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The free electron laser instability is investigated for a tenuous circulating electron beam
propagating perpendicular to a uniform magnetic field B0 , and transverse wiggler field modeled
by B. sin ky, in planar geometry. Unlike the rippled-field magnetron which operates at
Brillouin flow, the present analysis assumes a low-density electron beam with w. 4D '. Making
use of a macroscopic cold-fluid model for the electrons coupled with Maxwell's equations for the
fields, it is found that wave perturbations with ordinary-mode polarization (6 EIIBo and 6 BiBO)
amplify with characteristic maximum growth rate Im(6w) = wp(D./2v2cko) and emission
frequency w, =(I +3E )EkoVE. Here, D. = eB./rEmc,f)E = V/C, yE =( -flE1 2,and
VE = - cEo/Ro, where E, is the applied electric field across the anode-cathode gap. Depending
on the size of D./cko, the characteristic exponentiation time w, '(D/2v2cko) for the cross-
field free electron laser instability can be relatively short in units of w,-.

I. INTRODUCTION AND SUMMARY

There have been several theoretical"' and experimen-
tal 3 -20 studies of free electron lasers in linear (straight) ge-
ometry with transverse-8 or longitudinal~"' wiggler mag-
netic fields. Such configurations have gain limitations
imposed by the finite length of the interaction region. In the
present analysis, we consider the free electron laser (FEL)
instability for a tenuous circulating electron beam propagat-
ing perpendicular to a uniform magnetic field Boi. and
transverse wiggler field B. sin kyi, (Fig. 1), where
A, = 21r/ko is the wiggler wavelength and B. = const is the
wiggler amplitude. The planar configuration in Fig. 1(a) is
used to model the cylindrical geometry in Fig. 1(b) in the
limit of large aspect ratio R0>d. Like the rippled-field mag-
netron discussed by Bekefi," the beam circulates continu-
ously through the wiggler field thereby providing a long ef-
fective interaction region. Unlike the rippled-field
magnetron," which operates at Brillouin flow, the present
analysis assumes a tenuous electron beam with low density
(c<2 ). In addition, it is assumed that the average trans-
verse motion V, = - cEI/B is maintained by an applied
electric field Eoi. [Fig. 1(a)]. However, a completely analo-
gous stability analysis can be developed for the case where
the circulating electron motion corresponds to a large-orbit
(cyclotron) gyration in the applied field Bi..

The present theoretical model (Sec. II) is based on the
macroscopic, relativistic cold-fluid equations [Eqs. (5) and
(6)] coupled with Maxwell's equations [Eqs. (8) and (9)],
where it is assumed that the wave perturbations have ordi-
nary-mode polarization with 6 E = 6E2 2 and 6 B = 6B
+ 6Bi,. The electron beam density is assumed to be suffi-

ciently low that equilibrium self-field effects are negligibly
small and the Compton-regime approximation is valid with
negligibly small perturbation in electrostatic potential
(60). In Sec. III, the equilibrium flow is examined in the
limit of small wiggler amplitude e2B 2 /m 2c4k 2 <1 [Eq. (25)]

and weak spatial variation in electron energy y0(x)mc' across
the anode-cathode gap [Eq. (26)]. The average equilibrium
electron flow is then approximately V, = VE = - cE,/Bo
[Eq. (27)] with a small wiggler-induced modulation of the
axial flow velocity V? = - (eB./Imcko)cos key. For ordi-
nary-mode perturbations with d /,z = 0, detailed stability
properties can be determined from the coupled eigenvalue
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FIG. 1. Cross-field FEL configuration in (a) a planar geometry approxima-
tion, and (b) cylindrical geometry.
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equations [(28)-(33)] or approximately from Eqs. (38H42) in
the limit of weak transverse spatial variations with a /
ax <|aly. For small wiggler amplitude and beam density,

the resulting matrix dispersion equation (47) can be approxi-
mated by the diagonal terms which give the dispersion rela-
tion [Eq. (50)]

2 -ck 
2 

-

2 ( ,_ )2( 0
W 2ck, \ [w -(k + k,)VE + [w-(k-k)VE]

+ oj(k + ko)VE - c2(k + k,)2  o(k - ko)VE - c2(k - k0 )2

[c-(k+ko)VE] 2 -_ 2 /?4 (k-ko)VE 2_

where a, = 4-7rn, e 2 /rE m, 2. = eBW/E mc, flc = eB/

YEmC, VE =(I _ V2 C2)- 1 2 , k =k, is the wave vector,
and w is the complex oscillation frequency.

Analytic and numerical estimates (Sec. IV) of the FEL
growth rate obtained from Eq. (50) show that the upshifted
resonance term proportional to [a - (k + k0 )VE] in Eq.
(50) leads to instability with characteristic maximum growth

rate [Eq. (56)]

Im(5w) = (w,/2v2)((2./ck0),

and emission frequency [Eq. (54)]

= (I +fE)E ko VE,

whereflE = VEIc. Depending on the size off2./cko, Eq. (56)
can correspond to relatively short exponentiation times in

units of w,- '.

The resonance term proportional to [[w - (k

+ ko) VE 12 _ 2 2 2
E -' in Eq. (50) also leads to instability

with characteristic maximum growth rate [Eq. (67)]

Im(6W)

= P (, 12 ) kocyE )'(I8E) c 1/2

4 cko Bc yEkcf

X (E f2rEkOc)

and downshifted frequency [Eq. (62)]

c, =(1 +/JE)E(flE flc/rEkOc)koc.

Depending on the size of D. /cko, Eq. (67) can give even

shorter exponentiation times provided #E is close to f2. /

yEkoc, although the output frequency is lower than that of
Eq. (54).

The organization of this paper is the following. In Sec.

II we outline the assumptions and macroscopic cold-fluid

model used in the present analysis. The equilibrium flow and

linearized Maxwell-fluid equations for ordinary-mode wave

perturbations are discussed in Sec. III. Analytic and numeri-

cal studies of the resulting coupled eigenvalue equations

(38)-(42) are presented in Sec. IV in the limit of weak trans-

verse spatial variations [Eq. (35)) and low beam density (a4

<c2k 0) and wiggler amplitude (D , <c2k 3).

II. THEORETICAL MODEL AND ASSUMPTIONS

For present purposes, we consider the planar geometry

illustrated in Fig. 1(a) with applied fields

E0 = E06. ,
(I)

B0 = B0o, + i.B. sin koy,

where Bo = const is the axial magnetic field, B. = const is
the transverse wiggler amplitude, , = 21r/k, = const is the
wiggler wavelength, V = - Eod is the applied voltage, d is
the anode-cathode spacing, and E, is the electric field. The
planar configuration in Fig. 1(a) is used to model the cylin-
drical geometry in Fig. 1(b) in the limit of large aspect ratio
Ro>d. The assumption of constant wiggler amplitude B.
- const is a valid approximation over the transverse extent

of the electron beam provided kd< 1, which we assume to be
the case. In the present analysis, it is assumed that the elec-
tron beam is infinite in extent in they and z directions with
uniform average density n, between x = 0 and x = d. It is
also assumed that the beam density is sufficiently tenuous
that the effects of equilibrium self-fields E" and B" can be
neglected in comparison with the applied field components
in Eq. (1). For example, it is readily shown from Poisson's
equation that IE"! <JE0 1 provided

2(o2d 
2

/C
2
)4e V/kMC

2
, (2)

where c is the speed of light in vacuo, - e is the electron
charge, m is the electron rest mass, 4 = 41rne 2/j'm is the
relativistic plasma frequency squared, and kmc2 is the char-
acteristic electron energy. For the configuration illustrated
in Fig. 1(a), the average equilibrium flow is primarily in they
direction at the E0 XB0 velocity VE, where

VE = - cEo/Bo = cV/Bod. (3)
In the present analysis, all equilibrium and perturbed

quantities are allowed to have spatial variations only in the x
and y directions with V = x (3/ax) + a,(/ay) and a /
az = 0. It is assumed that the beam density is sufficiently
tenuous that the Compton-regime approximation is valid
with negligibly small perturbations in electrostatic potential
(8~._0). In particular, we consider perturbed electromagnet-
ic fields & E and 6 B with ordinary-mode polarization

SE = &E,(xy,t ), = - a SA,(xy,t )i,
C (9t

6B = SB,(xy,t )6, + 5B,(xy,t ),
(4)

6A,(xy,t)ex SA.(xy,t)e,
ay ax (xyt)6A,

where SB = VXSA, SE = -- (l/c)(a/at )SA, and 6 A
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= 6A (xy,t ), is the perturbed vector potential. Finally, to
complete the theoretical model, we make use of a macro-
scopic cold-fluid description in which the electron density
n(x,y,t) evolves according to the continuity equation

a a a8, 8,-+ V, -- + V -)n = ( -- n -+ , (5)'t x ' ax y
and the average electron flow velocity V = V (xy,t )ix
+ V,(x,y,t )i, + V,(xy,t )i, satisfies the relativistic cold-

fluid momentum transfer equation

( + V d + V, (ymV)
a4t Xa dy

= -e(EO +E)- VX(Bo+6B). (6)
C

Here, E0 + 6 E and Bo + 6 B are defined in Eqs. (1) and (4),
and 7(xy,t) is the relativistic mass factor for a fluid element

r VX Vy Y -(7)

C2 C 2 C2 -(

Moreover, making use of Eq. (4), the VX6 B Maxwell equa-
tion can be expressed as

d 2 d2 I d2 \41r
2 + - -= - -- 6J, (8)'

where the perturbed axial current 6J. (xy,t) is given by

J,= -enoV - eV 6n. (9)
Here, we have expressed quantities as an equilibrium value
(c/at )= 0 plus a perturbation, e.g., n(xy,t)= no(xy)
+ 6n(xy,t), etc. As a further useful dynamical equation, we

take the vector dot product of Eq. (6) with the flow velocity
V. This gives

(8a a " dyM2 E V e V
-, + VX - + Vy m - x +V + VI-'5A.,at ax ay C at

(10)
which describes the evolution of the energy ymc2.

To summarize, Eqs. (5), (6), and (8), supplemented by
the definitions in Eqs. (1), (4), and (7), constitute the final set
of fluid-Maxwell equations used in the subsequent analysis.
These equations describe the equilibrium (d/ t = 0) and or-
dinary-mode stability properties of a tenuous electron beam
propagating in the planar configuration illustrated in Fig.
1(a), assuming negligibly small beam thermal effects and
equilibrium self-fields. For future reference, an important
simplification occurs in the exact dynamical equation (6).
We introduce the vector potential A,. (y) for the wiggler field
in Eq. (1) such that B. sin key = (i/8y)A _(y), where

A.,(y) = - (B./ko)cos kay. (11)

After some straightforward algebraic manipulation, the z
component of Eq. (6) can be expressed (exactly) in the equiva-
lent form

(12)

corresponding to the conservation of axial canonical mo-

mentum Pz = yrm V, - (e/c)A. - (e/c)bA, = const follow-
ing a fluid element. If we consider the case where there is no
axial flow in the absence of wiggler and radiation fields, then
P, = 0 and Eq. (12) gives the exact result

ym V = (e/c)Aw, + (e/c)6A,. (13)
Making use of Eq. (13) to eliminate V, from the x and y
components of motion in Eq. (6) then gives

-+ V. +- V - )(ym VX)
\at ax dy

eB0  e 2 89-eEo e VY - - (A. +,A.) 2 , (14)
c 2ymc2 x

\at Xax

(15)eBV e2 I A
= X, 2ymc2 bly , 8,).

With regard to the transverse motion of an electron fluid
element, it is evident directly from Eqs. (14) and (15) that (A.
+ BA,)2 plays the role of a ponderomotive potential for the

combined wiggler and radiation fields.

III. GENERAL EQUILIBRIUM AND LINEARIZED
STABILITY EQUATIONS

In this section, we make use of the theoretical model
outlined in Sec. II to investigate equilibrium and stability
properties for the planar flow configuration illustrated in
Fig. 1(a).

A. Equilibrium equations

From Eqs. (13)-(15), the exact equilibrium (8 /8t = 0)
motion of a fluid element in the absence of radiation field
(6A, = 0) is determined from

e eB~
V = A.= - mc cos ky,

Z - 0mc rmck

Vd + Va (yom V) eEo _ e V,ax y

yo a + Vo )(Ym V)
X x ' dy

eBo o e2 a 2,
c 2yomc2 y (A.)

where

= V V V2  1/2,
C2 C C

(16)

(17)

(18)

(19)

and

v,( + a )(yoC\ v x )(yomc2 + eEox) = 0, (20)

follows from Eq. (10). Making use of Eq. (5), the equilibrium
density profile n,(xy) is related self-consistently to the flow
velocity by

o a + dd + (, +V,-- no= -no -- +-,ax ayax 9y
(21)
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Integrating Eq. (20), and defining f'yo(x = 0), gives

yo = 11 + eVx/mc2 d), (22)

where V = - Eod is the applied voltage. Moreover, making
use of Eq. (16) to eliminate Vo from the definition of yo, we
find from Eqs. (19) and (22) that

V 0 2  V 0 2

C2 C2C 2

= - 1+ B2 cos 2 k I + 2

\ m2c2k~ )y k mc2d)
(23)

Although closed expressions for the individual velocity com-
ponents V' and V, are difficult to obtain analytically from
Eqs. (17) and (18), the combination V' 2 + V02 is determined
exactly by Eq. (23) in the present model.

For future reference, we summarize equilibrium flow
properties in circumstances where the x-z motion is nonrela-
tivistic with

X(VO2/c2), 0 (V02/C2)<41, (24)

but the y motion is generally relativistic with V' approxi-
mately equal to the E0 X Bo velocity VE = - cEo/Bo. From
Eq. (16), the inequality ?, V.o2 /c2.41 implies weak wiggler
amplitude with

e2 B /m 2 4k <. (25)

If, in addition, it is assumed that the spatial variation in Yo is
weak over the gap region 0<x<d, then e V/Mc2

4 1, or
equivalently,

(VE/c)(f2d/c)41, (26)

where VE = - cE sBO = cV/Bgandr2c = eBymc. Even
if V, =e, Eq. (26) is satisfied provided 0.6 Bd<', whereBo is
in kilogauss and d is in centimeters. On the other hand, Eq.
(25) is satisfied provided 0.6 B. k 0 141, where B. is in kilo-
gauss and k -' is in centimeters. Making use of Eqs. (24)-
(26), it is straightforward to show from Eqs. (1 OH18) and (22)
that the equilibrium flow correct to 0 (B.) is given by

V = (eB/Pmcko)cos kov,

VO = VE + O(B2), (27)

VO = O(B),

where ~( - Vi/c2 )- 1 and y112 is approximately uni-
form over the region 0<x<d. For small wiggler amplitude
[Eq. (25)], the wiggler field produces only a small second-
order modulation of the x-y motion [Eqs. (23) and (27)], with
Vo and V, given approximately by V4 = 0 and V, = VE.
Finally, in the context of Eqs. (21) and (27), a uniform density
profile with no(x,y) = nb = const is an allowed equilibrium
solution in the region 0<x<d [Fig. 1(a)].

B. Linearized Maxwell-fluid equations

We now examine stability properties for small-ampli-
tude perturbations about the exact equilibrium flow equa-
tions (1 6)-(2 1). All perturbation quantities 50(xy,t) are ex-
pressed as

,5(x,y,t)= 3b(x,y)exp( - icot),

where Im co> 0 for the case of oscillations that amplify tem-
porally. Making use of Eqs. (16)-(2 1), we find from Eqs. (13)-
(15) that

(28)eB ebA
_V = T cos ka +
ia + Vo -C+ V, - ym

+ (V- + )(YOMV )

_ eBo +2B, cos ky 1-6A,
c y mc 2ko ax

~- + +B 0 6  + 2 . o ,

+ (,5^x -5,-+ bV, - )(om V,*)

=eBo ^i + e2B. d cskgA,,
C Ym ko 3y

(29)

(30)

where use has been made of A. = - (B/ko)cos koy and
V= - (eB./rmcko)cos kay. Making use of 6Vx (a!
ax)r 0m.c 2  eE .V, [Eq. (22)], the linearized. energy
equation (10) can be expressed as

io + V* + V, '6

=W e 2 BW(1

rjMC
2 cos kg6A^. (31)

Equations (28)-(31) determine the perturbed fluid mo-
tion (6Vx, 6 V, V ,by) in terms of the wiggler field and 6A,.
Returning to the Maxwell equation (8) for &A., we make use
of Eq. (28) to eliminate 6 V. Equation (8) then reduces to

-- + .-- + W2 4re A
dx2 g2 C2 romC2

4,ne B b6  n
__ -4 o -2 cos koy n . (32)

mc2 kr yo no

In Eq. (32), 6(xy) is related to &A,(x,y) by Eq. (31), and
bn(x,y) is determined in terms of the perturbed flow from the
linearized continuity equation (5), i.e.,

(- i + V 9+ V on +an V+

=n (6i'- ! n,
K,^X a3x + Y 8Y )

-- no( -- bjx + 9 6, ). (33)

To summarize, Eqs. (29H33) constitute the final cou-
pled eigenvalue equations for &A. (xy), 6n(xy), 6y(x,y), S Vx
(x,y), and 6 V(xy) assuming ordinary-mode perturbations
about the general equilibrium flow equations (16)-(21).
Equations (29)-(33) include bothx andy variations and must
be solved numerically in the general case. In the special limit
of zero wiggler amplitude (B, = 0), it follows trivially that
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6, = 0, Sv, = 0, br = 0, and bn = 0, and Eq. (32) reduces
to the familiar ordinary-mode eigenvalue equation

( 0 02 2 2 4 rn oe 2
X2 + y2 + c2 romc 2 )~ 0 3)

for a cold plasma in the absence of wiggler field.

IV. ANALYSIS OF EIGENVALUE EOUATION

In general, allowing for full x and y dependence, the
coupled eigenvalue equations (29)-(33) must be solved nu-
merically. In this regard, Eqs. (29)-(33) can be used to inves-
tigate cross-field free electron laser stability properties over a
broad parameter range where the tenuous-beam theory sum-
marized in Secs. II and III is valid. For present purposes,
however, to illustrate the basic physics features of the cross-
field FEL instability, we consider the regime where spatial
variations in they direction have short wavelength in com-
parison with spatial variations in the x direction, i.e.,

(35)

In particular, we neglect the x dependence of all equilibrium
and perturbation quantities in Eqs. (29H33) (d lax = 0). In
addition, it is assumed that the inequalities in Eqs. (24H26)
are satisfied, and the equilibrium x-y motion is approximat-
ed by

0 ,

(36)
= VE = - cE/Bo.

It is convenient to define

R, = eB 0/yEmc, fw = eB./VE mc,

2i = 1n2/rE ^ lzyE MC2O = 4ifnbe2/rm, 45A, = e5AZ/.c

(37)

where yE E2 - V C/c
2 ) = const, and nb = const is the

(uniform) beam density. Setting a lax = 0 and making use of
Eq. (36), the coupled eigenvalue equations (29)-(33) can be
approximated by

- iW + VE x c y , (38)

-iW+V a+VE )^ ) +

+ E 6V fleVx + W c 2 -(cos ko yB6 ),
C ck, ay

(39)

iw + VE )6r = cos kayAz,
dY YE cko

dyy yE 2 2
2 2 f2

ckc- P Wo kv 6n - &
C2 ck os n, YE

(a- )6n ) ^'9 8 ^

-2 i + VE d s, b o y
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(40)

(41)

(42)

Euations (38)-(42) constitutecoupled equations for 8V v(y),
6 V,(y), Sy(yl, &Az(y), and Bn(y). In obtaining the term
D,(VI/c 2 )&V. in Eq. (39), we have made use of Eq. (22)
to approximate 6 V, (a/x)(ym V')={VE/c2 )5 V( - eE0 )

SV(V/c
2 ).V, in Eq. (30).

We now Fourier decompose with respect to they depen-
dence in Eqs. (38H42) with "A(Y) = lkAk exp(iky), etc.
After some straightforward algebra, this gives

1Sk = - yE [ w VE)](12.2cko)
X (AkIk, +, Ak-k.), (43)

^ = nbkBfyk/(W - kVE), (44)

D. (co - kVE)( VE-c 2k )

2ck [(w - kVE 2-
X (5A; + k + 5Ak kj, (45)

2- c2k 2 - P)tSA

"' +

- (,Y5 I kE + y_
yE

(46)

Combining Eqs. (43H45) and substituting into Eq. (46) gives
the final eigenvalue equation

1 c2 - -+Xk+ +Xk-k-A k
;T -e5

+ Xk + k (045;k+ 2k. + Xk -k 0O)Ak -2k = 0, (47)

where the wiggler-induced susceptibility Xk (c) is defined by

X k -)=0' c-)2, 'k

( (wkVE - c 2 2

(c E kVE) 2  (2w - VE))
(48)

Equation (47) constitutes the final matrix dispersion
equation for the cross-field free electron laser instability in
circumstanceswherea /x = Oisassumed. ForD2 /c 2k 2i
[Eq. (25)], the coupling to the off-diagonal terms in Eq. (47) is
weak, and the dispersion relation can be approximated by

i - c 2k 2/62- /= - XkIk))+Xk- k' M

or equivalently
(49)

m2 c2 k 2 
-2 = 0-(kf0

W C -('= 0 P2ck, [w -(k +ko)VE

0E+ +
[- (k- ko)VE]

[o -(k ko)VE -C2 272

+[ -(k-ko)VE ]2 )".) (50)

Equation (50) constitutes the final ordinary-mode dis-
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persion relation (diagonal approximation) in circumstances
where |k |>0/dx|I and spatial variations in the x direction
are neglected. Equation (50) can be used to investigate cross-
field free electron laser stability properties over a broad pa-
rameter range consistent with the Compton-regime approxi-
mation (tenuous beam and 6q#0). In the remainder of this
paper, we make use of Eq. (50) to obtain simple analytic
estimates of stability properties (Sec. IV A) as well as de-
tailed numerical calculations of free electron laser growth
rates (Sec. IV B).

A. Analytic estimates of FEL growth rates

In this section, we make use of Eq. (50) to obtain simple
analytic estimates of instability growth rates in the limit of
small wiggler amplitude and beam density with

It is evident that the ordinary-mode electromagnetic wave
with W

2 
- c2k 2 - ~0 can resonantly couple to wiggler-

induced current perturbations whenever the beam reso-
nance condition w - (k ± k0) VE = 0 or cyclotron resonance
condition [o - (k± ko)VEj 2 _ 2E = 0 are approxi-
mately satisfied. Now we simplify Eq. (50) in these two limit-
ing regimes.

1. FEL instability near beam resonance

Restricting attention to upshifted frequencies, we first
examine Eq. (50) for (,k) in the vicinity of (w,,k,) deter-
mined from

o, = (k 2

(52)
o, = (k, + ko)VE,

where to, >0 and k, >0 are assumed. In this case, Eq. (50)
can be approximated by

[m--(k(kC)2E_2C2 2 _2 C[wo- (k k)VE( ck-- ,)= -co2(fl. 2cko )2W.

(53)

For co/c 2k <1, it follows from Eq. (52) that co, and k, can
be approximated by the familiar result

W, = (1 +#E)Y2kOVE,
(54)

k, =(1 +3E)yEf3Ek0,

where rE = (1 -#2 )-1/2. Expressing w = c, + 6o and
k = k, + 6k, and retaining terms to order (6W) 2 and (8k )',
the dispersion relation (53) can be approximated by

c
2k 1 2

60- 6k (6 w-Vk) _
to5 r 2 LLc k__/

(55)

For 6k = 0, Eq. (55) gives the characteristic maximum
growth rate

Im(So) = (w,/v2)(D./2cko). (56)

Depending on the size of(D.1/2ck0 ), Eq. (56) can correspond
to relatively short exponentiation times in units of w,-'-
Within the range of validity of Eq. (55), it is readily shown

that the growth rate is stabilized (Im 6o = 0) whenever
(6k )>(6k )M, where

(6k )2 = 2 o , (10_ )2 (57)

and k, is defined in Eq. (54). Making use of Eq. (56) and
substituting in Eq. (50), it is readily shown for w~(k + k0 )
X VE that the cyclotron resonance term proportional to
[[o - (k + k0) VE 2  - is negligibly small pro-

vided

w, B. E(1 +9E <2V2.
12 B0  9E

It is interesting to compare Eq. (53) with the cold-beam
Compton-regime dispersion relation obtained in the case of
zero guide field (B0 = 0). Setting 12, = 0 in Eq. (50) and de-
noting VE by Vb, the quadratic resonance term
[t - (k + k0) V,]- 2 dominates the linear resonance term
[o - (k + k0) Vb]- on the right-hand side of Eq. (50), which
leads to the approximate dispersion relation

- (k + ko)Vb] (2 _ C2 k 2 02)

= - w,(f2./2ck0 )2(k + ko)[w V - c2(k + k0)], (58)

with characteristic maximum growth rate (for 6k = 0)

V, ( 02 , 2 1 + b ' 3

Im( 2a)= 2 \C2k 4c2k ) 1 2,8b kc.
(59)

Typically, Eq. (59) gives a somewhat larger growth rate than
Eq. (56).

2. FEL instabilty near cyclotron resonance

We now return to Eq. (50) in the presence of a guide field
(B0 $0) and examine the dispersion relation for (w,k) in the
vicinity of(W,,k,) corresponding to cyclotron resonance, i.e.,

,= 2 2

(60)
w, = (k, + ko)VE ± Dc/ yE,

where 6), >0 and k, >0 are assumed. In this case, Eq. (50)
can be approximated by

[w-(k+k)VE] j22 /14I(W2 
2 _)2

W, -((k+ko)[o VE -C 2 (kk 0 )]. (61)

For W,/c 2k 2,<1, it follows from Eq. (60) that co, and k, can
be approximated by

co, =(I +fiE2(E E ±12clEk0c)k0c,

k, E = ( E +E)rE(#E + 1,!yEkOc)k0.
(62)

As before, we express o = (o, + 6w and k = k, + 5k in Eq.
(61). For 6k = 0, some straightforward algebra shows that
Eq. (61) can be approximated by

2 kfl ) ( ) k, + (k 6
YE 2 (2Ck, k,

X ((I+#Ek0c ± c.(3
\ YE/
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For a sufficiently weak applied field B, such that ,/rEkoc
<1 and fl,/rE &4ja), Eq. (63) reduces to the unmagnetized
results in Eqs. (58) and (59). On the other hand, for fl,/rE

. 16w the quadratic term in Eq. (63) dominates and &m is
determined from

bW2 =$ w w ( 2l k, + ko

4 2ck, k,

X (I (1 +.E kocyE,
- ') nc ) (64)

I

cko

for 5k = 0. Making use of Eq. (62) to eliminate k,, Eq. (64)
can be expressed in the equivalent form

((W) =, + 2 (kocyE )(,+6) 1c
(ow)2. =- 1+E)1

4 2cko f2c YEkoc

X .(+(65)
(flE ±fc IEkoc)

Clearly the + branch in Eq. (65) is always stable
(Im & = 0), whereas the - branch exhibits instability
whenever

0.0 10

0.009

0.008

0.007

0.006

0.005-

0.0047

0003-

0.002

0.001

6.4

0.0

(66)flc/yEkoc <,6E,

with corresponding growth rate

1I '), kOCE )I + 1/2

4 cko J 2c YE k.c

(l-- 21 /rEkoc"
2

X ( 1/rEkOC) (67)
(#E ~~ c ,lEko) 12

and downshifted emission frequency [Eq. (62)] c,
= (1 +E)E (6 E - f EC /y OC)koc. Making use of Eq. (67)

and substituting in Eq. (50), it is readily shown for
w - (k + k,) VE - - Dc IE that the linear resonance term
proportional to [w - (k + k,)VE]' is negligibly small pro-
vided

Cop fl2 (P )1/2

2koc koc E E

<( c )1( - ( I +'OE fc )1/2.

\kocyE kocyE koyE

B. Numerical results

The complete dispersion relation in Eq. (50) is an
eighth-order algebraic equation for the complex oscillation
frequency c. In this regard, Eq. (50) has been solved numeri-
cally and typical results are summarized in Figs. 2 and 3,
where the normalized growth rate (Im o)/ck, is plotted ver-
sus k /k, for the unstable branch with upshifted wavenumber
kk, = (I +E)2EEk. In Fig. 2, we fix VE = 2, f2c/
ck, = 0.5, and o/c 2k 0 = 0.1 and varyB./B, from0.1 [Fig.
2(a)] to 0.5 [Fig. 2(c)]. On the other hand, in Fig. 3, we fix yE

= 2, Dc/cko = 0.5, and B./BO = 0.25 and vary ko
from 0.25 [Fig. 3(a)] to 0.5 [Fig. 3(b)]. For small values of
both B,/ BO and w /c 2k 0, it is clear from Fig. 2(a) that the
bandwidth of unstable k values is very narrow. Indeed, A k /
k, ~10-2 for the parameters in Fig. 2(a). However, for in-
creasing values of B,/BO (Fig. 2), or for increasing values of

6.5
k/k,

6.6

I
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0.0 1 [
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FIG. 2. Plot of the normalized growth rate Im w/ck vs k /k obtained nu-
merically from Eq. (50) for the upshifted unstable mode with
w~ _(k + ko)VE. Parameters correspond to yE = 2, (/

2ck = 0.1, (2,/cko
= 0.5, and (a) B,/B = 0.1, (b) B,/BO = 0.25, and (c) B.,/B = 0.5.
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o4/c 2k , (Fig. 3), both the bandwidth of unstable k values
and the maximum growth rate (Im w),AX increase substan-
tially. The "dimpled" structure of the Im w/ck, vs k /ko
plots in Figs. 2 and 3 has to do with the high-order (eighth-
order) nature of the algebraic dispersion relation for w in Eq.
(50).

Finally, we have also solved numerically the complete
dispersion relation (50) for the unstable downshifted branch
near cyclotron resonance with w - (k + ko) VE - - lE .
(See discussion at the end of Sec. IV A.) Typical numerical
results are illustrated in Fig. 4 for parameters such that the
growth rate of the downshifted branch is comparable to the
cross-field FEL growth rates in Figs. 2 and 3. Note from Fig.
4 than an increase in B/Bo or co /c2 k ' leads to an increase
in growth rate Im w and a broadening of the range of unsta-
ble k values.
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FIG. 3. Plot of the normalized growth rate Im ./ck vs k /ko obtained nu-
merically from Eq. (50) for the upshifted unstable mode with
w__(k + ko)VE. Parameters correspond to y. = 2, B,/B,, = 0.25, 12/
ck, = 0.5, and (a) o /c 2k = 0.25 and (b) W2 /c 2k 2 = 0.5.
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V. CONCLUSIONS

The present theoretical analysis of the cross-field FEL
instability is based on the macroscopic, relativistic cold-fluid
equations for the electrons [Eqs. (5) and (6)] coupled with
Maxwell's equations for the fields [Eqs. (8) and (9)], where it
is assumed that the wave perturbations have ordinary-mode
polarization with 6E = SE i and 6B = 6BX, + 6B, ,.
The electron beam density is assumed to be sufficiently low
that equilibrium self-field effects are negligibly small and the
Compton-regime approximation is valid with negligibly
small perturbation in electrostatic potential (60). In Sec.
III, the equilibrium flow was examined in the limit of small
wiggler amplitude e2B /m2c4 k ' <I [Eq. (25)] and weak spa-
tial variation in electron energy yo(x)mc 2 across the anode-
cathode gap [Eq. (26)]. The average equilibrium electron
flow is then approximately V' = V= - cE0/B [Eq. (27)]
with a small wiggler-induced modulation of the axial flow
velocity V2 = - (eB/kmcko)cos key. For ordinary-mode
perturbations with a /az = 0, detailed stability properties
were determined from the coupled eigenvalue equations
(38)-(42) in the limit of weak transverse spatial variations
with i/dxl < a/ayl. For small wiggler amplitude and beam
density, the resulting matrix dispersion equation (47) is ap-
proximated by the diagonal terms which give the dispersion
relation in Eq. (50). Analytic and numerical estimates (Sec.
IV) of the FEL growth rate obtained from Eq. (50) show that
the upshifted resonance term proportional to
[o - (k + ko) VE] -' in Eq. (50) leads to instability with char-
acteristic maximum growth rate [Eq. (56)]

Im(bo) = (wt,/2V2)(fl./cko),

and emission frequency [Eq. (54)]

Or = (I +3E) 4 ko VE,

where flE = VEIC. Depending on the size of fl,/ck, Eq.

(56) can correspond to relatively short exponentiation times
in units of o .
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