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ABSTRACT

The theory of tearing modes in a cylindrical symmetry is reexamined. The resistive medium is embedded

with the simplest Ohm's law. By considering #, the ratio of thermal to magnetic pressure, as a parameter with

respect to which the sought after eigenvalues were scaled, a very simple description was obtained. Many of

the classical results were obtained in a more simple way. Among the new results are: (1) the possibility of

the existence of a tearing mode on a resistive time scale and which is hardly affected by drift effects, (2) for

modes of an almost marginal growth rate inertia does not play an important role, slab and cylindrical modes are

fundamentally different and finite-3 effects play a crucial role.
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I. Introduction and Statement of the Problem

Since the introduction of resistive instabilities [1] as agents of obstruction on our way toward controlled

fusion, an explosive amount of work has been devoted to this subject [1-141. (These references are only a partial

sample.) The analytical work falls into two categories. The one pursues more complex geometries(e.g., Refs.

7,8); in the other, more evolved models of plasma were constructed. We shall focus our attention on tearing

modes that, among the various resistive instabilities,are considered to be more dangerous for toroidal devices.

In the present work we reexamine the theory of resistive tearing modes in cylindrical symmetry. It is shown

that some of the classical results may be rederived in what we believe is a simpler and more systematic way.

Taking the complexity of calculations usually associated with resistive instabilities, these may be of value per se.

Beyond that, the theory of tearing modes is extended and we present a complete stability analysis of modes with

growth rates both on the tearing and resistive scales. Growth rates on the resistive scale behave quite differently

as compared with predictions based on const-0 approximations. In fact, for most of this paper, the relevant

boundary layer equations are solved without invoking the const-V@procedure. As a by product, this allows one to

clarify the validity and limitations of that approach.

On the other side of the spectrum, we modify and extend the standard tearing theory to consider modes

with an almost marginal growth rate. In this regime, on one hand, inertia is negligible; on the other, the effects

due to finite-# are of paramount importance. The basic result due to Coppi et al [21, namely, the existence of

critical A, > 0 at which the instability is set on, is recovered in a much simpler fashion (almost with a compass

and a ruler!) It is also shown that for high-f the behavior of these modes is markedly different.

Even with some drift effects included, as done in Sec. IV, the physical model employed in admittedly

a very simple one. But we believe that a coherent treatment of a simple model is of conceptual importance

because the more evolved models employ as a rule a similar methodology, and measure their outcome against

the simple model.

Apart from Sec. Ill, where an impact of finite / on almost marginal modes is considered, we shall consider

a low-# regime and modes with growth rates larger than f. (A precise definition will be given shortly.) Thus,

although not necessary, it is convenient, as a starting point, to take the low-/i boundary layer equations in their

zero-P limit, but with Ds, the average cylindrical curvature, retained. Finite-# effects will be restored in Sec.

Il. Following Ref. 2 or 14, the derivation of the relevant equations is summarized in Appendix A. We have in
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the zero-#3 limit

" = Q(?-c) (1)

-Vb" + D. , -oo < x < oo (2)

Here 0 and g are the radial components of the magnetic field and displacement, respectively, Q is the

normalized growth rate given via

till = (Q, 0 < tito = O(?i7) < 1 (3)

where ti, and tD are the Alfven and resistive transit times, respectively (see Appendix A), and q is resistivity

assumed to be scalar. x is the boundary layer variable Ex = (r - r,)/a. r, is the location of the singular shear

layer where F(r) = K - B I,= 0 and a is the characteristic length of the system. Outside the layer, resistivity

is neglected and to first order 4 = F(r) . , when expanded in the vicinity of r,, is given via

rq =1 r - r. V" 1 = [-1 ± (I - 4DS)0.5] (4)

Here, as in (2)

2k'r d p
D = Bq -dr'

q is the safety factor and it is assumed that D. < I to assure stability against localized magnetohydrodynamic

oscillations.

The problem consists of solving Eqs.(1) and (2) subject to the matching conditions of the outer region as

represented by Eq.(4).

In what follows, we shall not be interested in interchange modes as found for D, > 0, because in the most

straightforward tokamak expansion one obtains D. --+ D.(1 - q2) < 0. Therefore, our main objects are the

tearing modes.

Now, rewrite Eq.(2) as

-QI " = QxO + (D - x2Q) (5)

3



Here all terms arc of equal importance if the following, optimal, scaling is adopted

Q-- , 0 ~ (1), X - Q4
1 (6a)

Qi ~DA (6b)

Thus, Eq.(1) reads

d 2o
d ' 0 - ) (7)

While in Eq.(6a), we have only changed the scale, assumption (6b) relates two physically different entities

and thus cannot hold uniformly. Though D, ~ 3 < 1, D, is a quantity given a priori as part of the information

about equilibrium. With D, stated, the spectrum {Q} is uniquely determined. Thus, by assuming (6b), one

seeks for modes in a specific range. Therefore, a resulting mode which is out of this range will not be properly

calculated using this scaling. In constructing an asymptotic theory of Eqs.(1) and (2) for a given D8 , one looks

for three distinctive classes of modes

1. 1DI/Qi<1

11. 1D, I /Qi = 0(1)

1I1. | D, | /Qi >> I

The separation into different regimes enables one to treat analytically the simplified counterpart of equa-

tions (1) and (2). The relevant model equations for modes of class I are solved explicitly leading to a dispersion

relation which extends the tearing modes into the resistive time scale. (i.e., from ' ~ r75 into y ~ 771). To

solve for modes in class II, one assumes that JQJ < 1, and expands in a small "parameter" Q. This eventually

leads to the so called const-0 approximation which should be viewed as a by-product and not, as so often stated

in the literature, an a priori postulate. The resulting dispersion relation of this approximative procedure should

be used only within the range of parameters that yield Q < 1. Otherwise, the predicted growth rates differ

significantly from the exact ones.

Modes in different classes have the following formal overlap: growth rates in class I for small Q are the

same as modes in class I expanded in large Q. (or more precisely, small IDsI/Q2). A similar relation holds

between modes in class II and III. I
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We shall not consider directly modes of class II because these modes are the ones most often considered in

the literature (in the Q < I limit). However, we call attention to Appendix D, where the modal equation of the

radial displacement is solved using an integral representation. This will find its use in Sec. III.

5



HI. ModesofClassl

Exploiting ID,1 j<Qi we expand in small D,:

C = Co + D.Cj + ---

Q =Qo(1+ D,Q +-)

to obtain

" - Qo(4 - zo) = 0

Qog' + z1'1 = 0

- Qo(0 - X i) = Q10'

Q C'( + xO"' = 2QixOb' - Co

Our main concern will be with Eqs.(9). Dropping the zero subscript, we have to solve

0" = Q(0 - Z)

Equations (11) and (12) are equivalent to the assumption that D, = 0; thus, to the leading order, the ap-

proximate boundary conditions which the solutions of(11) and (12) should blend are [compare with (4)]

(13a)

6

(8)

(9)

(10)

(11)

(12)-Q2e"= X0"

0+=-tP(x--+ oc) =A* +B*x, 0- = O(x--+ -oo) =A * +B*x



+= (x - oo) = B* + A*/x, _ = (x---oo) = B* + A*/x (13b)

This is the asymptotic form of the outer solution expressed in inner variables. It is easy to see that Eqs.(11) and

(12) have a solution which for large jxj has the same functional behavior as boundary conditions (13). Thus,

what is needed is to match the numerical coefficients.

It is customary to introduce

A = rnlim OX) +XJwhere [f] = f(p) - f(a), (14a)X-Oo V - XV]' _

as a measure of the logarithmic jump across the layer. Let A' be the same quantity in terms of the normalized

(with respect to a) outer variables. Then usingO3 = a, and (13a) we have

eA' = + ,A* (14b)

If matching is to be accomplished, they have to be equal; i.e.,

(14c)

Condition (14c) is also sufficient. This may be seen as follows. First, since Eqs.(11) and (12) are

homogeneous, without loss of generality, we divide Eqs.(11), (12) and (13) by A*. 'Then note that while Eqs. (11)

and (12) are invariant under the one-parameter group of transformations

'p-+ + az

boundary conditions (13) are not. Choose a = B-, then Eqs.(11) and (12) remain unchanged but the boundary

conditions change to

..=1, I+=1+fA'z (13c)

- ~ A X-a=z1, X -z1 + f-'. (13d)
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Therefore, A appears to be the only relevant quantity from the layer needed for the matching. For a given A'

from the "outer world" (14c) thus becomes the matching condition.

We turn to solve Eqs.(11) and (12). IEq.(12) is integrable, yielding

-Q2' = x'' - 0 + A* (16)

The choice of constant is dictated by (13). Eq.(16) is also invariant under r0 . This, using the usual arguments of

similarity theory, means that in terms of a new dependent variable invariant tinder r 0 , the order of Eqs.(1 1) and

(12) will be further reduced. This will result in a second order equation. Among the possible choices, note

(a) X -= x' - ip

(b) Y=p-OZx

(c) Z ' (17)

all invariant under 17. In Appendix C, relations between the various variables and the resulting equations are

described. Here, in order to relate to a previous work [3,4,51 we choose X in terms of which the problem to be

solved is

Q(X" - 2X') - (Q2 + z2 )X = x2A (18)

or, in terms of s = z2/Qj

d2X dX
4sds2  2ds Q +s)X=A.

In Appendix B, a solution valid for 0 < Q 3 1 is constructed. It reads

X - _ _ Gs) (19)
A*QQ3_ j

where

G(s) v/- 2 f dyy') ((1 + y)I exp [-s 1 ),(20)
o dy 2(1 + y)

and 4w =Q3 - 1. If (and only if!) Q3 > 1, G may be integrated by parts, yielding
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=-1+ Q dy(1 + y)2yw- exp [sI Y (21)
25 O 2(1 + y)

One notes that properties of the solutions change dramatically according to whether Q 1. For Q = 1, which

is a transitional case, Equation (18) has only a homogeneous solution,

X = exp(-x 2 /2) (22)

Thus Q = 1 corresponds to A. = 0. As one notes from (13), this, according to Newcomb [15], corresponds to a

(ideally) magnetohydrodynamically marginally stable state. More about it will be said shortly.

To obtain the dispersion relation in terms of X = x - V, one uses X' = x0" and writes (14a)

2 ji dX d (23)

which, using (14b), (19) and (20), yields

A' - 2Q4 G'(s) ds
E(Qi -- 1) fo -V/S

21rQ' r[!(Q2 + 3)]
e( -4a (24)-Q

3) r[,(Q73 + q)

While at first sight (24) indicates the possibility of two branches according to whether Q: 1, with the exception

of the m = I internal kink mode, free energy to drive instability is available only for A' > 0.This energy

in the zero-a case comes from the poloidal magnetic field out of layer [cf Ref. 16]. Thus, the upper branch

must be rejected and the spectrum of possible modes is 0 < Q < 1. This point is further illuminated if one

recalls that the m $ 1 kink modes are magnetohydrodynamic (MHD) stable. Therefore, for these modes the

MHD marginal state wherein A* = 0 is unattainable. Since for A* = 0 the solution of (18) yields Q = 1,

consequently Q < 1.

On the other hand, the cylindrical m = 1 kink mode is MHD unstable. Thus, the Q > 1 branch

describes the resistive modifications (or rather, enhancement) of this mode. Similarly, Q = I corresponds to

a resistive modification of the MIHD marginally stable mode, while the Q < I branch, being MHD stable,

describes a purely resistive mode. Though the instability in the upper branch may be formally described in

terms of A', it is actually driven by finite 3 corrections [3,4,5,16].
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The m = 1 mode was treated in Refs. 3,4,5 and 6. In Ref. 3, the main results were stated and their deriva-

tion was presented in Refs. 4 and 5. These derivations, however, suffer from shortcomings which preclude their

use to m = 1 modes. In Ref. 4, the derivation is achieved using Laguerre polynomials and is, mathematically

speaking, incorrect. When corrected the domain of validity is like that of the integral representation derived in

Ref. 5, namely, it is limited to the upper Q > I branch, and, therefore, it is inapplicable to m $ 1 modes

which exist in the lower Q < I branch. In fact, the Q < 1 branch of the m = 1 mode was analyzed in Refs.

5 and 6 only in the Q < I limit using the const- procedure. Thus, at least formally, previous studies of the

m = I mode left an unanalyzed "window" 0 < P < Q < 1 of possible growth rates.

The use of representation (19) derived in Appendix B, enables a uniform treatment of both m = I and

m I I modes, with distinction between the various azimuthal numbers being needed only in the upper,

Q > 1, branch. Further difference in the structure of the various modes is lumped into A', which carries all the

necessary information from the "outer world" required to solve the eigenvalue problem.

For small Q (< 1), we recognize the classical tearing limit A' - Q5, but wheneverQ e-- D, Ii,we should

resort to the scaling of class II which describes appropriately this range of growth rates. Indeed, the appropriate

counterpart of Eq.(24) in region II is [14]

21Qr r[(3 -D,/Qi)] (25)
A/ I[{(1 - D,/Qi) (5

and shows that for low values of Q, (24) blends into (25) expanded in high values of Q, but as A' is increased,Q

in (24) diverges significantly from (25). From the other end, take IDsI < I and expand (25) in large parameter

y =I DsI/Q3 >> 1 to enter the territory of marginal modes considered next.
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111. Modes of Class III

Slowly growing modes are the ones most affected by finite 3 [2]. Therefore, in the second part of this

section we incorporate the effects of finite pressure. But first we consider

A. Zero-# Modes

Exploiting Q2 <I D, I we neglect inertia in Eq.(5) to obtain

Qz2 ,(26)Qx - D.

(Qx 2 - D.)b"+ DQ = 0 (27)

Equation (27) is solvable explicitly in terms of the hypergeometric function. Before doing- that consider first

the constant-V) approximation, that if I D, |< 1 is certainly valid for almost marginal modes. This yields

immediately

A' = (c'ir(-D.Q)1 (28)

Thus for a given negative D, we have Q = -(;A') 2/ r 2D . This should be compared with modes of class II

that scale like Q ~ A'l and thus for a given A' < I predict a somehow bigger growth rate. However, this

difference disappears if one formally expands (25) in the large parameter I D. I /Q2 (and disregards the basic

assumption that for modes in class II, 1 D, I- Qi).

Relation (28) very clearly displays that once the magnitudes of Q and D are dissociated, pressure gradients

are important for the almost marginal tearing modes. In this sense, the cylindrical case is basically different

from the slab model.

The negligible role of inertia for the tearing mode wherein D, < 0 is of some interest as it renders the

perturbed momentum equation into an equation of radial quasi-equilibrium with the flow (i.e., ) being merely

a "static" response to a time dependent diffusion of the magnetic flux. This raises the possibility that a very

weak resistive instability may evolve toward a diffusive non-linear regime without intervention of inertia and

thus the process described corresponds to d localized start-up of a global plasma diffusion. This should be
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contrasted with the idea due to Rutherford that resistive instability invokes a non-linear response that acts to

cancel inertia. We claim that a different scenario of resistive evolution is possible, namely: a weakly unstable

mode which does not explode may transit into a diffusion without ever being a "genuine" fluidic instability.

In such a picture the 'role of the non-linear interaction is to slow down the growth rate to the point that no

distinction can be made between the slowly evolving equilibrium and its perturbation.

Note that if Ds > 0, the perturbed pressure cannot counterbalance Lorentz force and there is always a

sublayer in which hydrodynamic effects are essential.

Finally, let us solve (27) directly. This allows one to address the conditions in which not only Q2 <| Ds I,

but Ds may formally be arbitrary. Although for zero-a modes this situation is somewhat academic, neverthe-

less, as we shall see, the results are of some interest. To this end, it is convenient to define a new variable Q in

terms of which

dx Q2 - Ds' =Q-. (29)

and 0 satisfies

[(z2 + d)Q']' - dQf2 = 0, d -Ds/Q (30)

and its solution is expressible in terms of Legendre functions P,, Q,. The proper combination of solutions is

dictated by the outer boundary conditions which when written in inner coordinate z read:

0 (-oo) = ~~Ao | | z v+1 ev+1 - A* I x |- HB r I"+'

0(+oo) = Ao | x |- +B+ x I"+1= A* I x I- +B* I x

Thus, if one represents 0 such that for large x z

S= x z- (SI +AoSgn) I z v+, I x |-+ oo (31)

with &j, SI, and Ao being constants, matching is achieved, provided that

2+ = A (32)
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where

A B ±B+ = = B+1 (33a)

and

A = 2S. (33b)
so

Exploiting the asymptotic properties of Legendre functions, P,, Q, the symmetric part needed, [see (23)], is

obtained using

S, P-Mz - P"(-Z), Z = rz

while for the antisymmetric part we define

A,= RL,(z) + R,(-z)

where

R, = P, - 7r-- tan(rL)Q,

and note that A,(x -4 oo) -_ Aosgnx x ILjv+I. In terms of S, and A, the solution is ib = aS, + Ay, with a

being a constant relating Q to A*. Since a appears both in S% and S, it drops out in calculation of A. Evaluating

Si/So we obtain

,- (-DsQ)v+1 I+ (V + , ) 2 tan2 )] (34)
(2v+1 ,(1 + v/7-rr(v + i ) I2

For v < I (and thus v ~ -Ds) we recover (3.3). Now consider a given A' and increase -Ds, then

the Q(-Ds) curve decreases at first, has a minimum for some 0 < v < I and goes to infinity at v = i.

Note also the change of scaling of Q versus A' as Ds is varied. Thus, an increase in -Ds is not an indefinitely

stabilizing process. At certain, impractically high, point this trend reverses and the growth rate starts to increase

with -Ds. This indicates that the behavior of marginal high-)3 modes may differ considerably from their low-#

counterparts. .
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B. Finite-P Modes

Consider now the resistive equations in the layer in which the terms due to small but finite-3 are retained.

The perturbed parallel component of the field cj now plays an active role. To proceed as in part A of this

section recall that Ds = 0(g) and assume

0 < Q <O < 1. (35)

Consequently, to first order we assume V" - 0 and g" ~ 0. in Eqs.(A14) and (A15). This yields an algebraic

relation between and V ( = /. = const.) Using this in (A16) we have for I x j< 1 U2 x thus C" ~- 0 for

I x |< 1. Also, as I x 1- oo " -+ 0. We assume therefore that 94" ~ 0 everywhere, an assumption which

may be inadequate for x = 0(1). Thus, all variables are determined algebraically, particularly

D., + Q(Qlj + X2) (36)
~(2 + X2) - DsQ2 S o(

where 1o = - SIDs, I = I + 1/(r'#). Note that the structure of changes according to whether #fQi

Note that as in the zero-P theory if Ds > 0, explodes in the layer, thus calling for restoration of inertia or

viscosity. Thus, as before, Ds < 0 will be assumed. Correction to first order yields

P -1 /" = Ds(x2 2+ Q2 = ( )

0 1 2(Q211 + x2) - DsQjo (37)

leading to the usual dispersion relation

f-l= LOO Ir)d.

To calculate the integral we consult Ref. (17). Thus

A' = -Dsir [Qi + V/-DsiDQ ] (38)
V2(L + 1)(-Dslo)

Since L < l it may be neglected, yielding within a factor of unity the main effect of finite-)3 theory

2 which is to set a minimal bound A, > 0 on A at which instability may set on. Examining I one observes two

parts, one of which disappears in the zero-oliinit. Indeed, fix x and let 1a -+ oo(li/lo = 0(1)) then
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DsQ
Qz 2 -Ds

which yields the zero-fl dispersion (28). On the other hand, the Q-I branch survives any f > 0. Thus the

A'(Q)Lo # A'(Q)I0-|o. This sensitivity of stability diagram at low-fl indicates that in consideration of the

almost marginal modes, not only finite compression but an additional hydrodynamic mechanism like viscosity

should be included.

With the more conservative taste in mind we redo the problem more carefully. Recall that the domain

of interest is 0 < Q < P < 1. This allows one to disregard the first two terms on the right-hand side of

Eq.(A16). Since Q < I we may assume tb - = const. Define a new complex variable

= cJ + iaiQ'2 (39)

in terms of which the combined Eqs.(A15) and (A 16) read

Q2 -1 _ QX20 + a2Q3Q = -az4)Q (40)

where ai = /(-biDs), a2 = iDsal, a3 = 1 + ia1Q2. The problem, mathematically speaking, is thus

reduced to the one encountered for modes of class II in the zero-fl theory. If, like in part A of this section,

the "inertial term" Q2f2 is neglected in (40), we recover the result of (28). Due to the frequent recurrence of

Eq.(40) in the resistive theory, it is worthwhile to obtain a convenient expression for its solution. This is done in

Appendix D. We have

= -a - d t[ t(2  - t)1- 14 _2 [ ]

2 VQ 2 /Q

and

1
= Im(Q), J = Re(O)

ajQ4

The dispersion relation obtained as usual via FA' = Q f_ (/j - zx)dx reveals the presence of Q-- factor as

predicted by (38).
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IV. Some Drift Effects

'Ilie Ohm's law consideredif this section is

i1I, i _Lj = E + (v, X B)/e + Vpe/en + (0.71/e)VIITe (41)

where e, i refers to electrons (imns), the 7's are electrical resistivities and the symbols 11 and - indicate the

components parallel and perpenricular to the magnetic field B, respectively. In (41) we have neglected electron

inertia and electron stress tensor. Also, the total pressure p = pe + pi, and J= en(vi - v() is the total current

density.

Since we distinguish betwem electrons and ions, separate entropy equations are needed. We shall assume

electrons and ions to behave adiabatically. For electrons, in high temperatures, adiabaticity, though consistent,

is a poor assumption. But in thr singular layer it is equally inadequate to assume isothermal behavior along

the field lines as done in some af the previous works [9,10,111. While away from the layer high temperature

does indeed imply an isotherma l&behavior along the field lines, the degeneration of B 0 - V in the layer impedes

diffusion and necessitates employment of a large part of the whole electron transport equation. This in turn

renders the problem analytically imtractable at the present time.

We present an exact solution for modes of class I (i.e., 8 < Re(QI)) which, like in the purely resistive

case, may have a higher growth rate than allowed by the const-0 theory. Our treatment admittedly is not

sufficient for high temperature plwnas, but within stated limitations, it permits, using the same formalism as in

Sec. II, a coherent treatment of dift effects on the tearing mode. In Refs. 5 and 6, the impact of drift on the

m = 1 mode was considered with a similar shortcoming like in the purely resistive case. As before, our main

interest is in the m ,K I modes.

With slight notational changes we employ the equations used in Refs. 5, 6, and 9. The relevant boundary

layer equations read

-Q(Q + iQi)( = z) (42a)
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where Q(c) is the ion (electron) diamagnetic frequency normalized with respect to til and calculations are

carried in the frame of reference in which E, = 0. In this frame the equilibrium ion and electron diamagnetic

velocity is free from the E X IB01 drift component and Q refers to the Doppler shifted frequency, i.e., Q -+

Q + kd(cErJBe).

Equations (42) may be solved in the same way as in Sec. II. Define X = zx)'- 4, and r = xQ4. Then X

satisfies

drX 2 dX 2 + 02)X = Ar 2  (43)

(rr 2 rdT 43

where

= (Q - iQ.)/[Q(Q + iQ,)] (44a)

03 = Q(Q - iQe)(Q + iQi) (44b)

Consulting Appendix B, we write the solution of(43) as

X -- I + 2 dyy'- (1 + Y), exp[ - (45)
A* f g i go dy 2(1 +y)

and 4a = 02 - 1. In addition, we have to require that

Reffl] > 0 (46)

to ensure that X behaves properly at infinity. Dispersion relation is obtained as in Sec. I [see Eq.(23)]. We have

2r (02 + 3)

C(I - 3)r [(0p + 1)

In our search for complex roots of (47) we must confine our interest only to those branches that satisfy

A' > 0 because irrespective of the refined physical description used in the layer, the reservoir of free energy to

drive the instability remains unchanged, namely, the poloidal magnetic field. It is easy to see that unless both

IQ'I < I and IQI < I the bounds of the lapplicability of the const-V) procedure become more severe in the
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presence of drift. Indeed, in the purely resistive case, if one limits himself to Q < 1, dispersion relation (24)

to first order coincides with the exact result (25) expanded in small Q. In the presence of drift, to apply const-

V procedure, one must require that IQ - iQ2I < 1. This, if 1 < Q*, necessitates that one limits himself to

cases wherein ImQ ~' Q*. But even when this condition is satisfied, unless j3il < I holds as well, dispersion

relation (47) will differ considerably from the one obtained using const-b procedure. However, unless both

IQ'I < 1 and Qi < 1, the real part of IQ31 may not be small. In fact, assume that Q Q? + iQe with

QR < 1. Then Req 3 -- Qu(Qi + Q*)Q*, which for large drift frequencies is certainly a non-negligible

quantity.

In Figs. I and 2 a numerical solution of (47) is displayed with Re(Q) and Im(Q) calculated in terms of

A and parametric variations in Q* and a =Q/Q. The parameters used are within the range of present day

experiments. One observes that for a fixed a (a = 1, in Fig. 1 and a = 2 in Fig. 2), a jump in Qi causes

an almost parallel shift of the A(ReQ) curve, everywhere but in the vicinity of the origin. Evidently, in relative

terms a given drift parameter has a larger stabilizing effect the smaller A is. Conversely, for a very large A (not

displayed) the various A(ReQ) curves are almost indistinguishable. While our results indicate that the drift has

its largest impact for the small growth rates, one cannot make a definite quantitative statement based on the

presented calculations. This is so not only because of the adiabatic treatment of electrons, but firstly because

the employed boundary layer Eqs.(42) correspond to modes of class I and thus arc unsuitable for a proper

treatment of modes of class 11 or 111. For almost marginal modes to be treated properly, finite 3 effects have to

be included in a similar fashion to Sec. III. This problem is in progress.
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V. Summary

Using aQ- 3/2, where Q is the normalized growth rate with respect to the resistive time scale, as an expan-

sion parameter, an asymptotic theory of tearing modes in a resistive medium was constructed. The classical

results of previous workers as a rule correspond to modes which satisfy Q--3/2 = 0(1). In these works a

low-# limit was assumed and constant-tp procedure was employed. However, modes with growth rates which

are either much smaller or much bigger than )2/3 necessitate a different approach which was employed in this

work. Modes with Q > #2/ 3 (modes of class I) were analyzed taking the appropriate boundary layer equations

in their zero-3 limit. The resulting equations were completely integrated and the corresponding dispersion

relation calculated. Now one may have growth rates which extend from the classical tearing time scale to the

resistive time scale with a cut-off at Q = 1. Q = I corresponds to A' = 00 and thus necessitates an infinite

poloidal magnetic energy to drive such a mode. Luckily, tokamak experiments indicate a much smaller A' than

one needed to drive tearing modes with such a large growth rate. Study of drift effects on tearing modes with

resistive growth rates reveals that drift has only a modestly stabilizing effect.

For tearing modes with almost marginal growth rates while on one hand effects of inertia are of no impor-

tance on the other hand finite-# effects together with the effects of curvature play a dominant role. Recalling

that in slab geometry the parallel components of perturbations are decoupled from their perpendicular counter-

part, we conclude that insofar as the almost marginal modes are concerned, tearing modes in cylindrical and

slab geometries are essentially different. And this is so in spite of the fact that the boundary layer is a thin zone.

The only factor that was left out and which possibly can modify our conclusion is the (classical) viscosity.

The stability diagram (Figs. I and 2) indicates that drift effects have their largest impact in the marginal

domain. But since this diagram corresponds to modes of class I (IQI > 32/3) a quantitative statement is

impossible. For this purpose finite-# effects have to be included. This work is in progress.

Although as a rule we have excluded the treatment of interchange (or localized) modes we mention that

for these modes, inertia plays an essential role. This is exhibited in the most transparent fashion for the almost

marginal modes. For such class of growth rates while inertia is negligible if one considers tearing modes, it plays

an essential role for interchange modes (D, > 0). In fact, neglecting of inertia will cause the eigenfunction to

explode in the center of the layer [see Eqs.(26) and (29)]. In the case of interchange modes there always exists

an inertial sublayer embedded in the resistive layer. Alternatively, viscosity may replace inertia as the dominant
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factor is the sublayer. But either viscosity or inertia play an essential role in shaping the eigenfunction.

Because the cylindrical m = I mode is unstable to (ideal) magnetohydrodynamic perturbations it is

customary to separate the treatment of m = I and m , 1 modes. However, for tearing modes this dis-

tinction is artificial because as several recently done calculations reveal, toroidal correction stabilizes the ideal

magnetohydrodynamic m = 1 kink mode. Thus, one is not interested in a resistive modification of the MHD-

unstable mode, a subject addressed many times in the past, but rather in destabilization by tearing of an other-

wise MHD stable equilibrium. As described in Sec. II, this aspect of the m = I mode was not sufficiently

well addressed in previous works. The presented description is valid for an arbitrary azimuthal m number.

The distinction between various modes is manifested, among other things, in a different location of the singular

surface and different value of A'.
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Appendix A Equations of Motion

We summarize [2,141 the derivation of the resistive boundary layer equations. The full resistive equations

are 1

CIP+ V -PV= SM

61py + V - pv + V±p - J X B = Sp

(A1)4B= V X (v X B - tJ)

4(P/Pr-1) + V X (Pp/p-) 1(,,2 +SE)

J= V x B V - B== 0

These equations are derived assuming that Ohm's law is

E+v X B= IJ (A2)

Here, and elsewhere in this paper, it was assumed that 7 is a scalar constant.

The equilibrium is assumed to be quasi-static, i.e., on the considered time scale v = 3 C, B = B" + b,

where C is the perturbed displacement vector assumed in the considered cylindrical symmetry to be given by

= (r) exp(-yt + imO - inkz) (A3)

with k = if < 1.

In terms of and h the perturbed equations read

poly2C= (V X b) X B* + f X b + V[rpo(V - C) + - VPI (A4)
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b= 7V X V X b+V X ( X B-) (A5)
-y

Everywhere but on the rational surface defined via F(r) = 0 where

Boo
F(r) = (m - nq) = 0, BO(r,) = 0 (A6)

r0

and q = krB2/BO is the safety factor, small r7 and -y may be neglected. In the vicinity of the rational surface

(A6) this becomes a singular perturbation manifested in a formation of a boundary layer at which both inertia

and resistivity are the driving mechanisms. It is assumed that at r,, P'(r) 3 0 thus

BO
B* - V -- n(r - r)q' + O(r - r,)2  (A7)

The appropriate scaling for the variables in the layer is derived from (A4) and (A5) requiring

poy2 ~ (Bo . V)(B* -V) (F')2(r - r,)2 (A8)

and

77/y ~6-~2 (A9)

where e is the characteristic width of the layer. Thus

(r - r,) ~ ~- ~ e (AIO)

Using these estimates we introduce the following dimensionless quantities: on the large domain, a as the minor

radius and tH = as the Alfven transit time; in the layer, the diffusive time tD

( 2
tD = ( (All)

and the diffusive length LD = V6iTD. Thus the small parameter e is

LD _ = = (A12))

23



and the dimensionless length x:r - r, = LDx = tax. Finally, the normalized growth rate Q is -y = Q/tD =

fQ/t1;.

The boundary layer equations may be expressed in terms of b,, r and b - B which are normalized as

follows

ir, bOB' + bkB'
g U./, q'ybr, 9) = -Bo P (A 13)

LDq'BO JBo [PI

Using a well known procedure [2,141 the boundary layer equations expressed in terms of the triplet (, U, 9J)

read

0" = Q( - z) (A.14)

Q2  = X2 - Qzb- DscJ (A 15)

CU Q 1 - + X2/Q2) + Q( _- 1 - 2 )- 1 (A 16)

where s =- 4k 2 /q' 2 and ,3 -- is evaluated at r, and D., is given below equation (4).

The special zero-/3 limit considered in the text in obtained as 3 -+ 0 but it is assumed that D, - /3' = 0.

In this limit from (A16)

which used in (A15) yields Eqs.(1) and (2).
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As for R 2, taking into consideration that a may be negative (-1 < a) we multiply (1311) by y"--1 and

integrate between (f, 1), 0 < < < 1;

(-1)LO(s)yn+ [ )y

n=O + a ± j 1 + Y

(1 + -6 exp f dy yd[(1 + y)-- exp )](B13)

The two diverging terms in E in (1313) cancel each other, indeed, fix any s, then

-Lr - -(I + f-)-' exp = +)(B14)

All other e-dependent terms vanish with r. Thus, taking e -+ 0 we obtain

(-1)La(s) __ 2- d (I + y) exp( (B15)

Thus

2 ~ 26W + y- 1-y

R 2  + dy 2(1 + y)J

and finally,

-1+ 26w Idyy r 1 ( y-xp 2 1y'$. (B16)
w- 1 w-1( +dy - 2(1+y)B

Z is an integral representation of the solution to (132'), which is a regular function of b. Thus, we may choose

6 = a + 1 = -0.5 to obtain the needed representation of(B2):

Z II-26 dyyd (1+y)03exp + . (B17)

If w> 1, (B17) may be integrated by parts to yield

Z = 1 - 2-2w f dyy' (1 + y)l exp [X2 2 (1+ y). (B18)
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As a closing remark, we note that in Refs. 4 and 5, representation (B18), which is valid only for w > 1,

was derived. In Ref. 4, this was done using directly an integral representation while in reference 5, generalized

Laguerre polynomials L;;-(s) were employed. The derivation in the latter case, even though limited to W >

1, is, strictly mathematically speaking, incorrect because L;-2 cannot form a complete orthogonal set on

(0, oo): the needed weight function X--e-- has a non-integrable singularity at the origin.

28



Appendix C Some Properties of Alternative State Variables

In the bulk of the paper we have employed X = x0' - 0 as the dependent variable in terms of which

modes of class I were expressed. As mentioned there, X is not the only choice and moreover, not necessarily

the most convenient one when high temperature effects or more generalized Ohm's law are considered. Here we

shall review some of the other candidates.

First note that in addition to X, Y, Z, defined in (17), the invariance property (15) renders second order

differential equation for 0. '[his is so because if (4, o) is a solution pair, so is (01, i) = (4 + ax, o + a).

Take ia = o = o. Thus (41, i) = (ax, a) is a particular integral of equations of motion. Indeed, eliminating

g from (11), (12) and (16) we find that i satisfies

Q - Qb" - X(Q 2 + x2), + (Q2 + z2)V) = X2A* (Cl)

and has x as a particular solution of the homogeneous part. Define

0=01x and V=d (C2)
d x

to find that

Qx2V" + 2xQV' - [2Q + x2(Q2 + z 2)]V = X2A* (C3)

is the needed second order differential equation. Solution of the homogeneous is expressible in terms of the

confluent hypergeometric functions. This may be used to construct the Green function in terms of which the

solution of the inhomogeneous equation is readily stated.

Now consider the choice of Y - as a state variable. Y is related to the parallel component of the

electric field. Using (11) and (12) Y is found to satisfy

QY"' = 4zY + (Q2 + z 2)Y' (C4)

Dispersion relation (14) expressed in terms of Y reads

eA'= 2Q.f Ydz/[Y(O) - ZxYdz] (C5)
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Note that Y is subject to the natural boundary conditions

Y(O) = 1, Y'(O) = 0 (C6)

in addition to

Y(oo) = 0 (C7)

This completes statement of the problem in terms of Y.

Further simplification arises either using (16) or noting that (C4) has (x2 + Q2) as an integrating factor.

This allows one to integrate once Y to obtain

Q(Q2 + 2 [ Y + 2QY - (Q2 + X2 )Y = C (C8)
(X2 + 2)

where C0 is a constant. Alternatively, introduce

y = Y(z)e txds

to find

d2 Y_(2 + ) = 6 (S(C9)
dS 2  Sd S Q

where S = 1Q.Thus, the homogeneous part of (C9) is exactly the one satisfied by X in the configuration

space [see Eq. (18)]. Solution of (C9) is facilitated by expanding it in Laguerre polynomials. Of course, since

_' = QzY and X has been found explicitly, Y may be considered known. But our aim here is to show the

viability of alternative approaches, like, say, the one that uses Y as a prime variable. In fact, in Appendix D

of their paper [1], Furth et aL., recognizing the limitation of the const-V) approximation, solve numerically the

problem of a symmetric sheet-pinch. For that purpose, they employ a new dependent variable which essentially

is equal to Y and which satisfies an equation analogous to (C4) with dispersion relation (C5) and boundary

conditions (C6) and (C7).

Irrespective of whether equation (C4) with (C6) and (C7) is addressed analytically or numerically, it should

have a proper solution for each value of Q. Before presenting their numerical solution, Furth el al. conjecture
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this to be the case, which is plausible because Y has two well behaved solutions at infinity. Since we have solved

for Y we know that this conjecture is correct. Alternatively, this conjecture may be demonstrated directly as

follows:

Consider the space of thrice smoothly differentiable functions over %], which in addition satisfy (C6)

and (C7). Let (Yi, Y2) = f0 YIY 2dx define the inner product. Then, integrating by part we show that

L -Q93+Qx +(Q 2 +x 2)9, satisfies (YI, LY 2) = (LYI, Y2) and thus this is a self-adjoint operator. Next,

we claim that if to Q = Qo corresponds a solution function Yo then in its e vicinity, 0 < e < 1, to every

Qo + F corresponds a solution function Y. This property is shown by perturbation; let Q = Qo + fQj and

Y = Yo + E Y1 .Then to first order

L(x, Qo)Y = Q, [2Y' - Yo' (C10)

and therefore,

(Yo, L(x; Qo)Y) = Q,(Y, 2Y' - Y'). (C11)

Integrating by parts, we have (Yo, 2Y' - Y"') = 0. Since LYO = 0,(ClI) is identically satisfied and thus

the perturbed Q, may be arbitrarily chosen. To each choice of Qi, (CIO) yields appropriate Y1. Since Qo is

arbitrarily chosen, using e-patching, we may cover the whole Q domain provided that at least one pair {Qo, Yo}

exists which satisfies (C4), (C6), and (C7). This is afforded by Qo = 1 and Yo = exp(-x 2 /2) and we are done.
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Appendix D Solution of Equation for Radial Displacement

In dealing with modes of class II, one has to solve an equation for the perturbed radial displacement g,

which is of the form

d 2Z
-1 + (b1 - bo2)Z =b2f (DI)

1 2

where a, are constants (possibly complex).

Define

Co b1b i

C1  b2b($ (D2)

To obtain the standard form

d 2Z

dz 2 + (Cb- z 2)Z = C1z (D3)

for both sides of(D3) to have even symmetry, use y = z/z. Further define

= X2/2 (D4)
M(&) = exp 1

in terms of which

2/2 + (3 - 4)M'+ (Co - 3)M Cie

The solution of M is obtained using the integral representation

M(pA) = j N(t) exp(jt)dt (D5)

where N(t) and the contour 11 are determindd by the auxiliary conditions
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(2t 2 - 4t)N exp(pit) I= C1 exp it

and

5(22 - 4t)N = (CO - 3 + 3t)N. (D7)

From (D7)

£2z.! (1+Cp)
N(t) = No(2 - t) t-- , No = const (D8)

Using (D8) we find that (D6) can be satisfied if: (1) the contour 0 is chosen to lie on the real axis between

t = 0 and t = 1, and (2)

Re[Co] < 3. (D9)

Thus

M = - dt [(2 - t) c- )]

and, with r = 1 - t

Z=- j dt(1 - exp(-(D )

The simplicity of representation (DIO) of the solution should be compared with its representation by Hermite

polynomials used in earlier works.
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Figure Captions

Fig.1 Normalized growth rate Q as a function of A. In Fig. (la) the real part is displayed while in (1b)

the imaginary part is given. Four values of Q*, the normalized ions drift, are considered: Qi =

0.00, 0.04, 0.10, and 0.20. Electrons drift parameter a = 1. (a Q*/Q*). Note that an increase

in Q* has a stabilizing effect which, in relative terns, is most pronounced for a weakly unstable tearing

mode.

Fig.2 Same as in Fig. (1) but here a = 2. Note that increase in a has a stabilizing effect; it causes, for a given

A, a decrease in ReQ but it also increases the oscillatory part of the mode.
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