[-i(kz- wt +eB ) - i dt eBo+eB sin dz'ko c/E]. (12)

To evaluate the integrals appearing in the exponential, we define

dteBo/m = WbJ dt/- wb , (13)

and assume

B, | I d B-
kop. kojdz kopz

The second integral in the exponential in Eq.(12) is approximately

ft zk= dz eB,,, d
ScCB,, sin dz'ko =,- cCos dk

J0 E Jo fo K~~o z

Cos dzko - 1]. (14)

It is further assumed that the inequality,

IPLo > eE dt(1 - v/c)

X exp -i(kz - wt + p) - iw + ieB, cos dz'ko - 1)/kpic],

is satisfied, so that the solution to Eq.(12) can be approximated by

P+ = p.Lo exp i WP b+ - eBw(cosf dz'ko - 1)/kop-c]. (15)

Therefore, the magnitude of the transverse electron momentum remains approximately equal to the initial

value p.LO, although the individual z and y components of the momentum are strongly modulated by the

longitudinal wiggler field.
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Choosing the independent variable to be the z-coordinate, Eq.(8) can be expressed in terms of p+ as

dE ie6E
= -1P+ exp i(wt - kz - V)

_ p+ exp i(kz - wt + )) (16)

Substituting Eq.(15) into Eq.(16), expanding the sinusoidally varying argument of the exponentials in a series of

ordinary Bessel functions J (a), and defining the slowly varying phase of the ponderomotive bunching force by

(9 = 1, 2, 3, ..

p kz-wt+ w+t dz'ko+eB./ckop,+p+ R-1r/2, (17)

we find that Eq.(16) can be expressed as

dW -e6E P-LO J-teB,/ckopzo(1 - cW /vo)i
dz E0  P.0 (1 - cW/vAo)

In obtaining Eq.(18), use has been made of Eqs.(10) and (11), and only the term with the slowly varying phase

V) has been retained. Differentiating Eq.(17) with respect to z, and making use of Eqs.(10) and (11) yields

(oo = eBo/mcM)

d = (k + tko) w(1 - W) -Wco + d eBW (19)
dZ vZO(l - cW/vO) dz ckopo(l - cW/vo)

Eqs.(18) and (19) constitute the desired dynamical equations for the phase of the ponderomotive bunching

force and the electron energy. Here, the radiation emission occurs at the e'th harmonic of the wiggler wavenum-

ber. In order to obtain an approximate solution to these equations, in Sec. IV we expand about the synchronous

energy and phase for which ip is constant.
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IV. MOTION ABOUT THE SYNCH RONOUS ENERGY AND PHASE

In this section the synchronous relative energy W. and phase V. are defined, and the resulting equations

are used to determine the functional dependence of the wiggler amplitude B. and wavenumber ko upon the z-

coordinate. For present purposes, we will take B. to be constant and only consider variable ko(z). Equations

(18) and (19) are then expanded about W, to determine the conditions for the electron energy to remain close to

the synchronous value.

The synchronous phase r is defined as the value of V for which Eq.(19) vanishes,

d, (k + t k,) -'(I - W.) - WC0 d_[ eB_
dz vZO(1 - cWr/vzo) dz ckopzo(1 - cW,/vo)

= 0, (20)

where W, = 1 - -y,/yu. In the following, the quantity eBw/ckopo(1 - cWr/vo) is assumed to be constant, so

that Eq.(20) yields

(1 - cW,/vo)ekov.o = w(1 - vzo/c) - wco. (21)

Since w = const. is assumed, Eq.(21) gives the constraint that ko(1 - cWr/vzo) must be independent of z.

From Eq.(18). the resonant relative energy W is found to satisfy

dW, _ -e6E P-Lo J-t [eBw/ckopzo(1 - cWr/V. 0)] sino,.
dz B pO (1 - cW/vV)

= A sin 0, (22)
(1 - cW,/v.o)

Rewriting Eq.(22) as

d(1 - cW./v.0)2  2cA .= - sin r,(23)
dz VZO

we see from Eqs.(21) and (23) that ko- 2 exhibits a linear dependence on the axial coordinate z. In terms of the

wiggler wavelength Xo(z) = 27r/ko(z), we find

= [X(L) - X0(0)]z/L + )j(0), (24)
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where L is the length of the interaction region. From Eq.(21) it is evident that X((0) and Xo(L) are related by

[1 - cW,(L)/v2o]Xo(O) = Xo(L). (25)

Solving Eq.(23). and substituting into Eq.(25) provides the further relation

)2(L) = [1 + sin V5,2cLA/v20]I2(0), (26)

and Eq.(24) can be expressed as

0j(z) = ?j(0)[1 + sin 0,2czA/v4o]. (27)

In order for the electrons to give up energy to the electromagnetic radiation field, they must be decelerating,

which from Eq.(22) imposes the requirement

A sin t, < 0. (28)

From the condition in Eq.(28), we find from Eq.(27) that the longitudinal wiggler wavelength decreases as the

axial coordinate z is increased, with the result that the ponderomotive potential wells slow down as they pass

through the wiggler magnetic field. This allows the electrons to transfer energy to the electromagnetic radiation

field.

In order for the electrons to remain close to the synchronous values (W, 0,.), the electron motion must

exhibit stable oscillations about the synchronous values for small-amplitude perturbations. To study this small-

amplitude motion, the quantity W is expanded,

W = W, + 6W = W,- 6y|N, (29)

with the assumption that IW, > 16W1, I6-/-td. We substitute Eq.(29) into Eqs.(18) and (19), linearize the

resulting equations for small 6W, and assume that the following inequalities are satisfied

d In ko(z)
dz
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|iko(z)I> a dIn6W

1Iko(z) > a sin + a dJ. (a)1
k(O) 8.o TJ, (a) d Ja

sin -sin 0,1> 6Wsin k(z) a dJ (a) (30)I t ' ~ 0. ~o ( J-.(a) daiJ'(0

where a = eB./cko(z)pa, #oz = vzo/c, and A = (e6E/EO)(#.o/Pzo)J-j(a). This gives the approximate

dynamical equations

d- - A ko (sin -sin ,), (31)

dz k()

do #ko(z) 6-. (32)dz= - 3ko(0) -M

The conditions in Eqs.(30) for Eqs.(31) and (32) to be valid are essentially conditions that the spatial variation

be slow over a wiggler wavelength. Equations (31) and (32) can also be derived from the Hamiltonian H

defined by

H - k2(z) (6-Y 2 + 'y0A kos(o + o, sin (33)
2#0.zko(0) yo) ko(0)

where d/dz = 8H/O6l- and d6-/dz = -OH/Op. Here 6y plays the role of the canonical momentum

coordinate and ib plays the role of the position coordinate. The Hamiltonian given by Eq.(33) is of the same

functional form as that for a free electron laser utilizing a transverse helical wiggler and studied extensively by

Kroll, Morton, and Rosenbluth6 . The Hamiltonian has the form of a nonrelativistic single particle Hamiltonian

with an effective "mass" that is a function of the z-coordinate and a potential function U that is also z-

dependent

U =. -MA kowz (cos + tP sin 'k.(34)
ko(O)

Here, it is assumed that a value of 0, exists such that
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dW, A
dz I - W,./3#o

and A sin 0,. < 0. Taking A < 0 and sin 0,. > 0, the potential function U consists of a series of decreasing-

amplitude troughs in which the electrons become trapped, with successive minima located at 4 = 0,. + 2wn

and maxima located at V5 = 7r - 0, + 27rn, provided V, lies in the range 0 < P, < 7r/2. For the case

where A > 0 and sin V,. < 0, the range of values of ik, is restricted to the interval -r/2 < V), < 0. In

the following analysis, for the sake of definiteness, it is assumed that VP, lies in the interval 0 < b,. < 7r/2.

Also, since the trajectories of the electrons in the phase space (V', 6-) have 27r-periodicity in 4, the analysis is

restricted to values of ;b in the range of -7r < 0 < ir.

The maximum value of the Hamiltonian H occurs for ;b = r - ;,., 6 -y = 0 and is given by (A < 0)

Hmax = -YOA {[cos 4, - (7r - 0,) sin 4,]. (35)

The electrons remain trapped in the potential wells for 16yI < 16y..,, where lmx = &y(O = ;b,). Making

use of Eq.(35) in Fq.(33) gives

|6-| < 16YmazI = ko(z) cos 4, - (7r/2 - 0,) sin 4, ]]. (36)

The maximum closed contour in the phase space (-y, V)) for which the electrons remain trapped in the potential

(and are also decelerating) is illustrated in Fig. 1, where 02 is defined by

= 2 - 4,., (37)

and 01 and t are related by

cos 01 + 01 sin b,. = cos V5 + 42 sin 0,.. (38)

The quantities 01 and V' are the turning points of Eq.(33), and are plotted as a function of 4, in Fig. 2.

The electrons remain trapped in the potential wells with energy close to the resonant value -y, provided

that the area of the closed contour in phase space,

A = f ydo, (39)
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remains approximately constant. The area enclosed in the outermost phase space contour illustrated in Fig. I is

determined from Eqs.(35), (33). and (39). This gives (for A < 0)

A= d(z )'[ docosfo+cos,.-(7r-,.-b)sin,.]
1ko(z) 41

= 8( t(#,-) (40)

where the quantity P(O.) is plotted versus 0, in Fig.3. With ko(z) specified by Eq.(27), it is evident that the first

condition in Eq.(30) assures that the variation of A over a wiggler wavelength remains small so that the motion

of the electrons about the synchronous energy may be regarded as adiabatic.

Finally, we note that several approximations have been made in order for the preceding analysis to hold.

In retaining only the axial magnetic field component [Eq.(3)], it has been assumed that the effects of the lowest-

order radial magnetic field, 3

B, 2B (z)r cos dz'ko(z'), (41)

on the electron motion and ponderomotive force bunching phase @ are negligibly small. Assuming that the first

inequality in Eq.(30) is satisfied, it can be shown that the effect of B, on the constraint equation (9) is negligibly

small provided the inequality 3

Ow#2 c Jc(a)J,,(a) (2
(1 - 6 0o) >> (1 + tkoVo-jo/wb)(1 + nkovom/4) (42)

is satisfied. Here, it is assumed that system parameters are removed from resonance so that the denominators in

Eq.(42) do not vanish. Also, the effects of B, on the bunching force phase 0 are small whenever 3

w~ k 2/3w o 2 J(a)
1 > n 1 2,a (43)kov~~,t 2k(n 0  ( + W6/kovzo1) 2 (3

For Eq.(15) to hold, it can be shown that the inequality

#1o > e5E(1 - #zo)J..(a)/cp~o fz dzko(z) exp(iVb)/ko(0) (44)
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must be satisfied, where use has been made of Eq.(9), and only the term with the slowly varying ponderomotive

phase defined in Eq.(17) has been retained. To estimate the integral appearing in the above inequality, we make

use of Eq.(27) for ko(z) and 0 ~ 0,. = const. This gives, for Eq.(44),

2 (1 - lzo)/20 2zA
InS > sc. V, i w - s1 + 4 spc at,. . (45)

in Sec. V, it will be shown that Eq.(45) places a stringent limitation on the efficienrcy of radiation generation.
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V. EFFICIENCY OF RADIATION GENERATION

In this section, the efficiency of radiation generation is determined for the electrons that are trapped in the

decelerating ponderomotive potential. The efficiency of radiation generation for variable wiggler wavenumber

ko(z) is compared to the efficiency for a constant parameter longitudinal wiggler with ko = const. Also, the

conditions under which the electrons do not detrap within the interaction region are determined. Finally, a

numerical example is presented.

The electrons entering the interaction region are assumed to enter at an arbitrary initial phase iO. As

illustrated in Fig. 1, electrons with energy 'ymc2 are trapped in the potential well only for

01 < 4o < 02, (46)

where 01 and 4/ are defined in Eqs.(38) and (37). It is also assumed that the electrons enter with initial energy

7',mc2 and 61 = 0 so that the fraction of electrons trapped in the potential wells is given by

fT = (V 2 - Vpj)/27r. (47)

The quantity fT is plotted as a function of 0, in Fig. 4. The trapped electron efficiency is given by

ri = -MWW(L) (48)
(3 - 1),

where W,(L) is obtained from Eqs.(25) and (26), and L is the length of the interaction region. Expressed in

terms of the wiggler wavenumber, the quantity r7T is given by (A sin 0, < 0)

1 %6.0 ( 2LA .in

= #,o - ko(0) (49)
(-M- 1) ko (L) J'

where Eqs.(25) and (26) have been substituted into Eq.(48). The total "ideal" efficiency of radiation generation

is then equal to the product of the trapped electron fraction fr and the efficiency r7T,

r7V = fTviT. (50)
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Although it is desirable that rq7 be close to the (maximum) value of unity, it is evident that the inequality in

Eq.(45) imposes a stringent limitation on 1T, i.e.,

_o sin 0,1 > 1(1 - )(- 1)KT/2o. (51)

For 0 > 2LA/#3o > -1, the quantity (-M - 1)r7v/20-jo achieves its maximum value when V), = 40*.

When 2LA/#zo < -1, the quantity (-yo - 1)7v/go/zo achieves its maximum value for 0,. < 40*, under the

restriction that the argument of the square root appearing in Eq.(49) does not become negative.

For the case of constant wiggler wavenumber, ko = const., the efficiency of radiation generation is given

approximately by 6

rle = 27r0 .(52)
lLko(0) (,jo - 1)

Comparing this result to Eq.(50) gives

r - o~e()fr _(_)7-j - =Lko( - O . (53)
17e 27r I ko(L)1

Typically, the quantity LkO(0) is sufficiently large that ,c is less than a few per cent. From Eq. (53), it is evident

that, by varying the wiggler wavenumber ko(z), the efficiency of radiation generation can be increased by

orders-of-magnitude relative to the efficiency for constant wiggler wavenumber, provided fT[1 - ko(0)/ko(L)

does not become vanishingly small.

The expressions given by Eqs.(47), (49), and (50) are valid provided the electrons remain trapped in the

ponderomotive potential within the interaction region. Conditions for the electrons to remain trapped can

be determined from the (slowly changing) area inside the closed phase-space contour given in Eq.(39). It is

assumed that the electrons enter the interaction region with 6y = 0 and 0 = V. Solving Eq.(33) for 6- that

appears in Eq.(39), we find

A ( ko(0) ) (54)

with

41,,i= (cos k+ @sin0,-cos - Vt sin ,kI. (55)
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Here, 01 and 02 are illustrated in Fig. 1. Because V)1 < T, < Pr and V), < 2 < 4v, then either VP_ = V)O or

2 = 4o must be satisfied, depending on the interval in which ;t is located. Thc other limit in Eq.(55) is then

determined by a relation analogous to Eq.(38). The maximum phase-space area at any z is given by Eq.(40).

Equating Eqs.(54) and(40) then determines the value z = zu, at which the electrons become untrapped

ko(0) _ V2 (r, b) (56)
ko(z.) r 2(i,.)

Making use of Eq.(27) in Eq.(56) and solving for z, gives

r4/r4 - 1 L(1 - r4/r4)Z, = =-op (57)2 sin 5,A/!& 1 -;- [1 - ('Yo - 1)77/Tyo o]2 ,

where Eq.(49) has been substituted. As long as z, > L the electrons remain trapped throughout the interaction

region. The condition z, > L can be expressed as

(1 - V4/r4) __ (1 - E/4
S< (Ir r)r r)(58)

1 - 1 - (Yo - 1)?T/_yI,&]2 I - kl(0)/k2(L)(

Provided r 4/l' does not approach close to unity, this condition is readily satisfied. The quantity 1'(;br, ;po)/r 4 (;Pr)

is plotted versus to for several values of 0, in Fig. 5. From Fig. 5, for 0' < P, < 400, it is evident that the

quantity r4/]r4 remains close to zero whenever 0' < ib < 90*.

As a numerical example, we choose parameters for a radiation source that would be of interest for electron

cyclotron heating of fusion plasmas. It is assumed that the resonator has no losses so that the power radiated is

determined by the energy balance equation

P = (-10 - 1)(mc2/e)Ihv, (59)

where I is the electron beam current. For the electron beam, we also choose Yo = 2, P_o = 0.25, and #,o =

0.81, corresponding to an electron energy of 1 Mev. The assumed magnetic field parameters are Bb = 10 kG,

wiggler field amplitude B, = 3kG, and wiggler wavenumber ko(o) = 5.77cm-'. The output frequency at

the fundamental harmonic (I = 1) is then f = 210 GHz. The interaction length is taken to be L = 219

cm, as well as 2LA/Po = -0.5, p,. = 400, and bE = 600 statvolt cm- 1. These parameters then give

for the variable wiggler wavelength ho(z) = Xo(0)[1 - 0.321z/L]i and Xo(L)/Xo(O) = 0.82. The trapped

electron efficiency is found to be rT = 29%, which gives for the total "ideal" efficiency ilv = 12% . If we also
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assume an electron beam with current I = 16.7 Amperes and beam radius Rb = 1 mm, then from Eq.(59), the

radiated power is P = 1 MW.
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VI. CONCLUSIONS

We have examined the efficiency of radiation generation by a relativistic electron beam propagating along

the axis of a multiple-mirror (undulator) magnetic field approximated by Eq.(3). The specific case studied

corresponds to constant wiggler amplitude with wiggler wavenumber varying axially according to Eq.(27). The

efficiency is improved by orders-of-magnitude relative to the case where the wiggler wavenumber is constant.

Since the improved efficiency relies on trapped electrons in the decelerating ponderomotive potential, fairly

substantial electromagnetic field amplitudes are required. This mechanism of radiation generation appears to

be ideally suited for the power levels and electron cyclotron frequency ranges necessary to heat fusion plasmas.

The undulator (multiple-mirror) magnetic field configuration is more easily constructed and its periodicity more

easily varied than the transverse wiggler field use in a standard free electron laser. Also, the longitudinal wig-

gler field configuration produces a higher output frequency for a given electron energy than does a transverse

wiggler field provided -yO262 < 1. Moreover, the longitudinal wiggler configuration provides a much higher

output frequency than an electron cyclotron maser (gyrotron) at the same average value of axial magnetic field.
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FIG URE CAPriONS

Fig.1 Closed phase space orbits.

Fig.2 Plot of 1, 42 versus the synchronous phase t,.

Fig.3 Plot of the phase space area function P(,.) versus sin 0,..

Fig.4 Plot of the fraction of trapped electrons versus 0,-

Fig.5 Plot of the detrapping function r 4(;b,, vb)/r 4(0,.) versus the initial phase 0 for various values of
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